Institut für Algebraische Geometrie Prof. Dr. K. Hulek Dr. N. Pagani

Moduli Spaces Problem session 22/6/2012

Exercise 1. This is a collection of combinatorial exercises on stable curves. Let C be a stable curve of genus $g \ge 2$, with γ irreducible components C_i and δ nodes (double points) P_i .

- 1. Prove that $\delta \leq 3g 3$ and $\gamma \leq 2g 2$ (Hint: can you compute the first Betti number of a graph in terms of vertices and edges?).
- 2. Prove that, if C is irreducible, then the maximum number of nodes that C can have is $\delta \leq g$.
- 3. The curve C is of compact type when its dual graph is a tree, or equivalently when $h^1(\Gamma(C)) = 0$. Prove that if C is of compact type, then $\delta = \gamma 1 \leq 2g 3$.
- 4. Let $\delta = 3g 3$ and $\nu_i : C_i^{\nu} \to C_i$ be the normalization of the irreducible component C_i . Prove that, under this hypothesis, $C_i^{\nu} \cong \mathbb{P}^1$ and $\#\nu_i^{-1}(C_i \cap \operatorname{sing} C) = 3$.
- 5. If $\delta = 3g 4$, then there exists one j such that, for all $i \neq j$, $C_i^{\nu} \cong \mathbb{P}^1$ and $\#\nu_i^{-1}(C_i \cap \operatorname{sing} C) = 3$. Moreover, either $C_j^{\nu} \cong \mathbb{P}^1$ and $\#\nu_j^{-1}(C_j \cap \operatorname{sing} C) = 4$ or C_j^{ν} is an elliptic curve and $\#\nu_j^{-1}(C_j \cap \operatorname{sing} C) = 1$.
- 6. Can you provide a recipe to produce, for all g, stable curves with 3g-3 irreducible components?

Exercise 2. In this exercise we study the moduli space M_3 of smooth, genus 3 curves. Let C be a smooth curve of genus g and K_C its canonical divisor, and

$$|K_C| = \{ D \in \operatorname{Div}(C) | D \ge 0, D \equiv K_C \}$$

the canonical linear system. Recall that there is always a rational map

$$\phi_{K_C} \colon C \dashrightarrow \mathbb{P}^{g-1}.$$

Prove that:

- 1. If $g \ge 2$, the linear system K_C is basepoint free. This means that for all points $P \in C$, one has $h^0(C, K_C P) = h^0(C, K_C) 1$. Conclude that ϕ is a morphism (it is defined everywhere).
- 2. The morphism ϕ is either an embedding, or C is hyperelliptic. What is the degree of $\phi(C)$ in \mathbb{P}^{g-1} ? Recall that ϕ is an embedding precisely when, for all $P, Q \in C$, one has

$$h^{0}(C, K_{C} - P - Q) = h^{0}(C, K_{C}) - 2$$

(K_C is very ample). If this is not so, consider the morphism $\phi_{|P+Q|}$ given by the divisor P + Q.

3. Compute the dimension of the hyperelliptic locus

$$H_g := \{ [C] \in M_g | C \text{ is hyperelliptic} \} \subset M_g.$$

Hint: how many degrees of freedom do 2g + 2 points in \mathbb{P}^1 have, up to projective equivalence?

4. Let us define

$$U := \{ [f] \in \mathbb{P}(\mathbb{C}[X_0, X_1, X_2]_4) | V(f) \subset \mathbb{P}^2 \text{ is smooth} \}.$$

Why is U open and dense in the projective space $\mathbb{P}(\mathbb{C}[X_0, X_1, X_2]_4)$? Prove that there is a morphism $U \to M_3$ whose complement of the image is the hyperelliptic locus H_3 . Conclude that M_3 is unirational. What is the fiber of the map $U \to M_3$ over a point?