Institut für Algebraische Geometrie Prof. Dr. K. Hulek Dr. N. Pagani

Moduli Spaces Problem session 11/5/2012

Exercise 1. (strong form of the Yoneda lemma). In this exercise we prove that there is a natural bijection $\operatorname{Nat}(\nu_X, F) \to F(X)$. Let us fix a category \mathcal{C} , an object X in \mathcal{C} with its associated functor of points

- ν_X , and let F be any contravariant functor from \mathcal{C} to sets. 1. Define a function α : Nat $(\nu_X, F) \to F(X)$ in the following way. Let $\tau : \nu_X \to F$ be a natural transformation. Define $\alpha(\tau)$ as the image via
 - $\tau: \nu_X \to F$ be a natural transformation. Define $\alpha(\tau)$ as the image via $\tau_X: \nu_X(X) \to F(X)$ of the identity inside $\nu_X(X)$.
 - 2. Conversely, define $\beta : F(X) \to \operatorname{Nat}(\nu_X, F)$. Let us take $\xi \in F(X)$, and define $\beta(\xi)$ as the natural transformation τ , such that $\tau_U : \nu_X(U) \to F(U)$ is defined by $\tau_U(f) := (F(f))(\xi)$. Check that with this definition, τ is indeed a natural transformation of functors.
 - 3. Prove that α and β are inverses of each other.
 - 4. Using the strong form of Yoneda, prove that $Mor_{\mathcal{C}}(X, Y)$ can be identified with $Nat(\nu_X, \nu_Y)$.
 - 5. Recall the definition of a moduli functor \mathcal{M} , and of coarse moduli space M, and state when a coarse moduli space is fine. Let us consider a base S and a family $\xi \in \mathcal{M}(S)$. Is there a natural way to associate with the family ξ a morphism $S \to M$? When is such a morphism unique?

Exercise 2. (Taken from Orsola Tommasi's 2009 problem classes) In this exercise we study the Hilbert Scheme of hypersurfaces in \mathbb{P}^r . Let $d, r \geq 1$.

- 1. Let us fix $X \subset \mathbb{P}^r$ an hypersurface of degree d. Compute the Hilbert polynomial of X. Show that the Hilbert polynomial uniquely determines the degree d and the dimension r - 1.
- 2. Let Spec A be an affine scheme. What is the definition of a family of hypersurfaces over Spec A? What are the equations defining \mathcal{X} inside $\mathbb{P}^r \times \operatorname{Spec} A$?
- 3. Let $\mathbb{P}^{\binom{r+d}{r}-1} = \operatorname{Proj}(k[a_{i_0,\dots,i_r}:i_0+\dots+i_r=d])$. Show that each family $\mathcal{X} \to \operatorname{Spec} A$ (defined in point (2)) induces a morphism ϕ : $\operatorname{Spec} A \to \mathbb{P}^{\binom{r+d}{r}-1}$.
- 4. Let $\mathcal{U} = V(\sigma) \subset \mathbb{P}^r \times \mathbb{P}^{\binom{r+d}{r}-1}$, with

$$\sigma([X_0, \dots, X_r], [a_{i_0, \dots, i_r}]_{i_0 + \dots + i_r = d}) = \sum_{i_0 + \dots + i_r = d} a_{i_0, \dots, i_r} X_0^{i_0} \cdots X_r^{i_r}$$

For each family of hypersurfaces $\Xi \to \operatorname{Spec} A$ consider the morphism ϕ : $\operatorname{Spec} A \to \mathbb{P}^{\binom{r+d}{r}-1}$, defined in point (3). Show that:

$$\phi^*\mathcal{U}=\mathcal{X}.$$

5. Conclude that $\mathbb{P}^{\binom{r+d}{r}-1}$ is isomorphic to the Hilbert Scheme of hypersurfaces of degree d in \mathbb{P}^r .

Exercise 3. In this exercise we compute the dimension of the moduli space of curves \mathcal{M}_g assuming it exists. This argument can be turned into a rigorous mathematical proof after having constructed the moduli space as a scheme.

- 1. Fix a genus g curve C, and a line bundle D on C of degree d. Prove that the vector space of sections of $\mathcal{O}(D)$ has dimension d+1-g when d > 2g - 2. (Hint: Serre duality, Riemann-Roch).
- 2. Show that a (Zariski) open subset of $H^0(C, \mathcal{O}(D))^{\oplus 2}$ parametrizes maps $f: C \to \mathbb{P}^1$ of degree d. Two such maps f and f' are the same exactly when there exists $\lambda \in \mathbb{C}^*$ such that the corresponding sections (s, t) and (s', t') satisfy $s' = \lambda s$, $t' = \lambda t$. Conclude that the space of maps $f: C \to \mathbb{P}^1$ of degree d is naturally parametrized by an open subset of a projective space of dimension 2d 2g + 1.
- 3. We have seen in the lectures that the moduli space $\operatorname{Pic}^{0}(C)$ parametrizing degree 0 line bundles on C has a natural structure of a g-dimensional torus

$$H^0(C,\Omega_C)^{\vee}/H^1(C,\mathbb{Z}).$$

If p is a point of C, the map $\operatorname{Pic}^{0}(C) \to \operatorname{Pic}^{d}(C)$ (the set of line bundles of degree d) given by $\mathcal{L} \to \mathcal{L} \otimes \mathcal{O}(p)$ is a bijection.

- 4. (This point is just a plausibility argument. It can be made into a precise proof afer showing the existence of a geometric structure on the moduli space of degree d line bundles on curves of genus g). In this point we assume that a moduli space \mathcal{M}_g parametrizing smooth curves C of genus g exists and has dimension q(g) (a number we want to calculate). Similarly, we assume that there is a moduli space $\mathcal{P}ic_{d,g}$ parametrizing couples (C, L), where C is a curve of genus g and L is a line bundle of degree d on C. By the previous point, it is reasonable to believe that the dimension of $\mathcal{P}ic_{d,g}$ is q(g) + g.
- 5. From (3) and (4) conclude that the space of maps $C \to \mathbb{P}^1$ of degree d when C varies has dimension q(g) + 2d g + 1.
- 6. We can compute the dimension of the space of maps $C \to \mathbb{P}^1$ in another way. Prove that, given 2g + 2d - 2 distinct points $b_1, \ldots, b_{2g+2d-2}$ on \mathbb{P}^1 , there is a finite number of degree d covering maps $C \to \mathbb{P}^1$ branched at the b_i 's. (Hint: use Riemann existence theorem for coverings of Riemann surfaces).
- 7. The moduli space parametrizing 2g + 2d 2 distinct points on \mathbb{P}^1 is the quotient of the complement of the diagonals $x_i = x_j$ in $(\mathbb{P}^1)^{2g+2d-2}$ by the action of the symmetric group $\mathfrak{S}_{2g+2d-2}$. Henceforth, it has dimension 2g + 2d - 2.
- 8. The dimension of the space of degree d maps $C \to \mathbb{P}^1$ can be computed in two ways. Equating them, one obtains the number q(g):

$$q(g) + 2d - g + 1 = 2g + 2d - 2.$$