Institut für Algebraische Geometrie Prof. Dr. K. Hulek Dr. N. Pagani

Moduli Spaces Problem session 29/6/2012

Exercise 1. In this exercise we study an example of stable reduction. We study the case of the family of elliptic curves

$$C_t: \quad y^2 = x^3 - t$$

with parameter $t \in \mathbb{A}^1$. All fibers for varying t are smooth elliptic curves isomorphic to a fixed elliptic curve E. By using the statement of the stable reduction theorem we know a *priori* that the stable reduction process must produce a curve isomorphic to E on the fiber t = 0.

1. Blow-up three times the point (x, y) = (0, 0), to obtain a central fiber with four components with normal crossings:

$$D = C + 2E + 3F + 6G,$$

where C is the proper transform of the original curve C_0 , E, F, G are smooth genus 0 curves, and the coefficient in front of them is their multiplicities as divisors in the surface. Show that $E \cdot F = E \cdot C =$ $D \cdot C = 0$ and $G \cdot E = G \cdot G = G \cdot E = 1$.

2. * Perform suitable cyclic base changes of order 2 and 3, each followed by a normalization. By cyclic base change of order p we mean a map $t \to t^p$. (Hint: show that the effect on a divisor D of doing base change of prime order p followed by normalization, is to take the cover branched over 0, and reduce the result mod p).

- 3. If $\tilde{C}, \tilde{E}, \tilde{F}, \tilde{G}$ are the fibers over C, E, F, G respectively, then \tilde{C} is a smooth rational curve, \tilde{E} is the disjoint union of two smooth rational curves, \tilde{F} is the disjoint union of three smooth rational curves, and \tilde{G} is smooth curve of genus 1.
- 4. Show that \tilde{G} is isomorphic to any of the C_t 's, for $t \neq 0$.
- 5. Show that all the rational curves in point (4) have self-intersection -1. Indeed the self-intersection of the whole special fiber is 0, and each of those rational curves meets the rest of the special fiber exactly once.
- 6. Conclude that the minimal model of the resulting surface, obtained by contracting all (-1)-curves, has central fiber isomorphic to \tilde{G} , hence to any of the C_t 's.
- 7. Show that the same analysis can be performed in the case of a general pencil C_t of curves on a surface, with C_t smooth for $t \neq 0$, and C_0 a curve with one cusp that is not a base point of the pencil. Everything will be similar, with the only difference that \tilde{C} is now the normalization of C_0 . So the central fiber at the final stage of the stable reduction is \tilde{C} glued in the fiber over the cusp at the elliptic curve \tilde{G} .