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Exercise 1. (strong form of the Yoneda lemma). In this exercise we prove
that there is a natural bijection Nat(νX , F )→ F (X).
Let us fix a category C, an object X in C with its associated functor of points
νX , and let F be any contravariant functor from C to sets.

1. Define a function α : Nat(νX , F ) → F (X) in the following way. Let
τ : νX → F be a natural transformation. Define α(τ) as the image via
τX : νX(X)→ F (X) of the identity inside νX(X).

2. Conversely, define β : F (X)→ Nat(νX , F ). Let us take ξ ∈ F (X), and
define β(ξ) as the natural transformation τ , such that τU : νX(U) →
F (U) is defined by τU(f) := (F (f))(ξ). Check that with this definition,
τ is indeed a natural transformation of functors.

3. Prove that α and β are inverses of each other.

4. Using the strong form of Yoneda, prove that MorC(X, Y ) can be iden-
tified with Nat(νX , νY ).

5. Recall the definition of a moduli functorM, and of coarse moduli space
M , and state when a coarse moduli space is fine. Let us consider a base
S and a family ξ ∈M(S). Is there a natural way to associate with the
family ξ a morphism S →M? When is such a morphism unique?

Exercise 2. (Taken from Orsola Tommasi’s 2009 problem classes)
In this exercise we study the Hilbert Scheme of hypersurfaces in Pr. Let
d, r ≥ 1.



1. Let us fix X ⊂ Pr an hypersurface of degree d.
Compute the Hilbert polynomial of X. Show that the Hilbert polyno-
mial uniquely determines the degree d and the dimension r − 1.

2. Let SpecA be an affine scheme. What is the definition of a family of
hypersurfaces over SpecA? What are the equations defining X inside
Pr × SpecA?

3. Let P(r+d
r )−1 = Proj(k[ai0,...,ir : i0 + · · ·+ ir = d]). Show that each family

X → SpecA (defined in point (2)) induces a morphism φ : SpecA →
P(r+d

r )−1.

4. Let U = V (σ) ⊂ Pr × P(r+d
r )−1, with

σ([X0, . . . , Xr], [ai0,...,ir ]i0+···+ir=d) =
∑

i0+···+ir=d

ai0,...,irX
i0
0 · · ·X ir

r .

For each family of hypersurfaces Ξ → SpecA consider the morphism

φ : SpecA→ P(r+d
r )−1, defined in point (3). Show that:

φ∗U = X .

5. Conclude that P(r+d
r )−1 is isomorphic to the Hilbert Scheme of hyper-

surfaces of degree d in Pr.

Exercise 3. In this exercise we compute the dimension of the moduli space
of curvesMg assuming it exists. This argument can be turned into a rigorous
mathematical proof after having constructed the moduli space as a scheme.

1. Fix a genus g curve C, and a line bundle D on C of degree d. Prove
that the vector space of sections of O(D) has dimension d+1−g when
d > 2g − 2. (Hint: Serre duality, Riemann-Roch).

2. Show that a (Zariski) open subset of H0(C,O(D))⊕2 parametrizes maps
f : C → P1 of degree d. Two such maps f and f ′ are the same exactly
when there exists λ ∈ C∗ such that the corresponding sections (s, t)
and (s′, t′) satisfy s′ = λs, t′ = λt. Conclude that the space of maps
f : C → P1 of degree d is naturally parametrized by an open subset of
a projective space of dimension 2d− 2g + 1.

3. We have seen in the lectures that the moduli space Pic0(C) parametrizi-
ng degree 0 line bundles on C has a natural structure of a g-dimensional
torus

H0(C,ΩC)∨/H1(C,Z).



If p is a point of C, the map Pic0(C)→ Picd(C) (the set of line bundles
of degree d) given by L → L⊗O(p) is a bijection.

4. (This point is just a plausibility argument. It can be made into a precise
proof afer showing the existence of a geometric structure on the moduli
space of degree d line bundles on curves of genus g). In this point we
assume that a moduli space Mg parametrizing smooth curves C of
genus g exists and has dimension q(g) (a number we want to calculate).
Similarly, we assume that there is a moduli space Picd,g parametrizing
couples (C,L), where C is a curve of genus g and L is a line bundle of
degree d on C. By the previous point, it is reasonable to believe that
the dimension of Picd,g is q(g) + g.

5. From (3) and (4) conclude that the space of maps C → P1 of degree d
when C varies has dimension q(g) + 2d− g + 1.

6. We can compute the dimension of the space of maps C → P1 in another
way. Prove that, given 2g+2d−2 distinct points b1, . . . , b2g+2d−2 on P1,
there is a finite number of degree d covering maps C → P1 branched at
the bi’s. (Hint: use Riemann existence theorem for coverings of Riemann
surfaces).

7. The moduli space parametrizing 2g + 2d − 2 distinct points on P1 is
the quotient of the complement of the diagonals xi = xj in (P1)2g+2d−2

by the action of the symmetric group S2g+2d−2. Henceforth, it has di-
mension 2g + 2d− 2.

8. The dimension of the space of degree d maps C → P1 can be computed
in two ways. Equating them, one obtains the number q(g):

q(g) + 2d− g + 1 = 2g + 2d− 2.


