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1 Lecture 1: Surface topology and string per-
turbation theory (31/10/2022)

We reviewed the topological classification of compact surfaces. Closed surfaces
are connected sums of tori and real projective planes. Compact surfaces with
boundaries result from cutting out discs. Surfaces are classified by the numbers
g of handles, b of boundaries and c of cross caps (glued-in Moebius strips). Sur-
faces are orientable in the absence of cross caps, and non-orientable otherwise.

String amplitudes are given by a sum over all surfaces connecting a given
set of line segments (external open strings) and circles (external closed strings).
This corresponds to a path integral, with boundary conditions encoding the ex-
ternal states, with measure provided by the Polyakov action. Such a description
is potentially off-shell. Standard string perturbation theory defines on-shell scat-
tering amplitudes in terms of compact surfaces (possibly with boundaries) with
marked points in the interior or at the boundaries to represent on-shell external
states (at the marked points one inserts the vertex operators corresponding to
the external on-shell states).

There are three types of string vertices involving: three closed strings, with
coupling constant κc, three open strings, with coupling κo, and two open and
one closed strings, with coupling κoc. Inspection of the corresponding surfaces
indicates that (up to numerical factor which can be fixed by actually computing
amplitudes)

κc ' κoc ' κ2
o .

The coupling carried by the contribution of a worldsheet surface Σg,b,c with M
external closed and N external open strings is:

A(1, . . . ,M, 1, . . . , N, g, b, c) ∼ κ−χ(g,b,c)
c κMc κ

N
o

where
χ(g, b, c) = 2− 2g − b− c

is the Euler characteristic of Σg,b,c. We discussed that the Euler characteristic
is a topological invariant, which can be computed, for example, by a simplicial
or by a cell decomposition of the surface.

Literature: To prepare this lecture I used the ‘obvious’ pages on Wikipedia
and Scholarpedia, together with my Bad Honnef lecture notes, [1], Section 3.6.

Further reading: Path integrals with boundary conditions (that is, over ‘bor-
dered Riemann surfaces’) can express off shell amplitudes, see for example [2]
and references therein. See also [3] for a treatment by mathematicians.
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2 Lecture 2: G structures on surfaces (7/11/2022)

Motivation: String interactions are defined by compact surfaces connecting a
set of marked points. Vertex operators located at the marked points repre-
sent external states. When computing transition amplitudes (in the Euclidean
formulation) surfaces are weighted by the Polyakov action:

A(1, . . . , N) =

∫
DXdhe−SP [X,h]V1 . . . VN

where the path integral DX is over all maps form worldsheets Σ into spacetime
(this includes a sum over all possible topologies), and where the path integral
Dh is over all metrics on Σ. Vi are integrated vertex operators

Vi =

∫
Σ

Oi(x)volh(x)

where Oi(x) is the local operator corresponding to the external state ‘i’, and
where volh(x) is the volume element associated with the metric h.

Topological aspects were discussed in Lecture 1. We now turn to metrics,
and, related to this, to complex structures. We introduce the language of G-
structures, which requires a few pre-requisites.

A fibre bundle (depending on choice of terminology, also simply called a
bundle) B over a manifold M is a space which locally (around each point x ∈M)
is the product of an open subset U ⊂M and a fibre F .

π : B →M projection

∀x ∈M ∃U ⊂M : π−1(U) ∼= U × F

where U is an open neighbourhood of x.
In other words, we obtain B from M by attaching to each x ∈ M a space

(‘fibre’) F ∼= π−1(x). Examples:

• A vector bundle is a fibre bundle where the fibres are vector spaces.

• A G-principal bundle, where G is a group, is a fibre bundle where the fibre
is a G-principal homogeneous space. (This means that G acts on F freely
and transitively. We can identify F with G by choosing a point on F .)

A section s of a fibre bundle B over an open subset U ⊂M is a right inverse
of the projection map:

s : U → B , π ◦ s = IdU

The image s(U) ⊂ B can be viewed as a graph. A section associates to each
point x ∈ U ⊂ M an element of the fibre π−1(x) ' F over x. If B is a vector
bundle, then π−1(x) is a vector space, and a section associates to each point x
a vector vx. Sections of vector bundles describe vector fields.
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Sometimes one includes in the definition of a fibre bundle the action of a
group G on the fibre F . Then what was called a fibre bundle above is just called
a bundle. The more general concept of a fibration arises when one replaces the
local ‘triviality’ (product structure) by a weaker property. There are different
types of fibrations depending on which such condition one chooses.

With any manifold M one gets fibre bundles which are canonically associated
to it, that is, defined by M without additional data.

• The tangent bundle TM . This is a vector bundle with fibre TxM ∼= Rm
where m = dimM . Observe this has a natural action by the group G =
GL(m,R).

• The frame bundle FM . This is a principal bundle with fibres given by
frames, that is bases FxM for TxM . Since m linearly independent vectors
form a GL(m,R) matrix, this is a GL(m,R) principal bundle.

Given a G-principal bundle and a representation ρ of G one obtains asso-
ciated vector bundles by choosing F to be the ρ-representation space. The
tangent bundle TM is associated to the frame bundle FM by the fundamen-
tal GL(m,R) representation. In general, such bundles require extra data, the
choice of a G-representation, and are not canonical. The tangent bundle TM
is defined through tangent vectors of curves on M , which makes it a natural or
canonical bundle.

A G-structure on M is a principal G-sub-bundle of the frame bundle. A
G-structure exists if it is possible to consistently deform the fibres of the frame
bundle so that all fibres correspond to a subgroup G ⊂ GL(m,R). This may or
may not be possible, in general there may be an obstruction to the existence of
a G-structure. Examples:

• G = GL+(m,R) ⊂ GL(m,R). Existence amounts to the question whether
we can cover M with coordinate systems which are all right-handed (or
all left-handed), that is, whether M is orientable. In general, M need not
be orientable (Klein bottle, real projective plane).

• G = O(m) ⊂ GL(m,R). This amounts to the question whether a Rie-
mannian metric exists on M . This is always the case, because invertible
matrices admit a polar decomposition, GL(m,R) ∼= O(m) · Sym(m), and
the set Sym(m) of symmeric matrices is contractible. In other words
GL(m,R) and O(m) are ‘topologcially equivalent.’

• G = O(p, q) ⊂ GL(p+q,R) Corresponds to existence of a pseudo-Riemannian
metric of signature (p, q). This is in general obstructed, i.p. not every
manifold admits a Lorentzian structure and qualifies as a spacetime.

• G = SO(m) ⊂ GL+(m,R). This corresponds to the existence of oriented
Riemannian structure (existence of right-handed orthonormal frames). Al-
ways possible, if M is orientable.
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• G = GL(n,C) ⊂ GL(2n,R). Corresponds to the existence of complex
frames covering M . This defines an almost complex structure.

• U(n) ⊂ SO(2n) ⊂ GL(2n,R). Corresponds to an almost Hermitian struc-
ture, existence of a Riemannian metric compatible with a complex struc-
ture. As we see, this requires that M is orientable.

Specifically for surfaces, dimM = 2:

• O(2) ⊂ GL(2,R). Positive definite metric, exists always.

• O(1, 1) ⊂ GL(2,R). Lorentz metric. Does not exist in general. For
closed orientable surfaces Σg only exists on torus T = Σ1. That’s why the
Polyakov path integral approach uses Euclidean worldsheet.

• GL+(2,R) ⊂ GL(2,R). Orientable. Closed orientable surfaces are con-
nected sums of spheres and tori, and labeled by their genus g.

• SO(2) ⊂ GL+(2,R) ⊂ GL(2,R). Orientable Riemannian metric, can
work with right-handed orthonormal frames. Comes for free if orientable.

• GL(1,C) ⊂ GL(2,R). Complex structure. By polar decomposition

GL(1,C) ∼= C∗ ∼= R+ · SO(2) ∼ SO(2)

where ∼ denotes contraction, this exists whenever the surface is orientable.

• U(1) ∼= SO(2) ⊂ GL+(2,R), almost Hermitian structure. If M orientable,
then oriented metric is compatible with complex structure.

A Riemann surface is a connected complex manifold of complex dimension
one. Hence, it is orientable. A Riemann surface can be non-compact (complex

plane C, open disk
o

D, upper half plane H), closed (compact without boundary)
(sphere S, torus T , and connected sums thereof), or compact with boundary
(closed disc D). On a Riemann surface, there is a one-to-one correspondence
between complex structures (complex manifolds/biholomorphic maps) and con-
formal structures (metrics/conformal factors).

A space is called simply connected if all closed curves can be contracted
to points. Every connected space admits a unique (up to equivalence) simply
connected covering space, called the universal cover:

π : M̃ →M , |π−1(x)| ∈ Z+ ∪ {∞} , const.

Every point on M is covered m ≥ 1 times, same m for all points.
Example:

π : R→ S1 ∼= R/Z , x 7→ e2πix

is an ∞-to-one map, which covers S1. R is simply connected.
Uniformization theorem. If Σ is a simply connected Riemann surface, then

Σ is conformally (=biholomorphically) equivalent to one of the following spaces
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• The Riemann sphere S.

• The complex plan C.

• The open unit disk
o

D= {z ∈ C| |z| < 1}, conformally equivalently, the
upper half plane H = {τ ∈ C|=(τ) > 0}.

These three space admit metrics of constant curvature.

• On the Riemann sphere:

ds2 =
|dz|2

(1 + |z|2)2
, R > 0

(R = Ricci scalar.) This so called chordal metric is isometric to the stan-
dard round metric on the two-sphere. The metric has constant positive
curvature.

• On the complex plane

ds2 = |dz|2 = dx2 + dy2 , R = 0

This is the standard flat metric.

• On the open disk
o

D:

ds2 =
|dz|2

(1− |z|2)2
, R < 0

Equivalently on the upper half plane H:

ds2 =
|dτ |2

(=(τ))2
, R < 0

These are the Poincaré metrics for the two standard models of hyperbolic
geometry. They have constant negative curvature.

The integrated curvature on a compact manifold is a topological invariant, for
surfaces, the Euler characteristic (we only consider closed surfaces, generaliza-
tion for surfaces with boundary exists):

χ(Σg) =
1

4π

∫
Σg

R
√
h|dz|2 = 2− 2g

This is proportional to the Einstein-Hilbert action. Thus the integrated curva-
ture of Σg, is negative for g > 1, which implies that the universal cover must
be the open disk/upper half plane, which admits a metric of constant negative
curvature. Moreover, it can be shown that any metric on a closed oriented
two-dimensional Riemannian manifold is conformally equivalent to a metric of
constant curvature.

Closed Riemann surfaces Σg:
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• Elliptic = universal cover is the Riemann sphere. Σ0
∼= S.

• Parabolic = universal cover is the complex plane. Σ1 = T ∼= C/(Z ⊕ Z).
(Mod out by two linearly independent translations.)

• Hyperbolic = universal cover is the open disk/upper half plane. Σg ∼=
H/Fuchsian group, for g > 1. Fuchsian groups are discrete subgroups of
PSL(2,R).

‘Moduli space’ of Σg:

Mg = {complex structures} ∼= {conformal structures} ∼= {constant curvature metrics}

The Riemann-Roch theorem implies:

dimCMg =


0 , for g = 0 ,

1 , for g = 1 ,

3g − 3 , forg > 1 .

References: From memory, with help from Wikipedia ...

3 Lecture 3: Polyakov Path Integral, Faddeev-
Popov ghosts (14/11/2022)

3.1 Bosonic Gaussian integrals∫ ∞
−∞

dxe−ax
2+bx+c =

√
π

a
e
b2

4a+c ,<(a) > 0.

Multidimensional: ∫
dnxe−

1
2x
TAx+bx =

√
(2π)n

detA
e

1
2 b
TA−1b,

where A is symmetric and positive definite.
Infinite dimensional: let

S[φ] =
1

2

∫
dDx
√
h(∂mφ∂

mφ+m2φ2) =
1

2

∫
dDx
√
hφ(∆h +m2)φ ≥ 0 ,

where

∆hφ = − 1√
h
∂m

(√
hhmn∂nφ

)
is the Laplace operator on functions (note sign convention). With our sign
convention ∆h is positive semi-definite (non-negative). Gaussian integral∫

Dφe−S[φ] = det−1/2(∆h +m2)
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where we used that ∆h + m2 is positive definite for m 6= 0. For m = 0 the
operator ∆h has zero modes (the constant functions), which need to be treated
separately.

3.2 Zeta-function determinants

Zeta function. Series

ζ(s) =

∞∑
n=1

n−s

converges absolutely for complex s with <(s) > 1. The function ζ(s) admits a
meromorphic continuation to C with a simple pole at s = 1, otherwise holomor-
phic. Some values:

ζ(−1) = − 1

12
, ζ(0) = −1

2
, ζ ′(0) = −1

2
ln(2π) .

This allows to regularise divergent series by using analytic continuation:( ∞∑
n=1

n

)
ζ

= ζ(−1) = − 1

12
,

( ∞∑
n=1

1

)
ζ

= ζ(0) = −1

2
.

This also allows to regularise divergent products:( ∞∏
n=1

a

)
ζ

= a(
∑∞
n=1 1)ζ = a−1/2 .

One application is the regularisation of determinants of differential operators
with discrete, non-negative spectrum. Consider first a Hermitian matrix A with
positive eigenvalues λ1, . . . , λN . Define the zeta-function of A by

ζA(s) =

N∑
n=1

λ−sn , s ∈ C .

Compute

e−ζ
′
A(0) = exp

(
− d

ds

[
N∑
n=1

λ−sn

]
s=0

)
= exp

(
N∑
n=1

d

ds
[exp (s lnλn)]s=0

)

exp

(
N∑
n=1

(lnλn) λ−sn
∣∣
s=0

)
=

N∏
n=1

λn = det(A) .

Now let A be a non-negative self-adjoint differential operator on a Hilbert space
with discrete spectrum {λn}. Define the zeta-function of A by

ζA(s) =
∑
n

′
λ−sn , s ∈ C ,
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where the ‘prime’ on the sum denotes the omission of zero eigenvalues. For
elliptic differential operators of degree d on a Riemannian manifold of dimension
m one can show that ζA(s) converges absolutely for <(s) > m/d. Moreover ζA(s)
admits a meromorphic continuation to C and is regular at s = 0 [3]. Therefore
it makes sense to define the Zeta-function determinant of such a differential
operators as

det ′ζ A = e−ζ
′
A(0) .

Additional remarks

In general the determinant of a linear map/differential operator is not a number
but a section of a determinant line bundle. For the above it is critical that
the relevant differential operators had a finite-dimensional kernel and a discrete
spectrum. Laplace, Dirac and Dolbeault operators on compact manifolds are of
this type. See [3] for more information.

3.3 Polyakov path integral over embeddings at worldsheet
fixed metric

We want to compute

Z = N

∫
DXe−SP [X,h] ,

where

SP [X,h] =
1

2

∫
Σ

d2z
√
hhαβ∂αX

µ∂βXµ =
1

2

∫
Σ

d2z
√
hXµ∆hXµ =:

1

2
(X,∆hX) .

N is a normalisation factor we keep at our disposal. The integral is over all em-
beddings X of the worldsheet Σ into a fixed spacetime1, with a fixed worldsheet
metric h. The action can be interpreted as a bilinear form associated with the
h-Laplacian ∆h = − 1√

h
∂α
√
hhαβ∂β .

We follow [4] Chapter 14.2. Fix an orthonormal set of eigenvectors ψn for
the discrete eigenvalues λn:

∆hψn = λnψn , (ψm, ψn) = δm,n .

Expand the maps Xµ in eigenvectors, separating the zero modes:

Xµ =

∞∑
n=0

aµnψn = Xµ
0 +X ′µ , aµn ∈ R .

On a compact worldsheet, the zero modes of the Laplacian on functions are
precisely the constant functions (maximum principle for harmonic functions).
Therefore, normalisation implies

1 = (ψ0, ψ0) =

∫
Σ

d2z
√
hψ2

0 ⇒ ψ0 =

(∫
Σ

d2z
√
h

)−1/2

= volh(Σ)−1/2 ,

1Actually a suitable Sobolev space of maps from the worldsheet to spacetime, see [3].
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and Xµ
0 = aµ0ψ0.

The path integral can be carried out as a Gaussian integral in the eigenvector
basis:

Z = N

∫
DXe−

1
2 (X,∆hX) = N

∫ ∏
µ,n

daµne
− 1

2

∑
n,µ λn(aµn)2

= N

[∫ ∏
µ

daµ0

]∫ ∏
µ

∏
n6=0

daµne
− 1

2

∑
µ,n 6=0 λn(aµn)2

 .

The Gaussian integral over the non-zero modes evaluates to a power of the
product of the non-zero eigenvalues, which we interpret as the zeta-function
determinant of the Laplacian:2

∫ ∏
µ

∏
n 6=0

daµne
− 1

2

∑
µ,n6=0 λn(aµn)2 =

∏
µ

∏
n

′

ζ

λ−1/2
n

 =
∏
n

′

ζ

λ−D/2n = (det ′ζ ∆h)−D/2 .

The integral over the zero modes is an integral over constant maps and therefore
proportional to the volume of the target spacetime M . More precisely, if∫ ∏

µ

dXµ
0 = vol(M)

then, using that Xµ
0 = aµ0ψ0:∫ ∏

µ

aµ0 =

(∫ ∏
µ

dXµ
0

)
ψ−D0 = vol(M)volh(Σ)D/2 .

Combining zero and non-zero modes:

Z = Nvol(M)

(
det ′ζ ∆h

volhΣ

)−D/2
.

vol(M) is a numerical factor which we can absorb into our normalisation con-
stant N . For non-compact spacetimes, like Minkowski or Euclidean space,
vol(M) is infinite, but this infinite factor can be cancelled by including a factor
(vol(M))−1 in N .

3.4 Fermionic Gaussian integrals

One fermionic variable θ, θ2 = 0:∫
dθ θ = 1 ,

∫
dθ 1 = 0 .

2Compared to finite-dimensional Gaussians, we omit constant numerical factors which can
be absorbed in the normalisation constant N .
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2n fermionic variables, θi, θ̄i, i = 1, . . . , n:∫
dθiθj = δij =

∫
dθ̄iθ̄j ,

∫
dθi =

∫
dθ̄i = 0 .

For integrals over all variables, choose the following sign convention:∫
DθDθ̄

n∏
i=1

(θiθ̄i) =

∫
DθDθ̄ θ1θ̄1 · · · θnθ̄n = 1

where

DθDθ̄ = ±
n∏
i=1

dθi

n∏
i=1

dθ̄i

Compute:

Z =

∫
DθDθ̄ e−θ̄

TAθ =

∫
DθDθ̄

1

n!

− n∑
i,j=1

θ̄iAijθj

n

Among the (n2)n terms, only (n!)2 are non-zero, namely those proportional to
θ1θ̄1 · · · θnθ̄n. Using Leibniz formula for an n× n determinant,

detA =
∑
σ∈Sn

n∏
i=1

Aiσ(i)

where Sn is the group of permutations of n objects, the (n!)2 terms can be
collected into n! terms proportional to detA:

Z =

∫
DθDθ̄

1

n!
detA n! θ1θ̄1 · · · θnθ̄n = detA

Fermionic Gaussian functional integral for massless Dirac fermions on RD,
with action

S[ψ] =

∫
dDψ̄iγµ∂µψ ,

is ∫
DψDψ̄e−S[ψ] = det(iγµ∂µ) = det 1/2 ∆ .

Using: iγµ∂µiγ
ν∂ν = − 1

2{γ
µ, γν}∂µ∂ν = −δµν∂µ∂ν = ∆ (conventional sign).

The Hermitian Dirac operator iγµ∂µ is the square root of the (non-negative)
Laplacian.

3.5 Path integral over metrics

We now attempt to evaluate

Z = N

∫
DhDXe−SP [X,h]
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where we integrate over all metrics on a worldsheet of fixed topology. N is a
(possibly infinite) normalisation constant.

Since the action is reparametrisation and Weyl invariant, we may try to
impose a gauge

hαβ = e2φĥαβ

so that the integral over metrics factorises and can be absorbed by an infinite
normalisation factor. Locally we can choose ĥαβ to be the standard flat metric
δαβ .

This requires to parametrise deformations of the metric in terms of vector
fields which generate reparametrisations, and of Weyl transformations. We can
package deformations of the metric into deformations of the traceless part and
of the trace part:

δhαβ = −(∇αvβ +∇βvα) + 2Λhαβ

= −(Pv)αβ + 2Λ̃hαβ

Here 2Λ̃ = 2Λ−∇γvγ and

P : vα 7→ (Pv)αβ = ∇αvβ +∇βvα − (∇γvγ)hαβ

is a differential operator mapping vector fields to rank two, symmetric, traceless
tensor fields. The operator

P † : tαβ 7→ (P †t)α = −2∇βtαβ

which maps rank two, symmetric, traceless tensor fields to vector fields is the ad-
joint of P in the sense that with respect to the scalar products on the respective
spaces:

(v, P †t) = (Pv, t) .

Let us at first ignore complications that arise when P, P † have zero modes. This
amounts to assuming that there is a one-to-one correspondence between vector
fields (reparametrisation) and rank 2 tracesless symmetric tensor fields. The
integration measure over metrics decomposes into integrations over the traceless
and the trace part, which we can rewrite as integrations over reparametrisations
(vector fields) and Weyl transformations. This rewriting introduces a Jacobian

Dh = D(Pv)DΛ̃ = DvDΛ|detP | = DvDΛ(detPP †)1/2 .

The relation |detP | = (detPP †)1/2 generalises a standard relation for complex
matrices:

detMT = detM , detM∗ = (detM)∗ ⇒ detM† = (detM)∗

⇒ detMM† = detM detM† = |detM |2 .

The expression (detPP †)1/2 manifests the analogy with the above example
of a massless Dirac fermion. P, P † are ‘Dirac-like operators’, whereas PP †
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and P †P are ‘Laplace-like.’3 More details about the operators P, P † and their
determinants can be found in the references listed at the end of this section.

If we further assume that the integration measure is both reparametrisa-
tion and Weyl invariant, then the integration over reparametrisations and Weyl
transformations factorises and we obtain

Z = N

(∫
Dv

)(∫
DΛ

)∫
DX|detP |e−S[X,e2φĥ] .

The integrals (
∫
Dv), (

∫
DΛ) are interpreted as the (infinite) volumes of symme-

try groups which can be cancelled against the (infinite) normalisation constant
N .

The Jacobian determinant can be expressed as a fermionic Gaussian func-
tional integral over an anti-commuting vector field cγ (ghost) and an anti-
commuting rank 2 symmetric traceless tensor field bαβ (anti-ghost):

|detP | =
∫
DbDc e−

1
2π

∫
d2z
√
hhαβbβγ∇αcγ =

∫
DbDce−Sghost[b,c,ĥ]

Assuming our assumptions to be correct, the path integral would evaluate to

Z =

∫
DbDcDX e−Sp[X,ĥ]−Sghost[b,c,ĥ] .

Here we used the normalisation constant N to cancel the factorized volume
of the symmetry group, and we have converted the Jacobian into an action for
auxiliary fields, the FP ghosts b, c. Such ghosts fields arise in the quantisation of
gauge theories. Their inclusion insures that the gauged fixed quantum theory is
still consistent with the underlying local gauge symmetry. Ghost fields have the
wrong spin-statistics relation. For bosonic symmetries they are anti-commuting
tensor fields.

Complications arise since two of our assumptions are not correct.

• The integration measure is reparametrization invariant but not Weyl in-
variant.

• The relation between vector fields and rank two symmetric traceless tensor
fields is not one-to-one, because the operators P and P † can have a non-
trivial kernel.

3.6 The Weyl anomaly

Since the integration measure is not Weyl invariant, the integration over Weyl
transformations does not factorise in general. One obtains

Z =

∫
DφDX e−Sp−Sghost−(c+cghost)SL[φ]

where SL[φ] is the so-called Liouville action. One has two options:

3They are examples of first and second order elliptic differential operators, respectively,
see [4], [3].
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1. Cancel the ‘conformal anomaly’ by choosing the central charge c of the
CFT defined by the gauge fixed Polyakov action to be minus the central
charge of the ghost CFT. Since cghost = −26, this amounts to fixing the
spacetime dimension to the critical value D = c = 26. This is the critical
string theory.

2. We can accept that in the quantum theory there is a new degree of free-
dom whose dynamic is governed by the Liouville action. The combined
worldsheet theory of embeddings, ghosts and Liouville mode is still a con-
formal field theory. The dynamics of the Liouville mode is complicated,
in particular it does not allow standard vacua with constant φ and thus
does not provide an easy way to construct string theories with lower-
dimensional Minkowski vacua. See [5] Chapter 9.9 for more information
about non-critical string theory.

We restrict ourselves to critical string theories.

3.7 Zero modes

Zero modes arise in two ways:

1. Solutions of (Pv)αβ = 0 are conformal Killing vector fields, that is vector
fields which do not change the conformal structure. If we integrate over all
vector fields, including the conformal Killing vector fields, we over-count
metrics by a factor which is equal to the (possibly infinite) volume of the
global conformal group. This can be handled by additional gauge fixing
and cancelling the group volume against a normalisation factor.

2. Solutions of (P †t)α = 0 are rank two symmetric traceless tensor fields
which cannot be mapped to vector field. In other words, they correspond
to deformations of the metric which cannot be generated by vector fields.
This situation arises when no global gauge fixing of the form

hαβ = e2φĥαβ

is possible. On a closed Riemann surface Σg every metric is globally
conformal to a metric of constant curvature, and for g > 0 there is a
finite-dimensional family of such metrics. To perform an integration over
all metrics we need to integrate over this family. This is equivalent to
integrating over all conformal structures on Σg, which in turn is equivalent
to integrating over all complex structures on Σg. In the path integral
one integrates over the moduli space Mg of complex structures. Mg is
itself a complex space equipped with a natural metric and (Weil-Peterson)
measure dµ(mi), where the ‘moduli’ mi are certain complex coordinates
on Mg.

As a result, the path integral takes the form

Z = NVolGlobal Conformal

∫
DbDcDXdµ(m)e−SP [X,ĥ(mi)]−Sghost[b,c,ĥ(mi)]
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What remains to study?

• Study the CFT defined by the combined Polyakov and ghost action on
the surfaces (Σg, ĥ(mi)). This is a non-unitary CFT with central charge
0. The ghost fields keep track of quantum gauge invariance.

• For string theory purposes, integrate over the moduli space Mg and sum
over all topologies, parametrised by g (for closed oriented strings).

Literature:
Good first read: [6] Chapter 3.4, 6. Includes worldsheets with boundaries and
non-orientable worldsheets.
With more mathematical details: [4] Chapter 14.
By mathematicians: [3]. Mathematically rigorous treatment of infinite-dimensional
integrals and of determinants of differential operators, includes detailed discus-
sion of the Liouville mode.

4 Lecture 4: First oder systems in CFT, aka bc-
systems (21/11/2022)

In the last lecture we saw that the CFT of the critical bosonic string is given by
the string coordinates Xµ together with the FP ghosts b, c, which carry central
charge cb,c = −26. To extend our discussion to superstrings we now introduce
worldsheet fermions ψµ, each of which carries central charge c = 1/2. Starting
with a theory with local supersymmetry on the worldsheet, gauge fixing leads to
additional FP ghosts β, γ which are worldsheet spinor fields with Bose statistics.
Since their central charge is cβ,γ = 11, the combined central charge of ghosts
b, c and superghosts β, γ is cghost = −15. For critical superstrings this cancels
against the central charge of the dynamical degrees of freedom Xµ, ψµ which
fixes the critical dimension D = 10.

We started with ‘real’ chiral spinors ψ(z). This properly means: fields which
have been obtained by the Euclidean continuation of Majorana-Weyl spinors.
These fields have weight h = 1/2 and generate a CFT with c = 1/2. Their
equation of motion is first order: ∂̄ψ = 0.

Given two real fermions we can combine them into complex conjugate fermions
ψ±, which together form a CFT with c = 1. This is referred to as the CFT of
a complex fermion.

Can we really have half-integer conformal weights h = 1/2? To define such
fields consistently on a worldsheet Σg, this requires the existence of a line bundle,
called a spinor bundle S, which is the square root of the cotangent bundle in
the sense that S ⊗ S ∼= T ∗Σg.

Given an open cover O = {Oa} of Σg, transition functions tab must satisfy
the consistency condition

tabtbctca = 1
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on triple overlaps Oa ∩ Ob ∩ Oc. For the cotangent bundle this follows from
the existence of an atlas of the underlying manifold. A spin bundle S has
transition functions sb which are square roots of the transition functions tab:
the transition functions dw

dz relating co-vectors, are just the derivatives of the
coordinate transformations z 7→ w on Σg.

To define fields with weight h = 1/2, we need to be able to consistently take
square roots of (dwdz )1/2. Since taking square roots involves the choice of a sign,
the existence of transition functions on T ∗Σg only guarantees that

s̃abs̃bcs̃ca = wabc ∈ {1,−1} = Z2

where {wabc} is a family of Z2 valued constant functions on the triple overlaps.
The existence of consistent transition functions sab

sabsbcsca = 1

requires the existence of a family {cab} of constant Z2-valued functions on double
overlaps Oa ∩Ob, which satisfy

cabcbccca = wabc

This means that the Cech 2-co-chain {wabc} must be a co-boundary. Cech n
chains are constant functions on overlaps of n + 1 elements of our covering.
One can define a nilpotent co-boundary operator, which maps n-chains to n+ 1
chains. n co-chains which are in the kernel of the co-boundary operator are
called n co-cycles, and those which are images of (n − 1)-co-chains are called
co-boundaries. The quotient of n-cocycles modulo n coboundaries is called the
n cohomology group.

This is the same structure (a cochain complex) as we have for differential n-
forms and the exterior derivative d, leading to the de Rham cohomology groups
Hn(Σg,R). In our case the co-chains are not differential forms, but functions on
overlaps, and linear combinations are taken with coefficients in Z2 rather than
R.
{wabc} is a Cech 2-co-cycle and thus defines a element

[{wabc}] ∈ H2(O,Z2)

in the second Cech cohomology group (with values in Z2 of the cover O. If O is
a good cover, then [{wabc}] does not depend on the cover and defines an element

[{wabc}] ∈ H2(Σg,Z2)

of the second Z2-valued cohomology group of Σg, called the second Stiefel-
Whitney class of Σg. To guarantee that [{wabc}] is a co-boundary we require
that the second Stiefel-Whitney class is trivial. For surfaces the second Stiefel-
Whitney class is equal modulo 2 to the Euler class, and therefore vanishes for
all closed Riemann surfaces Σg. This implies the existence of spinor bundles
and spinor fields.
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Regarding uniqueness. Inequivalent choices of {cab} are labeled by elements
of H1(Σg,Z2) ∼= H1(Σg,Z2). The related group H1(Σg,Z) is the first singu-
lar homology group of Σg. Singular homology groups are based on continuous
maps from simplizes into the manifold Σg. (This version of homology is a appar-
ently more poweful then simplicial homology, which is based on triangulations).
Chains are formal Z linear combinations of such maps, and one can define a
nilpotent boundary operator. More intuitively, chains are formal integer linear
combinations of points (0-chains), curves (1-chains) and surfaces (2-chains), and
the first homology group is the group of equivalence classes of closed curves mod-
ulo curves which are boundaries of surfaces. For closed Riemann surfaces this
group is H1(Σg,Z) ∼= Z2g, and its elements can be interpreted as winding num-

bers along the generating curves. If one replaces Z by Z2 then H1(Σg,Z2) ∼= Z2g
2

and the numbers ±1 associated with the generating curves encode periodic or
antiperiodic boundary conditions for spinor fields. On Σg there are 22g inde-
pendent choices of boundary conditions, which define 22g equivalence classes of
spin bundles (‘spin structures’). Thus when dealing with spinor fields we have
to specify boundary conditions. When working in the complex plane we either
use periodic (NS) or anti-periodic (R) boundary conditions along curves which
enclrcle the origin z = 0 once.

To include FP ghost fields, we consider more general systems with first
order equations of motion. In the following b, c are generic fields with first order
equations (bc-system). The same symbols are used for the FP-ghosts of the
bosonic string which are a special case thereof. b, c are generalizations of ψ± in
the following sense.

1. We allow any weights λ, λ′ ∈ 1
2Z which are consistent with scale invariance.

This requires that if b has weight λ, then c has weight λ′ = 1− λ.

2. We allow any combination between tensors/spinors (integer/half-integer
weight) and Bose/Fermi statistics (commuting/anti-commuting fields). We
denote Fermi statistics by ε = 1 and Bose statistics by ε = −1. Fields with
the ‘wrong’ spin-statistics relation are admitted to describe FP ghosts.

For λ ∈ Z + 1
2 , we admit periodic and anti-periodic boundary conditions.

A bc-system has a U(1) symmetry, which is in general anomalous. b, c carry
‘ghost’ charges −1,+1. The OPE between the energy momentum tensor T (z)
and the ghost current j(w) contains an anomalous higher order term Q/(z−w)3

where
Q = ε(1− 2λ)

is called the background charge. (Explanation below). As a consequence, con-
servation of the ghost current is violated:

∇zjz ∝ QR[h]

where R[h] is the Ricci scalar of the worldsheet metric h. The background is
zero iff λ = 1/2 which is the case of standard fermions ψ±. The central charge
of the bc system is

c = ε(1− 3Q2)
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It takes the value c = 1 for anti-commuting spinors ψ±: ε = 1, λ = 1/2.
In the algebra of modes, the anomaly shows as

[Lm, jn] = −mjm+n +
1

2
Qn(n+ 1)δm+n,0

and affects jn for n 6= 0,−1. While j†n = −j−n, the operator j0 has a normal

ordering ambiguity. j†0 is determined by consistency:

j†0 = (−[L−1, j1])
†

= · · · = −j0 −Q

Denote by |q〉 a state of ghost charge q, that is j0|q〉 = q|q〉. Then

〈q′|q〉 6= 0⇔ q′ + q = −Q .

This explains why Q is called a ‘background charge.’ Charge on a closed surface
must add up to zero by Gauss law. For Q 6= 0 the charges associated to the
two states whose overlap we are calculating don’t add up to zero, indicating
a the presence of a further charge Q in the system. Put differently, charge
conservation is violated by an amount Q between in and out states.

To show the above relation, it is helpful to consider the more general case of
an operator O of ghost charge p, that is, [j0, O] = pO and to consider its matrix
elements 〈q′|O|q〉. One can show that if 〈q′|O|q〉, the charges must be related
by p = −(q + q′ +Q). Above we considered the special case where p = 0.

Literature: For fermions and bc systems I have been following [6] closely,
though the material of this lecture is distributed over different chapters there.
For spin structures and cohomology, see [4].

5 Lecture 5: Bosonization, Lie algebras, and
Lattices

Complex fermion ψ±(z):

ψ+(z)ψ−(w) =
1

z − w
+ : ψ+(w)ψ−(w) : +O(z − w)

φ(z) boson, then

eiφ(z)e−iφ(w) =
1

z − w
+ i∂φ(w) +O(z − w)

NS boundary conditions for ψ±(z):

ψ±(ze2π) = +ψ±(z)⇔ φ(ze2πi) = φ(z) + 2π

Boson φ(z) takes values in a circle of radius R = 1, S1
R=1 = R/2πZ.

For R boundary conditions:

ψ±(ze2π) = −ψ±(z)⇔ ψ±(z) = e
i
2φ(z) , φ(ze2πi) = φ(z) + 2π
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This leads to an equivalence of CFTs. Partition functions:

ZBoson
S1
R

(τ, τ̄) = ZDirac fermion(τ, τ̄)

Boson valued on unit circle is equivalent to complex fermion (Dirac fermion). We
have combined left and right movers. Bosonic partition functions includes sum
over windings, fermionic partition function includes sum over spin structures.
Same (cL, cR) = (1, 1) CFT can be written in terms of different fields ψ± or φ.

Lit: [7]
2n real fermions (n complex fermions) ∼= n bosons:

ψ±l = e±iφ
l

?

Issue:
: ψ±l(z)ψ±k(z) := − : ψ±k(z)ψ±l : , k 6= l

while
: e±iφ

k(z)e±iφ
l(z) :=: e±iφ

l(z)e±iφ
k(z) :

Therefore
ψ±k(z) = e±iφ

k(z)c±k

where
c±kc±l = −c±lc±k , k 6= l

The (±)-valued functions c±k are Klein factors/Cocycle factors which convert
the mixed commutation/anticommutation relations satisfied by the modes of
bosonic exponentials into proper anticommutation relations.

Background: in four dimensions the Spin-Statistics Theorem (Pauli-Lüders
Theorem) states that if we assume that a QFT satisfies causality (no action
faster than speed of light), then fields with integer spin must be quantized us-
ing commutation relations, leading to Bose-Einstein statistics, while fields with
half-integer spin must be quantized using anticommutation relations, leading
to Fermi-Dirac statistics. More precisely, the relations between fields can be
brought to this standard form by a so-called Klein transformation.

Lit: [8].
In D < 4 more general types of statistics are possible, and in D = 2 fermions

and bosons can be equivalent to each other. Bringing OPE/(anti-)commutation
relations to standard form may involve a Klein transformation. Finding the
Klein transformation can be viewed as a group theoretical problem, hence Klein
factors are also referred to as cocycle factors.

Monomials : ψ±i1(z) · · ·ψ±in(z) : in fermions, and their derivatives , are
bosonized by expressions of the form

ei
~λ·~φc~λ

where the entries in the vectors ~λ are integers for NS boundary conditions and
half-integers for R boundary conditions. The vectors λ therefore span the weight
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lattice of the Lie algebraDn
∼= so(2n), which is the Euclidean continuation of the

Lorentz Lie algebra. Here c~λ are cocycle factors which ensure that the operators
satisfy the correct type of relation. Operators containing an even number of
fermions are bosonic operators and must satisfy commutation relations. One
example of bosonic operators are the fermion bilinears : ψ±l(z)ψ±k(z) :, which
are the conserved currents associated with the Euclidean continuation so(2n) of
the Lorentz Lie algebra.

This is an example of a more general construction, the Frenkel-Kac construc-
tion. Let g be a simple Lie algebra. Then g admits a basis

Hi, i = 1, . . . , l = rank(g) Eα , α ∈ {Roots of g} = ∆

where
dim g = l + |∆|

such that

[Hi, Hj ] = 0

[HiEα] = (ei · α)Eα

[Eα, Eβ ] =


ε(α, β)Eα+β , if α+ β ∈ ∆

α · ~H if α+ β = 0

0 , else .

Here we use that α ∈ ∆ can be interpreted as vectors in Rl, with ONB ei, and
we have set ~H = (H1, . . . ,H l).

Literature: [9].
A simple Lie algebra is called simply-laced if all roots have the same length,

conventionally normalized as α·α = 2. In this case scalar products between roots
take values ±2,±1, 0 and α+ β ∈ ∆ iff α · β = −1 and α+ β = 0 iff α · β = −2.
The simple simply laced Lie algebras are Al ' su(l + 1), Dl ' so(2l), E6, E7,
E8. Therefore simply laced Lie algebras are also called ADE Lie algebras.

Given a system of n chiral bosons, we have conserved currents

Hk(z) = i∂Xk(z)

Moreover, if the scalars Xk(z) take values in an l-dimensional torus such that

Eα(z) = eiα·X(z)cα

are single valued, and where α ∈ ∆ are the roots of an ADE Lie algebra g, then
Eα(z) are additional conserved currents. We can project out modes by contour
integration:

Hi
m =

∮
dz

2πi
zmHi(z) , Eαm =

∮
dz

2πi
zmEα(z)

19



They can be shown to satisfy the following commutation relations:

[Hi
m, H

j
n] = kmδijδm+n,0

[Hi +mEαn ] = (ei · α)Eαm+n

[Eαm, E
β
n ] =


ε(α, β)Eα+β

m+n , if α+ β ∈ ∆

α · ~Hm+n + kmδm+n,0 if α+ β = 0

0 , else .

where in the explicit construction k = 1, but in general k is a central ele-
ment of the infinite-dimensional, Z-graded Lie algebra generated by {T am, k} ↔
{Hi

m, E
α
m, k}. Using the notation T am, a = 1, . . . ,dim g, m ∈ Z the algebra takes

the form
[T am, T

b
n] = ifabc T

c
m+n + kmδabδm+n,0

where fabc are structure constants of the simple Lie algebra g (with respect to
Hermitian generators).

If the algebra generated by {T am, k} was a symmetry algebra, it would need
to commute with the Virasoro algebra. However the commutators

[Lm, T
a
n ] = −nT am+n

show that only the ‘degree 0 subalgebra’ generated by T a0 , which is isomorphic
to g, is a symmetry algebra. This shows that l bosons valued on a suitably
chosen torus have a non-abelian g symmetry. In this way non-abelian gauge
symmetries can be realized in theories of closed strings.

In general, the Virasoro algebra acts on the T am. The operator d = −L0 acts
by

[d, T an ] = nT an

The Lie algebra ĝ generated by {T am, k, d} is called the untwisted affine Kac-
Moody algebra associated to the simple Lie algebra g. The algebra g̃ generated
by T am is the loop algebra associated to g, that is the Lie algebra of the loop
group which is the Lie group of maps S1 → G, from the circle to a Lie group
G (with Lie algebra g). By adding k one obtains a central extension of the
loop algebra, and by further adding d a semi-direct extension of the centrally
extended loop algebra. The resulting Kac-Moody algebra can be characterized
by a generalized Cartan which has dimension l + 1 and rank l. See [10] for the
general theory of Kac-Moody algebras.

The Virasoro and Kac-Moody algebra form a semi-direct product Vir n ĝ.
This is an example of an extended chiral algebra. The Hilbert space of the
CFT decomposes into irreducible representations of this algebra, and the CFT
is completely determined by the OPEs between chiral primaries of the extended
algebra. The Kac-Moody algebra ĝ, which is not a symmetry algebra, is a
‘spectrum generating algebra.’

A representation Φ of a simple Lie algebra g is a Lie algebra homomorphism

Hi 7→ Φ(Hi) , Eα 7→ Φ(Eα)
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from g to linear operators on some vector space V . Finite dimensional repre-
sentations of g decompose as

V =
⊕

w∈W (Φ)

Vw

where W (Φ) is the set of weights of the representation Φ. Representatives of
the basis Hi, Eα act as follows:

Φ(Hi)vw = wivw , vw ∈ Vw

Φ(Eα)vw =

{
0 if α+ w 6∈W (Φ)

∈ Vα+w if α+ w ∈W (Φ)

Observe that the difference between any two weights of a representation must
be a root.

The lattice ΓW generated by the weights of all representations of g is called
the weight lattice. The lattice ΓR generated by the roots of g is called the root
lattice. Since the roots are the weights of adjoint representation, ΓR ⊂ ΓW . For
ADE Lie algebras ΓW = Γ∗R. The dual Γ∗ of a lattice Γ is defined by

Γ∗ = {v ∈ Rl|v · w ∈ Z ∀w ∈ Γ}

A lattice is called integral, if Γ ⊂ Γ∗. Hence, ΓR is an integral lattice. A lattice
is called selfdual if Γ = Γ∗. A lattice Γ is called even, if

v · v ∈ 2Z ∀v ∈ Γ

ADE root lattices are even integral lattices.
Since ΓR ⊂ ΓW we can form the quotient ΓW /ΓR. This is a finite abelian

group with vector addition modulo roots. It is called the group of conjugacy
classes of representations, reflecting that the weight lattice decomposes into a
finite number of equivalence classes modulo the root lattice.

Further note that for v, w ∈ ΓW and α, β ∈ ΓR:

(v + α) · (w + β) = v · w + α · w + v · β + α · β ≡1 v · w

Here we use that ΓW = Γ∗R and ΓR ⊂ Γ∗R. Thus the scalar product between
weights depends modulo Z only on the class in ΓW /ΓR.

Moreover

(v + α) · (v + α) = v · v + 2v · α+ α · α ≡2 v · v

where we used that ADE root lattices are even lattices. Thus the square norm
of a weight vector depends modulo 2 only on the class in ΓW /ΓR.

As an example we consider the Dn weight lattice, which is the lattice relevant
for bosonization. It has four conjugacy classes.
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1. The weights of the adjoint representation are

(±1,±1, 0, · · · , 0), (±1, 0,±1, 0, . . . , 0), . . .

that is, all but two entries are 0, and two entries are ±1. There are 2n(n−
1) such vectors. Since Dn has rank n, the corresponding ladder operators
and Cartan generators add up correctly to the dimension 1

22n(2n− 1) of
so(2n). The lattice generated by the weights of the adjoint representation
is the root lattice of Dn:

ΓR = D(0)
n = {λ ∈ Rn|λi ∈ Z ,

∑
i

λi ∈ 2Z}

2. The weights of the fundamental or vector representation are

(±1, 0, . . . , 0), (0,±1, 0, . . . , 0), . . . (0, . . . , 0,±1)

That is one entry is ±1 and the others are 0. There are 2n such vectors,
matching the dimension 2n of the vector or fundamental representation of
so(2n). The lattice generated by these weights is

D(v)
n = D(0)

n + (1, 0, . . . , 0) = {λ ∈ Rn|λi ∈ Z ,
∑
i

λi ∈ 2Z + 1}

3. The weights of the positive chirality Weyl spinor representation are(
±1

2
,±1

2
, . . .± 1

2

)
, even number of −

There are 2n−1 such vectors, matching the dimension of a Weyl spinor
representation of so(2n). The lattice generated by these spinor weights is

D(s)
n = D(0)

n +

(
1

2
, . . . ,

1

2

)
4. The weights of the negative chirality Weyl spinor representation are(

±1

2
,±1

2
, . . .± 1

2

)
, odd number of −

There are 2n−1 such vectors, matching the dimension of a Weyl spinor
representation of so(2n). The lattice generated by these spinor weights is

D(c)
n = D(0)

n +

(
1

2
, . . . ,−1

2

)
The group structure of ΓW /ΓR = {(0), (v), (s), (c)} can be worked out by adding
weights modulo roots:

〈(0), (v), (s), (c)〉 =

(
Z4 = 〈(s)〉 = 〈(c)〉 for n odd

Z′2 × Z′′2 = 〈(s), (c)〉 for n even
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As an application, we list the connected Lie groups with Lie algebra D16
∼=

so(32). For any (real, compact) simple Lie algebra g there exists a unique (up to
isomorphism) simply connected Lie group G with Lie algebra g. For g = so(32)
this group is called Spin(32) and has centre Z = Z′2×Z′′2 and fundamental group
π1(Spin(32)) = {1}.

This reflects that the group ΓW /ΓR of conjugacy classes is isomorphic to the
centre Z of the simply connected Lie group G with Lie algebra g [11]. Moreover,
all other Lie groups with Lie algebra g can be obtained as quotients G/C of
G by central subgroups C ⊂ Z. Taking such quotients leads to groups with
smaller centre but larger fundamental group: the smaller the centre, the more
multiply connected the group. Moreover, while for the simply connected group
G Lie algebra representations for all classes in ΓW /ΓR exponentiate to Lie group
representations, only some conjugacy classes are (proper) representations of the
groups G/C, while the remaining classes only give projective representations,
that is, representations up to sign. Up to isomorphism, the connected Lie groups
with Lie algebra so(32) are

1. Spin(32) with Z = Z′2 × Z′′2 and π1 = {1} (simply connected). Represen-
tations: (0), (v), (s), (c).

2. Spin(32)/Z′2 ∼= Spin(32)/Z′′2 . with centre ∼= Z2 and fundamental group
∼= Z2. Representations (0), (s) or (0), (c). The corresponding lattices

D
(0),(s)
16

∼= D
(0),(c)
16 are even and self-dual. Modular invariance requires the

lattice defining a ten-dimensional heterotic string theory to be even and
self-dual. There are two such lattices, up to isometry, in 16 (Euclidean)

dimensions: the root lattice of E8 ⊕ E8 and the lattice D
(0),(s)
16

∼= D
(0),(c)
16

generated by the roots and by the weights of one of the two spinor reps
of SO(32). This explains why the gauge groups of ten-dimensional su-
persymmetric heterotic string theories are E8 ×E8 and Spin(32)/Z2. We
note in passing that the root lattice of E8 is, up to isomorphism, the only
eight-dimensional even self-dual lattice.

3. SO(32) = Spin(32)/Z(diag)
2 , where Z(diag)

2 ⊂ Z′2 × Z′′2 is the diagonal
subgroup of the centre Z. This group has centre and fundamental group ∼=
Z2, and its proper representations are the tensor reps, that is the conjugacy

classes (0), (v). We note in passing that Z(diag)
2 is generated by (v).

4. PSO(32) = Spin(32)/Z′2×Z′′2 with trivial centre C = {1} and fundamental
group Z2 × Z2. This is the projectivized special orthogonal group. Only
reps in the class (0) are proper reps of this group.

The group of conjugacy classes also inherits a scalar product from ΓW . We
have seen above that scalar products between weights are determined modulo
Z by their conjugacy class, while the norm squared of a weight is determined
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modulo 2Z by their conjugacy class. For the conjugacy classes of Dn we find:

(0) (v) (s) (c)

(0) 0 0 0 0

(v) ∗ 0 1
2

1
2

(s) ∗ ∗ n
4

n−2
4

(c) ∗ ∗ ∗ n
4

and
|(0)|2 |(v)|2 |(s)|2 |(c)|2

0 1 n
4

n
4

We can draw several interesting conclusions from these tables:

1. The lattice D
(0),(v)
n is integral but not even.

2. A lattice which contains (v) together with one of the spinor conjugacy
classes cannot be integral.

3. A lattice which contains both spinor conjugacy classes cannot be even.

4. The lattices D
(0),(s)
n and D

(0),(c)
n are integral for n = 4m, m ∈ Z and

integral and even for n = 8m.

Moreover, for n = 8 the lattices D
(0),(s)
n and D

(0),(c)
n are even and self-dual,

and the weights
(
± 1

2 ,±
1
2 , . . .

)
of the Weyl spinor reps have norm-squared two.

They extend the root system D8 to the root system of a larger ADE Lie algebra,

namely E8. The root lattice of E8 is E
(0)
8 = D

(0),(s)
8 . Note that E8 only has

one conjugacy class of representations, the class (0) of the adjoint. The lattice

E
(0)
8 = D

(0),(s)
8 is, up to isometry, the only eight-dimensional Euclidean even

self-dual lattice.
Finally, consider the problem of construction Klein factors for the represen-

tations of ADE Lie algebras by vertex operators. Let

Ẽα(z) = eiαX(z)

where α ∈ Γ and Γ is an even integral lattice. Then

Ẽα(z)Ẽβ(w) = (z − w)α·βẼα+β(w) + · · · for |z| > |w|
Ẽβ(w)Ẽα(z) = S(α, β)(z − w)α·βẼα+β(w) + · · · for |w| > |z|

where S(α, β) = (−1)α·β . Depending on α·β being even or odd, the OPE implies
commutation/anticommutation relations between the modes Ẽαm =

∮
dz
2πiz

mẼα(z).
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To obtain a standard ‘bosonic’ OPE with commutation relations between all
modes, we need

Eα(z)Eβ(w) = (z − w)α·βẼα+β(w) + · · · for |z| > |w|
Eβ(w)Eα(z) = (z − w)α·βẼα+β(w) + · · · for |w| > |z|

To obtain such Eα(z) from Ẽα(z) we need Z2 valued functions cα such that

cαcβ = S(α, β)cβcα

so that we can set
Eα(z) = Ẽα(z)cα

This amounts to modifying the abelian group law for (Γ,+), where (α, β) 7→
α + β = β + α to a new, non-commutative law, where cαcβ = ε(α, β)cα+β =

S(α, β)cβcα. The multiplication in the group (Γ̂, ·) is defined by the Z2 = {±1}
valued function ε(α, β).

This is a group extension problem. Given the group Γ = (Γ,+) and the
abelian group A = (Z2, ·) we want to find a group Γ̂ = (Γ̂, ·) such that A is a
normal subgroup of Γ̂ and Γ = Γ̂/A. The group Γ̂ is a central extension of Γ by
the abelian group A. Γ̂ projects onto Γ = Γ̂/A:

π : Γ̂→ Γ

We can choose a section, that is right inverse of the projection:

s : Γ→ Γ̂ , π ◦ s = IdΓ

The image s(Γ) ⊂ Γ̂ is a subset, but in general not a subgroup. The group
structure of Γ̂ is defined by

s(g)s(g′) = ε(g, g′)s(gg′) , ε(g, g′) ∈ A

(where we use generic, multiplicative notation for elements of Γ, as the general
construction also applies to central extensions of non-abelian groups by abelian
groups.) Associativity of the group law of Γ̂ implies

ε(g, g′)ε(gg′, g′′) = ε(g′, g′′)ε(g, g′g′′)⇔ (δε)(g, g′, g′′) = e

where e is the group unit, that is, ε is an A-valued 2-cocycle on G.
One can chow that by changing the section by a 1-cochain one can impose

the normalization
ε(g, e) = ε(e, g) = ε(e, e) = e

Central extensions of Γ by A are classified by elements of H2(Γ, A). See [12] for
group/Lie algebra extensions and cohomology.
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We return to the specific case where Γ ∼= (Zn,+) and A ∼= (Z2, ·), and use
additive notation for Γ. We note that ε(w, v)−1 = ε(w, v) and associativity
implies

ε(v, w)ε(v + w, x) = ε(w, x)

and normalization is
ε(v, 0) = ε(0, w) = 1

The commutator in Γ̂ is S(v, w) = (−1)v·w. It can be shown that one can choose
a cocycle s.t.

ε(v + w, x) = ε(v, x)ε(w, x) , ε(v, w + x) = ε(v, x)ε(v, x)

For an ADE lattice generated by simple roots αi one explicit solution of the
extension problem is

ε(αi, αj) =

{
−1 αi · αj = −1 , i < j

0 else

which can be extended to the lattice to give

ε(v, w) = (−1)v∗w , v ∗ w =
∑
j>i

viwjαi · αj

The corresponding Klein factors cv can be realized on the Hilbert space by the
cocycle operators

cv = (−1)p∗v

where p is the momentum operator. See [6, 13, 14].
Alternatively, one may dispense with cocycle factors and modify the com-

mutation relations for the zero modes of the string [15], see also [16].
For more on Lie algebra lattices and their role in string theory, see [6, 17].

6 Lecture 6: BRS symmetry, Worldsheet super-
symmetry and Vertex Operators (5/12/2022)

Bosonization of general b, c systems. (b, c systems with ε = −1 are bosonic.
‘Bosonization’ thus means replacing a first order system b, c by a second order
system with a boson φ.) Let b, c be fields with conformal weights λ, 1 − λ
and statistics ε = ±1. This system has background charge Q = ε(1 − 2λ) and
central charge cb,c = ε(1− 3Q2). The ghost number current is j(z) =: b(z)c(z) :

For Q 6= 0 we have an anomalous hermiticity relation j†0 = −j0 −Q and ghost
number conservation 〈q′|q〉 6= 0⇒ q′ = −q −Q.

Define the boson φ by integrating the ghost current:

ij(z) = ε∂φ(z)⇒ φ(z) =

∫
ij(z)dz , φ(z)φ(w) = ε log(z − w) + · · ·
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The exponential eiqφ(z) generates states |q〉 of ghost charge |q〉 and have confor-
mal weight hφ = 1

2εq(q +Q). The central charge of the φ-system is

cφ = 1− 3εQ2 =

{
ε(1− 3Q2) = cbc ε = 1

cbc + 2 ε = −1 .

Thus fermionic ghosts can be bosonized directly φ ↔ (b, c) while for bosonic
ghosts we need an auxiliary system of central charge c′ = −2: (b, c)↔ φ⊕ (c′ =
−2).

The energy momentum tensor of the φ system is

Tφ = ε
1

2

(
: j2(z)−Q∂j(z) :

)
and action

S[φ] = − 1

8π

∫
Σ

d2z
√
h
(
hαβε∂αφ∂βφ+QRhφ

)
.

Note the extra term related to the background charge Q.
Bosonization:

1. For ε = 1:
b(z) = e−iφ(z) , c(z) = eiφ(z) .

2. For ε = −1. Introduce auxiliary c = −2 system (η, ξ) with λ′ = 1,
1− λ′ = 0. Thus ε′ = 1, Q′ = ε′(1− 2λ′) = −1, c′ = −2. Then

b(z) = e−iφ(z)∂ξ(z) , c(z) = eiφ(z)η(z)

Note that this does not involve the zero mode ξ0 of ξ(z).

We can bosonize the c = −2 system:

η(z) = e−iχ(z) , ξ(z) = eiχ(z) , : η(z)ξ(z) := ∂χ(z) , χ(z)χ(w) = log(z−w)+· · ·

Then
b(z) = e−iφ(z)eiχ(z)∂χ(z) , (z) = eiφ(z)e−χ(z) .

Here is a summary of bc systems appearing in the RNS string and their
bosonization:

bc fields λ 1− λ ε Q c Boson

ψ± 1
2

1
2 1 0 c H

b, c 2 −1 1 −3 −26 ϕ

β, γ 3
2 − 1

2 −1 2 11 φ

η, ξ 1 0 1 −1 −2 χ
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We now put all elements together and consider the WS CFT of the RNS/
superstring/ heterotic string:

Xµ c, b ' ϕ
ψµ ' Hi β, γ ' φ, χ

The WS fermions ψµ are related to the string coordinates Xµ by WS supersym-
metry. The ghosts c, b and superghosts β, γ are related to the dynamical fields
Xµ, ψµ by BRS(T) symmetry.

BRS symmetry allows to characterise the physical states of a gauge theory
as equivalence classes of a cohomology of the gauge algebra.

Generically: For a (finite or infinite dimensional) Lie algebra of symmetries

[Ti, Tj ] = fkijTk

introduce two sets of anticommuting parameters, ghosts ci and antighosts bi,

{ci, bj} = δij

Then the BRS charge

QBRS = ci
(
Ti +

1

2
T

(ghost)
i

)
,where T

(ghost)
i = fkijc

jbk

is nilpotent and commutes with the Hamiltonian H:

Q2
BRS =

1

2
{QBRS, QBRS} = 0 , [QBRS, H] = 0 .

In the ‘large’ Fockspace, which includes the ghosts b, c along with the dynamical
fields, a state |φ〉 is physical if

QBRS|φ〉 = 0

and pure gauge (null, spurious) if

|φ〉 = QBRS|ψ〉

for some state |ψ〉. Thus gauge-inequivalent physical states are in one-to-one
correspondence with cohomology classes of QBRS:

H = F/ ' , |φ〉 ' |φ′〉 ⇔ |φ〉 − |φ′〉 = QBRS|ψ〉 .

For the bosonic string where F is spanned by (Xµ, b, c) the BRS charge is

QBRS =
∑
m

: c−m

(
LXm +

1

2
Lb,cm

)
:
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where LXm and Lb,cm are the Virasoro operators for Xµ and the bc-system, re-
spectively and where c−m = cm. The BRS charge is the integral of a BRS
current

QBRS =

∮
dz

2πi
jBRS

and its nilpotency is equivalent to the cancellation of central charge in the

combined Virasoro algebra of the X, b, c system, generated by L
(total)
m = LXm +

Lb,cm :

Q2
BRS = 0⇔ [L(total)

m , L(total)
n ] = (m−n)L

(total)
m+n ⇔ ctotal = cX+cb,c = cX−26 = 0⇔ D = cX = 26 .

The X, b, c system has an sl(2,C) invariant ground state |0〉,

Ln|0〉 = 0 , n ≥ −1

which satisfies
pµ|〉 = 0 , αµm|0〉 = 0 ,m > 0

and
bm|0〉 = 0 , m ≥ −1 , cn|0〉 = 0 , n ≥ 2 .

Since
c1|0〉 6= 0 , c0c1|0〉 6= 0

as well as [L0, c1] = −c1, [L0, c0] = 0 these two states have lower energy (L0

eigenvalue) then the sl(2,C) vacuum, namely L=−1. They have a ghost number
(ghost charge, that is charge with respect to the ghost number current jgh(z) =:
b(z)c(z) :) of 1, 2, respectively.

Due to the ghost number anomaly, the two sates are adjoint to each other.
Remember that

〈q′|q〉 6= 0⇔ q′ = −q −Q

which for Q = −3 requires q′ = −q + 3, e.g. q′ = 2, q = 1 (or q′ = 0, q = 3).
The states

|0〉T = c1|0〉 = c(0)|0〉 , T 〈0| = 〈0|c−1c0

are sometimes called the Tachyon vacuum and the adjoint Tachyon vacuum
(where the adjoint takes into account the ghost number anomaly).

The Tachyon vacuum is physical, while the sl(2,C) vacuum is not:

QBRS|0〉T = 0 , QBRS|0〉 6= 0 .

Moreover, the Tachyon vacuum is annihilated by all positive ghost modes

cn|0〉T = 0 , bn|0〉T , n > 0 .

On the large Fock space, amplitudes are computed with respect to the Tachyon
vacuum, equivalently with respect to the sl(2,C) vacuum with the insertion of
three ghost modes

T 〈0| . . . |0〉T = 〈0|c−1c0c1 . . . |0〉
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The ghost modes c−1, c0, c1 are the only ones which neither annihilate |0〉 nor
〈0|. As fermionic gauge parameters they a paired with the sl(2,C) subalgebra
of the Virasoro algebra, which exponentiates (on the WS sphere) to the group
of globally well defined finite conformal transformations. In the path integral
context this means that the path integral over ghosts b, c has three zero modes.
Without the insertion of c−1, c0, c1 the integrals

∫
dc−1dc0dc1 · · · over these zero

modes would result in the path integral being zero. This is an effect similar to
the overcounting in the integral over WS metrics.

On the large Fock space, physical states take the form

|φ〉X ⊗ |0〉T
where we write X-part and b, c-part as separate factors. BRS invariance implies
that |φ〉 satisfies

(LX0 − 1)|φ〉X = 0 , LXm|φ〉X = 0 ,m > 0

The vertex operator Vφ generating |φ〉X must have conformal weight hφ = 1.
The bosonic string with dynamical fields Xµ is extended to fermionic string

or RNS string by adding worldsheet fermions ψµ, which have conformal weight
1/2. Each real fermion (Euclidean continuation of a Minkwoski signature Majo-
rana spinor) contributes 1/2 to the central charge. The fermions have an energy
momentum tensor Tψ(z) ∝: ψ(z)∂ψ(z) : (for one chiral sector) which combines
with energy momentum tensor of the bosons Xµ to the total (‘matter’) energy
momentum tensor (here matter means leaving out the ghosts). In D-dimensions
the RNS string (Xµ, ψµ) has central charge 3D/2.

The ψ-sector of the Fock space is generated by applying fermionic creation
operators to the NS/R ground state satisfying

bµr |0〉 = 0 , r > 0 (NS) , dµm|0〉 = 0 , m > 0 (R) .

In the combined Xµ, ψµ system physical states satisfy

(L0 − a)|φ〉 = 0 , Lm|φ〉 = 0 ,m > 0

where

a =

{
1
2 (NS)

0 (R)

Since [L0, d
µ
0 ] = 0, the application of Ramond sector ψµ zero modes does not

change the mass of the state. In particular the R-ground state is degenerate
and carries a representation of the Clifford algebra

{γµ, γν} = 2ηµν , γµ :=
√

2dµ0 .

In even dimensions, the Clifford algebra has a unique irreducible representation,
which has dimension 2D/2. This representation can be constructed by taking
the linear combinations

ψ±I =

{
ψ±0 = i

2

(
γ0 ± γ1

)
ψ±i = 1

2

(
γ2i ± iγ2i+1

)
i = 1, . . . D−2

2

}
, I = 0, . . .

D − 2

2
= n− 1
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(where n = D/2), and observing that ψ±I are fermionic creation and annihilation
operators:

{ψ+
I , ψ

−
J } = 0 .

Then by starting from a highest way state

ψ+
I |0〉 = 0

the representation is spanned by

(ψ−0 )m0 · · · (ψ−n−1)mn−1 |0〉 mk ∈ {0, 1}

This representation clearly has dimension 2n = 2D/2. By restriction, the Clif-
ford representation becomes a Spin representation, which is reducible and de-
composes into Weyl spinor representations of dimension 2n−1. States can be
labeled by the weights of the corresponding Dn

∼= so(2n) representations:

(ψ−0 )m0 · · · (ψ−n−1)mn−1 =

∣∣∣∣±1

2
,±1

2
, . . . ,±1

2

〉
where the sign of the i-th term is +1/-1 if mi−1 = 0, 1. We can also use a
notation where R-ground states are labeled by indices a = 1 . . . , 2n = 2D/2 and
γµ are represented by γ-matrices:

γµ : |a〉 7→ (γµ)ab|b〉 .

A system of D free bosons and D free fermions exhibits worldsheet super-
symmetry with supercurrent

TF (z) =
i

2
: ψµ(z)∂X(z) :

which transforms ∂Xµ into ψµ and vice versa. The (total, matter) energy
momentum tenor T (z) = TX(z) + Tψ(z) and the supercurrent form a close
algebra under OPE, called the N = 1 superconformal algebra. The supercurrent
carries conformal weight hTF = 3/2. The modes of the supercurrent are denoted
Fm,m ∈ Z for the NS and Gr, r ∈ Z+ 1

2 for the R-sector. G−1/2 is the worldsheet
supercharge which squares to the worldsheet translation operator G2

−1/2 = L−1.
The remaining physical state conditions for the Xµ, ψµ system are:

Fm|φ〉 = 0 , m > 0(NS) , Gr|φ〉 = 0 , r > 0(R)

In the BRS description the theory is augmented by ghosts b, c which are an-
ticommuting tensor fields, and superghosts β, γ which are commuting spinor
fields. One then forms an energy momentum tensor for the combined ‘matter’
X,ψ and (super-)ghost b, c, β, γ system. Since cb,c = −26 and cβ,γ = 11 the
conformal anomaly cancels for

cX + cψ + cb,c + cβ,γ =
3

2
D − 15 = 0⇒ D = 10 .
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This also is the condition for nilpotency of the BRS formed out of the N = 1
SCA and the b, c, β, γ ghosts.

Similarly to the b, c system, the β, γ system has positive modes which do
not annihiliate the sl(2,C) vacuum. The condition the β(z), γ(z) create regular
states at z = 0 implies

βm|0〉 = 0 ,m > −3

2
, γn|0〉 = 0 , n ≥ 3

2
,

where m,n ∈ Z in the NS sector and m,n ∈ Z + 1
2 in the R sector. The

operators γ1/2 and γ1 do not annihilate the sl(2,C) vacuum and lower the L0

eigenvalue. Since γm are bosonic operators, one can apply any number of such
operators and lower the L0 eigenvalue without any lower bound. However, the
β, γ ghosts are not dynamical fields, and this does not signal an instability,
but rather an infinite degeneracy in the realisation of physical states. This is
referred to as (super-)ghost pictures or pictures for short. From the previous
discussion of general b, c systems we know that transition amplitudes between
states of different ghost number are non-zero if the ghost charges differ by the
background charge of the system

〈q′|q〉 6= 0⇒ q′ = −q −Q

For the superghosts β, γ, Q = 2.
For a general b, c system states |q〉 with the properties

bn|q〉n >= 0, n > εq − λ , cn|q〉 = 0, n ≥ −εq + λ

are called q-vacua, and a choice of q selects the respective ghost/superghost
picture relative to which one defines the states. While for the b, c system phys-
ical states take the same form in all pictures (so that picture changing is not
much of an issue), physical states, i.p. vertex operators look differently in
different superghost pictures, and ‘picture changing’ (that is the isomorphism
between representations of states relative to different pictures) is a non-trivial
map. Moreover, for the β, γ sector one cannot avoid to work in more than one
picture in order to cover all possible amplitudes. States of ghost charge q can
be generated from the sl(2,C) vacuum by application of the operator eiqφ,

|q〉 = eiqφ(0)|0〉

where φ is scalar field which bosonizes the b, c system. For cases with ε = −1, like
β, γ, where the ghosts are themselves bosons, ‘bosonization’ means to transform
a first order system into a second order system.

To each physical state one can associate a vertex operator. Momentum
eigenstates:

|k〉 ←→: eikµX
µ(z,z̄) :

Bosonic excitations (one chiral sector only)

αµ−m|k〉 ←→: ∂mXµ(z)eikνX
ν(z) :
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Fermionic excitations, NS-sector, bosonized description:

bµ1

−r1 · · · |k〉 ←→: ev·H(z)eik·X(z) :

where v ∈ D
(0),(v)
5 and H = (H1, . . . ,H5). Fermionic excitations, R-sector,

bosonized description:

dµ1

−m1
· · · |k〉 ←→: ev·H(z)eik·X(z) :

where v ∈ D(s),(c)
5 . I.p. the R-ground states are generatred by the so-called spin

field

|α〉 = Sα(0)|0〉 = eiα·H(z)|0〉 , α =

(
±1

2
, . . .± 1

2

)
The physical ground states α, k〉 of the R-sector correspond to massless particles
in the reducible 2n−1 ⊕ 2n−1 (spinor+ ⊕ spinor−) representation. The natural
candidate for a vertex operator is

: eiα·Heik·X :

This operator has conformal weight

h =
1

2
α2 +

1

2
k2 =

5

8
+

1

2
k2

Since the conformal weight for a physical vertex operator must be h = 1, the
mass of this state is

5

8
+

1

2
k2 = 1⇒M2 = −k2 = −2(1− 5

8
) 6= 0

This can be resolved within the BRS framework. As we have seen, R-sector
states carry superghost charge q ∈ Z+ 1

2 . Since the ghost superghost charge can-
not be zero, vertex operators for space-time fermions must contain a superghost
operator. If we include the operator which generates superghost charge −1/2
we obtain the fermion vertex operator

V−1/2 = uα : Sαe
− i

2φeik·X

Since e−
i
2φ has conformal weight

1

2
εq(q +Q) =

1

2
(−1)

(
−1

2

)(
−1

2
+ 2

)
=

3

8

the vertex operator V−1/2 has conformal weight 1 for k2 = 0, (massless state).
In the BRS framework, physical states on the large Fock space are BRS-

closed, and the corresponding (unintegrated) vertex operators commute with
the BRS charge up to a total derivative

[QBRS, Vphys] = ∂(· · · ) .
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For V−1/2 this imposes the condition that the spinor uα satisfies the massless,
Fourier transformed Dirac equation:

(kµγ
µ)αβu

β = 0 .

Correlation functions can only be non-zero if the background superghost charge
is compensated (we assume that the ghost charge has been compensated by the
insertion of c−1c0c1). Using V−1/2 we can form the non-zero correlation function

〈V−1/2V−1/2V−1/2V−1/2〉 6= 0

but to construct general non-zero correlation functions involving the R-groundstate
we need versions of the vertex operator which carry different ghost charges.
Versions of vertex operators which carry different superghost charge are said to
belong to different (super-)ghost pictures, or pictures for short. The map which
relates a vertex operator in the picture with charge q to an equivalent vertex
operator in the picture with charge q + 1 is called picture changing (this is in-
vertible). The picture changing operator P+ can be realized as a combination
of the worldsheet supercorrent and the operator increasing ghost charge by one
unit:

P+ =

∮
dz

2πi
eiφψµ∂Xµ

Literature: [6]

End of Part I

I plan to continue lectures in 2023, as well as keep polishing these notes. Some
material that I have already prepared is in the appendix.

A Further material

Vertex operators in the bosonized formulation take the form

V =: ∂NXµeiλ·H+iqφeik·X :

where

λ ∈ D(0),(v)
5 q ∈ Z (NS)

λ ∈ D(s),(c)
5 q ∈ Z + 1

2 (R)

If physical, such an operator generates a state of mass

α′M2 = 4

(
1

2
λ2 +N − 1− 1

2
q(q + 2)

)
with ghost charge Ngh = 0 and superghost charge Nsgh = q. Since operators
: exp(iλ ·H + iqφ) : have OPEs of the form

: ei(λ·H+iqφ :: ei(λ
′·H+iq′φ := (z − w)λ·λ

′−qq′ : ei(λ+λ′)·H+i(q+q′)φ + · · ·
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we are led to defining the non-Euclidean Lie algebra lattice D5,1;

w = (λ, q) ∈ D5,1 , w · w′ = λ · λ′ − qq′

We also define the lattice D1 = 1
2Z, so that D5,1 = (D5D1)cc, where cc is a list

which tells us which conjugacy classes of D5 and D1 we combine to obtain the
D5,1 lattice.

The definition of D5,1 is useful, because it captures physical properties of the
vertex operator algebra in terms of lattice properties. I.p. the vertex operator
algebra is local, that is, OPEs don’t have branch cuts, if w · w′ ∈ Z, that is, if
the lattice D5,1 is integral. It is also possible to pick representatives for (gauge
fixed) physical states by a version of the LC gauge. Decompose

w = (u, x) ∈ D5,1 ,where u ∈ D4 ' so(8)

where so(8) is the transverse rotation subgroup of the Lorentz group so(1, 9)
and where x is fixed to be

x =

{
(0,−1) (NS)(
− 1

2 ,−
1
2

)
(R)

Thus we choose representatives with superghost charge −1 for the NS-sector
and −1/2 for the R-sector. We also define a lattice D1,1 which is like D2 but

with indefinite bilinear form. Thus x ∈ D(v)
1,1 for NS states and x ∈ D(s)

1,1 for R
states. The mass formula is

α′M2 = 4

(
1

2
u2 +N − 1

2

)
= 4

(
1

2
w2 +N − 1 + q

)
Let us list the states corresponding to the lowest mass levels:

w = (u, x) D5,1 D4 D1,1 so(8) α′M2

(0 · · · 0|0,−1) (v) (0) (v) 1 −2

(· · · ± 1 · · · |0,−1) (0) (v) (v) 8V 0(
± 1

2 · · · | −
1
2 ,−

1
2

)
(s) (s) (s) 8S 0

(c) (c) (s) 8C 0

(±1 · · · ± 1 · · · |0,−1) (v) (0) (v) 28adj 2

The RNS string is not modular invariant. The modular invariant type-II su-
perstring theories are obtained by the GSO projection. In the above ‘covari-
ant lattice’ description the GSO projection eliminates all mass levels α′M2 =
−2, 2, 6, . . . and half of the R-states at the mass levels α′M2 = 0, 4, 8, . . .. At the
massless level, one of the spinor representations, say 8C is eliminated leaving a
massless ground states 8V + 8S . This is the on-shell content of ten-dimensional
N = 1 vector supermultiplet (one vector boson, on Majorana-Weyl fermion). It
can be shown that the NS and R sector partition functions match level by level,
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that is, type-II superstrings have the same number of (spacetime) bosonic and
fermionic states at each mass level (Jacobi’s ‘equatio identical satis abstrusa’).
The bosonic or covariant lattice formulation allows to construct the spacetime
supercharges explicitly.

Part of the motivation for the GSO projection can be read of from the scalar
products between D5,1 conjugacy classes:

(0) (v) (s) (c)

(0) 0 0 0 0

(v) 0 1
2

1
2

(s) 0 1
2

(c) 0

This shows that any theory which contains the combinations (v), (s) or (v), (c) or
(s), (c) of D5,1 conjugacy classes is not local, because the corresponding lattice
is not integral. However the combinations (0), (s) and (0), (c) define integral
lattices. The two type-II superstring theories are based on the lattices

(D
(0),(s)
5,1 )L ⊕

{
(D

(0),(c)
5,1 )R (IIA)

(D
(0),(s)
5,1 )R (IIB)

while the two heterotic string theories are based on the lattices

Γ16;5,1 = (Γ16)L ⊕ (D
(0),(s)
5,1 )R , Γ16 =

{
E8E8 (HE)

D
(0),(s)
16 (HO)

Heterotic vertex operators contain bosonic exponentials of the form

V = eiwL·XL+iλ·H+iqφ

where
w = (wL, λ, q) ∈ Γ16;5,1

with scalar product (as appearing in the OPE)

w · w′ = −wL · w′L + λ · λ′ − qq′

Thus the scalar product associated with the heterotic lattice Γ16;5,1 has signature
(−)16(+)5(−)1.

Toroidal compactifications to even dimensions d = 10− 2n are described by
lattices of the form

Γ16+2n,2n ⊕D(0),(s)
5,1

where the Narain lattice Γ16+2n,2n encodes the ten-dimensional gauge charges
together with momenta and windings associated with a torus T 2n. This lattice
can be re-arranged to the form

(Γ16+2n)L ⊕ (Γ3n +D5−n,1)R
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with signature (−)16+2n(+)5+2n(−)1.
Here Γ16+2n encodes the ten-dimensional gauge charges and the 2n left-

moving momenta, Γ3n the 2n right-moving momenta and 2n right-moving ws
fermions and D5−n,1 encodes the d-dimensional Lorentz Lie algebra so(10−2n−
1, 1) together with the ghost number. In the LC gauge it is decomposed into
D4−nD1,1, where D4−2n

∼= so(8−2n) encodes the transverse (=physical) degrees
of freedom and D1,1 the longitudinal/timelike (= pure gauge oscillations and the
ghosts). This lattice is integral, but not even: ST fermionic states correspond
to lattice with odd square norm. An equivalent formulation is obtained by
the so called lattice map which replaces (conjugacy class by conjugacy class)
the ‘ghost lattice’ D1,1 by D4. The resulting lattice Γ16+2n,8+2n is even with
signature (−)16+2n(+)8+2n. The LC gauge now takes the form

w = (u|y) ∈ D4−nD4 , w ∈ D4−n ∼= so(8− 2n) , y =

{
(0, 0, 0, 0) (NS)(

1
2 ,

1
2 ,

1
2 ,

1
2

)
(R)

In general, replacing a D-type lattice Dn by a lattice Dn+8p p ∈ Z, preserves
all scalar products modulo 1 and square norms modulo 2. When shifting by
4 units rather than 8 even lattices are mapped to odd lattices, and vice versa.
This map can be extended to include indefinite lattices: D1,1 7→ D4, D2,1 7→ D5,
D3,1 7→ D6, . . . , D5,1 7→ D8, . . .

For ten-dimensional heterotic strings it can be shown that the theory is local
and modular invariant if the lattice Γ16,8 = Γ16D8 is even and self-dual. Since
one can change the signature modulo 8 without changing one scalar products
modulo 1 and square norms modulo 2, this is equivalent the condition that the
Euclidean lattice Γ24 = Γ16D8 is even self-dual. Up to O(24) transformations,
there are 24 even selfdual Euclidean lattices in dimension 24. Only those which
take the form Γ16D8 define ten-dimensional heterotic string theories. This leaves
8 lattices, defining 8 ten-dimensional heterotic string theories which can be
realized using free bosons.4 It can further be shown that the theory has ten-
dimensional N = 1 supersymmetry if the D8 factor extends to E8 inside Γ24,
is non-supersymmetry and tachyon-free if D8 is not embedded into a larger Lie
algebra lattice and has tachyons if D8 is embedded into a larger Dn lattice:

(D8)L Susy Tachyons

D8 ⊂ E8 N = 1 No

D8 N = 0 No

D8 ⊂ Dm N = 0 Yes

As a result there are 2 supersymmetric, 1 non-supersymmetric tachyon-free and

4There exists a tachyonic ten-dimensional heterotic string theory with gauge group E8

which cannot be expressed in terms of free bosons. It has an E8 current algebra with level
k = 2.
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5 non-supersymmetry tachyonic heterotic string theories in ten dimensions

Lattice Susy Tachyons Gauge group

E8E8E8 N = 1 No E8 × E8

D16E8 N = 1 No Spin(32)/Z2

D8D8D8 N = 0 No SO(16)× SO(16)

D24 N = 0 Yes SO(32)
...

...
...

...

Four-dimensional heterotic string theories can be defined by even selfdual lat-
tices of the form Γ22,14 = (Γ22)L + (Γ9D5)R where D5 = D1D4, D1

∼= so(2)
encodes the rep of the transverse rotation group, D4 is the ghost lattice. It
can be shown that such a theory has N = 1, 2, 4 four-dimensional spacetime
supersymmetry if the D5-factor extends to an exceptional Lie algebra lattice,
D5 ⊂ E6, E7, E8.

In dimensions, the spacetime supercharges take the following form in the
−1/2 picture:

Qα =

∮
dz

2πi
e−

i
2φSα(z)

If this is a physical operator, the covariant lattice must contain vectors of the
form 0, (s), where (s) are the spinor weights of D8. These extend the root
lattice of D8 to the root lattice of E8. This explains the connection between
spacetime supersymmetry and the extension D8 ⊂ E8. (Similarly one can show
that extensions D8 ⊂ Dm always imply that the spectrum contains tachyons.)

To construct the four-dimensional supercharges, we split the worldsheet CFT
as cL = 26 = 4 + 22 and cR = 15 = 6 + 9. In the right chiral sector, we bosonize
the four worldsheet fermions ψµ into two bosons ϕ = (ϕ1, ϕ2). The currents for
four-dimensional supercharges in the −1/2 picture must take the form

Qα(z) =: e−
i
2φ(z)Sα(z)Σ(z) :

where Sα is the four-dimensional spin field, and Σ is a field formed out of of
the internal c = 9 CFTR which contributes to the conformal weight such that
Qα(z) has weight one. It can be shown that Σ must take the form

Σ(z) = ei
√

3
2 H(z)

where H(z) is a free boson. There is an associated conserved current J(z) =
i
√

3∂H(z), and the internal CFTR splits into a U(1) current algebra carrying
c = 1 and a remaining piece with central charge c = 8 which remains arbitrary,
except that the c = 9 internal CFTR is an N = 1 SCFT with N = 1 SCA
generated by its energy momentum tensor T (z) and supercurrent TF (z). The
existence of the U(1) current J(z) implies that the OPE J(z)TF (w) contains
a second supercurrent T̃F (z), that is, (T (z), T̃F (z)) generate another N = 1
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SCA. Moreover, the linear combinations T±F = TF ± T̃F carry charge ±1 under

the current J . As a result the fields (T, TF , T̃F , J)↔ (T, T±F , J) generate an
extended N = 2 SCA. Thus four-dimensional spacetime supersymmetry implies
extended worldsheet supersymmetry in the internal CFT. Conversely extended
WS susy is necessary but not sufficient for ST susy. For a general heterotic
compactification, the left-moving internal CFT will not have WS supersymme-
try, so that overall we have (0, 2) supersymmetry. There is a special subclass of
heterotic models were the internal CFT is left/right symmetric so that one has
(2, 2) worldsheet supersymmetry. This does not lead to further enhancement
of spacetime supersymmetry. For heterotic Calabi-Yau compactifications this is
related to how anomaly cancellation is realized. (2, 2) ws supersymmetry is the
case of ‘standard embedding’ where the heterotic anomaly is cancelled by setting
the spin connection on the internal sixfold equal to the E8 × E8 gauge connec-
tion. These models are easier to analyse then those with generic, non-standard
embeddings, which correspond to (0, 2) ws susy.

The contribution from worldsheet fermions ψµ, µ = 0, . . . , 3, the internal
U(1) current algebra and the superghosts to vertex operators takes the form

V = eiλ·ϕe
i Q√

3
H
eiqφ

This part of the CFT is therefore encoded by lattice vectors

p =

(
Q√

3
, λ, q

)
∈ u(1) +D2,1 = Γ3,1 ⊂ (Γ3nD2,1)R

where u(1) is the lattice of u(1) charges. By a lattice map, which preserves the
scalar products between conjugacy classes, this lattice can be replaced:

Γ3,1 = u(1) +D2,1 7→ u(1) +D5 = Γ6

The sufficient condition for four-dimensional ST supersymmetry is that in ad-
dition to enhanced N = 2 WS susy in the internal CFT, the superghost charge
and the U(1) charge of physical states are correlated: either both of them are
integer, q,Q ∈ Z or both are half-integer q,Q ∈ Z+ 1

2 . This correlation between
q and Q is equivalent to the statement that Γ6 is the E6 lattice. Thus N = 1
ST supersymmetry is equivalent to N = 2 WS supersymmetry together with an
E6 current algebra (or E3,1 current algebra, if we reverse the lattice map).

Similarly, N = 2 ST susy implies that the c = 9 CFTR contains an c = 3
sector generated by two free bosons and two free fermions. The conditions on
lattice vectors imply that the D5 lattice extends into the E7 lattice. A geometric
realization are compactifications on K3 × T 2. Finally, N = 4 ST susy implies
that the internal c = 9 CFTR consists of six free bosons and six free fermions.
The D5 lattice extends into an E8 lattice and the geometric realization is by
compactification on T 6.

To summarize, for four-dimensional heterotic strings space-time supersym-
metry is equivalent to (0, 2) supersymmetry of the internal CFT together with
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an extension of the right D5 sublattice:

Lattice ST Supersymmetry

D5 ⊂ E6 N = 1

D5 ⊂ E7 N = 2

D5 ⊂ E8 N = 4

While we have focussed on the heterotic string, it is clear that for type-II super-
string the same construction carried out in both chiral sectors symmetrically,
leads to N = 2, 4, 8 ST susy in four dimensions.

Literature: [6]

References

[1] T. Mohaupt, Introduction to string theory, Lect. Notes Phys. 631 (2003)
173–251, [hep-th/0207249].

[2] J. Bolte and F. Steiner, The On-shell limit of bosonic off-shell string
scattering amplitudes, Nucl. Phys. B 361 (1991) 451–468.

[3] S. Albeverio, J. Jost, P. Sylvie, and S. Scarlatti, A mathematical
introduction to string theory, vol. 225 of LMS Lecture Note Series.
Cambridge University Press, 1997.

[4] M. Nakahara, Geometry, Topology and Physics. Adam Hilger, Bristol and
New York, 1990.

[5] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string.
1998.

[6] R. Blumenhagen, D. Luest, and S. Theisen, Basic Concepts of String
Theory. Springer, 2013.

[7] P. H. Ginsparg, APPLIED CONFORMAL FIELD THEORY,
hep-th/9108028.

[8] R. Streater and A. Wightman, PCT, spin and statistics, and all that.
W.A. Benjamin, Inc., 1964.

[9] R. N. Cahn, Semi-Simple Lie Algebras and Their Representations.
Benjamin and Cummings, 1984.

[10] V. Kac, Infinite dimensional Lie algebras. Cambridge University Press,
1990.

[11] R. Cornwell, Group Theory in Physics: An introduction (vol 1 & 2).
Academic Press, 1997.

40

http://xxx.lanl.gov/abs/hep-th/0207249
http://xxx.lanl.gov/abs/hep-th/9108028


[12] J. A. de Azcarraga and J. M. Izquierdo, Lie groups, Lie algebras,
cohomology and some applications in physcs. Cambridge University Press,
1995.

[13] M. B. Green, S. J. H., and E. Witten, Superstring theory (2 vols).
Cambridge University Press, 1987.

[14] P. Goddard and D. I. Olive, Kac-Moody and Virasoro Algebras in
Relation to Quantum Physics, Int. J. Mod. Phys. A 1 (1986) 303.

[15] M. Sakamoto, A physical interpretation of cocycle factors in vertex
operator representations, Phys. Lett. B 231 (1989), no. 3 258.

[16] T. Mohaupt, A short introduction to string theory. CUP, 2022.

[17] W. Lerche, A. N. Schellekens, and N. P. Warner, Lattices and Strings,
Phys. Rept. 177 (1989) 1.

41


	Lecture 1: Surface topology and string perturbation theory (31/10/2022)
	Lecture 2: G structures on surfaces (7/11/2022)
	Lecture 3: Polyakov Path Integral, Faddeev-Popov ghosts (14/11/2022)
	Bosonic Gaussian integrals
	Zeta-function determinants
	Polyakov path integral over embeddings at worldsheet fixed metric
	Fermionic Gaussian integrals
	Path integral over metrics
	The Weyl anomaly
	Zero modes

	Lecture 4: First oder systems in CFT, aka bc-systems (21/11/2022)
	Lecture 5: Bosonization, Lie algebras, and Lattices
	Lecture 6: BRS symmetry, Worldsheet supersymmetry and Vertex Operators (5/12/2022)
	Further material

