Institut für Algebraische Geometrie Prof. Dr. K. Hulek Dr. N. Pagani

Moduli Spaces Problem session 27.4.2012

Exercise 1. (Taken from Orsola Tommasi's 2009 problem classes) In this exercise we study the moduli space of quadrics in $\mathbb{P}^N_{\mathbb{C}}$ up to projective transformation. (This is actually equivalent to studying them up to an automorphism of \mathbb{P}^N). We fix a natural number $N \geq 1$. The objects we parametrize are hypersurfaces of degree 2 in \mathbb{P}^N , for a fixed N > 1. Such an

 $^{T}xAx = 0$

hypersurface can always be written in the form

for a given $(N+1) \times (N+1)$ symmetric matrix A. Two quadrics are equivalent if and only if there exists an invertible matrix B such that $A' = {}^{T}BAB$.

- 1. The points in the moduli space correspond to equivalence classes of such matrices. What are the equivalence classes?
- 2. (What are the equivalence classes when the field is not \mathbb{C} ? What are they when the field is \mathbb{R} ?)
- 3. Is there a set Y whose points correspond to the equivalence classes of quadrics in \mathbb{P}^N ?
- 4. Formulate the notion of family of quadrics over a base S.
- 5. Let E_k be the square matrix with the first k+1 ones on the diagonal, and zeros otherwise, and A any symmetric matrix. Consider the following family of quadrics over \mathbb{P}^1

$$X_{\lambda,\mu}: {}^T x(\lambda E_k + \mu A)x = 0, \quad [\lambda:\mu] \in \mathbb{P}^1.$$

What is the induced map $\mathbb{P}^1 \to Y$? Is it possible to give Y a structure of an algebraic scheme (or variety) such that the induced map is a regular map?

Exercise 2. (Taken from Orsola Tommasi's 2009 problem classes)

In this exercise we study the moduli space of 2-dimensional planes in an n-dimensional ambient space, and we see it is projective.

On the vector space mat(2, n) $(n \ge 2)$ of $2 \times n$ matrices, we consider the equivalence relation given by GL(2)-left multiplication:

$$A \sim A' \Leftrightarrow (\exists B \in GL(2) : BA = A').$$

1. Consider the rational map

$$q: \max(2, n) \dashrightarrow \mathbf{P}^{\binom{n}{2}-1}$$

given by

$$q\begin{pmatrix}a_{1,1}&\cdots&a_{1,n}\\a_{2,1}&\cdots&a_{2,n}\end{pmatrix} = \left[\begin{vmatrix}a_{1,1}&a_{1,2}\\a_{2,1}&a_{2,2}\end{vmatrix}, \begin{vmatrix}a_{1,1}&a_{1,3}\\a_{2,1}&a_{2,3}\end{vmatrix}, \cdots, \begin{vmatrix}a_{1,n-1}&a_{1,n}\\a_{2,n-1}&a_{2,n}\end{vmatrix} \right].$$

What is the domain of definition of q?

2. Let A be the matrix

$$A = \begin{pmatrix} 1 & 0 & v_3 & v_4 & \dots & v_n \\ 0 & 1 & w_3 & w_4 & \dots & w_n \end{pmatrix},$$
 (*)

where $v_3, \ldots, v_n, w_3, \ldots, w_n$ are given complex numbers. Compute q(A).

- 3. Let $B \in mat(2, n)$ be a matrix of rank 2. How many matrices of the form (*) are equivalent to B?
- 4. Conclude that two matrices A and A' of rank 2 are equivalent precisely when q(A) = q(A').
- 5. Calculate the dimension of the image of q.
- 6. What does $mat(2, n) / \sim parametrize?$
- 7. Is it possible to generalize this to matrices in mat(k, n)?

Exercise 3. In this exercise we prove that there is no fine moduli space of elliptic curves.

- 1. Let $f : \mathbb{A}_0^1 \to Y \subset \mathbb{P}^N$ be any regular morphism from the punctured affine line (\mathbb{C}^* with the structure of an affine algebraic scheme) to any projective scheme Y. Prove that this map extends uniquely to a map $\mathbb{P}^1 \to Y$. Hint: clear denominators.
- 2. (In fact, it is always the case that a map $C \setminus \{p\} \to Y$ can be extended (uniquely) to a map $C \to Y$ for C a curve and Y a proper (separated) algebraic scheme. This is called valuative criterion of propernes (separatedness)).
- 3. Prove that any map $\mathbb{A}^1_0 \to C$, where C is a curve of positive genus, must be the constant map. (Hint: use Riemann-Hurwitz formula).
- 4. Consider the family g of elliptic curves over $t \in \mathbb{A}_0^1$

$$ty^2 = f(x) \subset \mathbb{A}^1_0 \times \mathbb{P}^2$$

where f is any given cubic or quartic polynomial. Show that each section of the family corresponds to a map $\mathbb{A}^1_0 \to E$ (Hint: perform a base change $\mathbb{A}^1_0 \to \mathbb{A}^1_0$ by changing the variable $t = s^2$).

- 5. Conclude that the sections of g correspond to the zeroes of f.
- 6. Why is it not possible for g to be the trivial family (*i.e.* isomorphic to $\mathbb{A}_0^1 \times E$)?
- 7. Show that all fibers in the family g are isomorphic to a unique elliptic curve E. Conclude that there exists no fine moduli space of elliptic curves.