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Exercise 1. In this exercise we study the classification problem for line-
ar endomorphisms of vector spaces. Namely, we classify up to isomorphism
pairs (V, T ) where V is a finite dimensional vector space and T is a linear
endomorphism of V . This corresponds to classifying n × n matrices up to
similarity.

1. Define the moduli functor Endn. Families over S are pairs (E, T ), where
E is a rank n vector bundle on S and T is a homomorphism E → E.
Define an appropriate notion of isomorphism of families over S.

2. (This step is needed for the following point) Let X be a projective
variety, V a trivial vector bundle and L a line bundle on X. Show that
if V ⊗ L is trivial, then L is trivial.

3. Show that there is no fine moduli space for Endn. (Hint: show that
over P1 there are two non-isomorphic families of endomorphisms that
are fiberwise isomorphic).

4. Show that if n > 1, there is no coarse moduli space for Endn. (Hint:
show that two matrices with the same characteristic polynomial must
map to the same point in the coarse moduli space).

5. Consider now the moduli functor End∗n, parametrizing pairs (E, T ) whe-
re Ts has n distinct eigenvalues for all s ∈ S as in point (1). Show that
the complement of ∆ in Cn is a coarse moduli space for End∗n. Here ∆



is the discriminant locus of those points (a1, . . . an) ∈ Cn such that the
polynomial

xn + a1x
n−1 + . . .+ an

has precisely n distinct roots.

6. * Let Enddn be the functor as in point (1) that parametrizes pairs (E, T ),
where Ts is diagonalizable for all s ∈ S. Then Cn is a coarse moduli
space for Enddn.

7. Now consider Mn, the vector space of n × n matrices, on which the
linear group GLn acts by conjugation. If M is a matrix, the coefficients
of the characteristic polynomial σi(M) define an equivariant morphism
σ : Mn → Cn. Is (Cn, φ) a categorical/good/geometric quotient for the
action of GLn on Mn? Let M∗

n be the open subspace of Mn given by dia-
gonalizable matrices. Is (Cn, φ) a categorical/good/geometric quotient
for the action of GLn on M∗

n?

Exercise 2. In this exercise, we prove Noether’s theorem: if G is a finite
subgroup of GLn, then the ring of invariants C[x1, . . . , xn]G is generated by
finitely many homogeneous invariants. Recall the Reynolds operator

RG(f) :=
1

|G|
∑
g∈G

f(g ◦ x).

What Noether proved is that the ring of invariants is generated by {RG(xβ)}|β|≤|G|.
Here β = (β1, . . . , βn) is a multiindex and |β| :=

∑
βi its length.

1. Show that it suffices to prove that, for each α, RG(xα) is a polynomial
in {RG(xβ)}|β|≤|G|.

2. We can write compactly

RG(xα) =
1

|G|
∑
A∈G

(Ax)α,

where (Ax)α :=
∏

(Ai · x)αi and Ai · x :=
∑
aijxj.

3. Introduce variables u1, . . . , un and compute

(u1A1 · x+ . . .+ unAn · x)k =
∑
|α|=k

aα(Ax)αuα,



where aα is the multinomial coefficient. Summing over all A in G, we
get

Sk :=
∑
A∈G

(u1A1x+ . . .+ unAnx)k =
∑
|α|=k

|G|aαRG(xα)uα

4. Prove that Sk can be written as a polynomial of S1, . . . , S|G|. (Hint: use
that the Newton polynomials {pi}1≤i≤n} generate the ring of symmetric
polynomials C[z1, . . . , zn]Sn . The Newton polynomials are defined as
pk(z1, . . . , zn) := (

∑
zki ).)

5. From the previous point, we have Sk = F (S1, . . . , S|G|) for a certain
polynomial F . Now expanding the previous equality, and equating the
coefficients of uα on both sides, we obtain that RG(xα) is a polynomial
in {RG(xβ)}|β|≤|G|. This concludes the proof of Noether’s theorem by
point (1).


