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Moduli Spaces
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Exercise 1. (strong form of the Yoneda lemma). In this exercise we prove
that there is a natural bijection Nat(vy, F') — F(X).

Let us fix a category C, an object X in C with its associated functor of points
vy, and let F' be any contravariant functor from C to sets.

1.

Define a function « : Nat(vx, F') — F(X) in the following way. Let
T :vx — F be a natural transformation. Define «(7) as the image via
Tx : vx(X) — F(X) of the identity inside vx(X).

. Conversely, define 3 : F(X) — Nat(vy, F'). Let us take £ € F(X), and

define 3(&) as the natural transformation 7, such that 7y : vx(U) —
F(U) is defined by 1 (f) := (F(f))(€). Check that with this definition,

7 1s indeed a natural transformation of functors.
Prove that o and (§ are inverses of each other.

Using the strong form of Yoneda, prove that More(X,Y') can be iden-
tified with Nat(vy, vy).

Recall the definition of a moduli functor M, and of coarse moduli space
M, and state when a coarse moduli space is fine. Let us consider a base
S and a family £ € M(S). Is there a natural way to associate with the
family ¢ a morphism S — M? When is such a morphism unique?

Exercise 2. (Taken from Orsola Tommasi’s 2009 problem classes)
In this exercise we study the Hilbert Scheme of hypersurfaces in P". Let
d,r > 1.



1. Let us fix X C P" an hypersurface of degree d.
Compute the Hilbert polynomial of X. Show that the Hilbert polyno-
mial uniquely determines the degree d and the dimension r — 1.

2. Let Spec A be an affine scheme. What is the definition of a family of

hypersurfaces over Spec A7 What are the equations defining X inside
P" x Spec A?

..... ;. tio+---+i, = d]). Show that each family
X — Spec A (defined in point (2)) induces a morphism ¢ : Spec A —
]P)(ri»d)_l‘

r-&Td

4. Let U = V(o) c P x PU7)1 ) with

U([XOv s 7X7“]’ [aio ----- ir]i0+~-~+ir:d) = Z Qi,..., irXéO o X;T

For each family of hypersurfaces = — Spec A consider the morphism
r+d
¢: Spec A — p(" >71, defined in point (3). Show that:

oU=X.

5. Conclude that P(79)1 is isomorphic to the Hilbert Scheme of hyper-
surfaces of degree d in P".

Exercise 3. In this exercise we compute the dimension of the moduli space
of curves M, assuming it exists. This argument can be turned into a rigorous
mathematical proof after having constructed the moduli space as a scheme.

1. Fix a genus g curve C, and a line bundle D on C' of degree d. Prove
that the vector space of sections of O(D) has dimension d+ 1 — g when
d > 2g — 2. (Hint: Serre duality, Riemann-Roch).

2. Show that a (Zariski) open subset of H°(C, O(D))%? parametrizes maps
f: C — P! of degree d. Two such maps f and f’ are the same exactly
when there exists A € C* such that the corresponding sections (s,t)
and (¢',t") satisfy s’ = As, ' = At. Conclude that the space of maps
f: C — P! of degree d is naturally parametrized by an open subset of
a projective space of dimension 2d — 2g + 1.

3. We have seen in the lectures that the moduli space Pic’(C') parametrizi-
ng degree 0 line bundles on C' has a natural structure of a g-dimensional
torus

H°(C, Q)Y /H(C, 7).



If p is a point of C, the map Pic®(C') — Pic?(C) (the set of line bundles
of degree d) given by £ — £ ® O(p) is a bijection.

. (This point is just a plausibility argument. It can be made into a precise
proof afer showing the existence of a geometric structure on the moduli
space of degree d line bundles on curves of genus g). In this point we
assume that a moduli space M, parametrizing smooth curves C' of
genus ¢ exists and has dimension ¢(g) (a number we want to calculate).
Similarly, we assume that there is a moduli space Picq, parametrizing
couples (C, L), where C'is a curve of genus g and L is a line bundle of
degree d on C. By the previous point, it is reasonable to believe that
the dimension of Picy, is q(g) + g.

. From (3) and (4) conclude that the space of maps C' — P! of degree d
when C' varies has dimension ¢(g) + 2d — g + 1.

. We can compute the dimension of the space of maps C' — P! in another
way. Prove that, given 2g+2d — 2 distinct points by, ..., bagi24-2 on P,
there is a finite number of degree d covering maps C' — P! branched at
the b;’s. (Hint: use Riemann existence theorem for coverings of Riemann
surfaces).

. The moduli space parametrizing 2¢ + 2d — 2 distinct points on P! is
the quotient of the complement of the diagonals z; = x; in (P*)29724-2
by the action of the symmetric group Gy4424—2. Henceforth, it has di-
mension 2g + 2d — 2.

. The dimension of the space of degree d maps C' — P! can be computed
in two ways. Equating them, one obtains the number ¢(g):

q(9) +2d—g+1=2g+2d— 2.



