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Abstract: These notes are based on lectures given at the Erwin-Schrödinger
Institut in Vienna in 2006/2007 and at the 2007 School on Attractor Mecha-
nism in Frascati. Lecture I reviews special geometry from the superconformal
point of view. Lecture II discusses the black hole attractor mechanism, the un-
derlying variational principle and black hole partition function. Two versions
of the OSV-conjecture are formulated, which are then tested in the following
lectures. Lecture III discusses BPS black holes in N = 4 supergravity, both
large and small, including the effects of higher curvature terms. Lecture IV
is devoted to their microscopic desription by N = 4 string compactifications,
with emphasis on precision state counting. The lectures are accompanied by
exercises, which encourage student readers to develop some of the key ideas for
themselves. Solutions are available upon request. Appendix A reviews special
geometry from the view point of differential geometry. Appendix B provides
the necessary background in modular forms needed to understand S-duality
and string state counting (and to solve the corresponding exercise).

1 Introduction

Recent years have witnessed a renewed interest in the detailed study of super-
symmetric black holes in string theory. This has been triggered by the work
of H. Ooguri, A. Strominger and C. Vafa [1], who introduced the so-called
mixed partition function for supersymmetric black holes, and who formulated
an intriguing conjecture about its relation to the partition function of the
topological string. The ability to test these ideas in a highly non-trivial way
relies on two previous developments, which have been unfolding over the last
decade. The first is that string theory provides models of black holes at the
fundamental or ‘microscopic’ level, where microstates can be identified and
counted with high precision, at least for supersymmetric black holes [2, 3, 4].
The second development is that one can handle subleading contributions to
the thermodynamical or ‘macroscopic’ black hole entropy. The macroscopic
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description of black holes is provided by solutions to the equations of mo-
tion of effective, four-dimensional supergravity theories, which approximate
the underlying string theory at length scales which are large compared to
the string, Planck and compactification scale. In this framework subleading
contributions manifest themselves as higher derivative terms in the effective
action. For a particular class of higher derivative terms in N = 2 supergravity,
which are usually referred to as ‘R2-terms’, it is possible to construct exact
near-horizon asymptotic solutions and to compute the black hole entropy to
high precision [5, 6]. The subleading corrections to the macroscopic entropy
agree with the subleading contributions to the microscopic entropy, provided
that the area law for the entropy is replaced by Wald’s generalized formula,
which applies to any diffeomorphism invariant Lagrangian [7].

The main tools which make it possible to handle the R2-terms are the
superconformal calculus, which allows the off-shell construction of N = 2 su-
pergravity coupled to vector multiplets, and the so-called special geometry,
which highly constrains the vector multiplet couplings. The reason for this
simplification is that scalars and gauge fields sit in the same supermultiplet,
so that the electric-magnetic duality of the gauge fields imprints itself on the
whole multiplet. As a result the complicated structure of the theory, including
an infinite class of higher derivative terms, becomes manageable and transpar-
ent, once all quantities are organised such that they transform as functions
or vectors under the symplectic transformations which implement electric-
magnetic duality. This is particularly important if the N = 2 supergravity
theory is the effective field theory of a string compactification, because string
dualities form a subset of these symplectic transformations.

In these lectures we give a detailed account of the whole story, starting
from the construction of N = 2 supergravity, proceeding to the definition of
black hole partition functions, and ending with microscopic state counting.
In more detail, the first lecture is devoted to special geometry, the super-
conformal calculus and the construction of N = 2 supergravity with vector
multiplets, including the R2-terms. The essential concept of gauge equiva-
lence is explained using non-supersymmetric toy examples. When reviewing
the construction of N = 2 supergravity we focus on the emergence of special
geometry and stress the central role of symplectic covariance. Appendix A,
which gives an account of special geometry from the mathematical point of
view, provides an additional perspective on the subject. Lecture II starts by
reviewing the concept of BPS or supersymmetric states and solitons. Its main
point is the black hole variational principle, which underlies the black hole
attractor equations. Based on this, conjectures about the relation between
the macroscopically defined black hole free energy and the microscopically
defined black hole partition functions are formulated. We do not only discuss
how R2-terms enter into this, but also give a detailed discussion of the crucial
role played by the so-called non-holomorphic corrections, which are essential
for making physical quantities, such as the black hole entropy, duality invari-
ant.
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The second half of the lectures is devoted to tests of the conjectures formu-
lated in Lecture II. For concreteness and simplicity, I only discuss the simplest
string compactification with N = 4 supersymmetry, namely the compactifica-
tion of the heterotic string on T 6. After explaining how the N = 2 formalism
can be used to analyse N = 4 theories, we will see that N = 4 black holes are
governed by a simplified, reduced variational principle for the dilaton. There
are two different types of supersymmetric black holes in N = 4 compactifica-
tions, called ‘large’ and ‘small’ black holes, and we summarize the results on
the entropy for both of them.

With Lecture IV we turn to the microscopic side of the story. While the
counting of 1

2 -BPS states, corresponding to small black holes, is explained in
full detail, we also give an outline of how this generalises to 1

4 -BPS states, cor-
responding to large black holes. With the state degeneracy at hand, the corre-
sponding black hole partition functions can be computed and confronted with
the predictions made on the basis of the macroscopically defined free energy.
We give a critical discussion of the results and point out which open problems
need to be addressed in the future. While Appendix A reviews Kähler and
special Kähler geometry from the mathematical point of view, Appendix B
collects some background material on modular forms.

The selection of the material and the presentation are based on two prin-
ciples. The first is to give a pedagogical account, which should be accessible
to students, postdocs, and researchers working in other fields. The second is
to present this field from the perspective which I found useful in my own
work. For this reason various topics which are relevant or related to the sub-
ject are not covered in detail, in particular the topological string, precision
state counting for other N = 4 compactifications and for N = 2 compactifi-
cations, and the whole field of non-supersymmetric extremal black holes. But
this should not be a problem, given that these topics are already covered by
other excellent recent reviews and lectures notes. See in particular [9] for an
extensive review of the entropy function formalism and non-supersymmetric
black holes, and [10] for a review emphasizing the role of the topological string.
The selection of references follows the same principles. I have not tried to give
a complete account, but to select those references which I believe are most
useful for the reader. The references are usually given in paragraphs entitled
‘Further reading and references’ at the end of sections or subsections.

At the ends of Lectures I and IV I formulate exercises which should be
instructive for beginners. The solutions of these exercises are available upon
request. In addition, some further exercises are suggested within the lectures.

2 Lecture I: Special Geometry

Our first topic is the so-called special geometry which governs the couplings
of N = 2 supergravity with vector multiplets. We start with a review of the
Stückelberg mechanism for gravity, explain how this can be generalized to the
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gauge equivalence between gravity and a gauge theory of the conformal group,
and then sketch how this can be used to construct N = 2 supergravity in the
framework of the superconformal tensor calculus.

2.1 Gauge equivalence and the Stückelberg mechanism for gravity

The Einstein-Hilbert action

S[g] = − 1

2κ2

∫

dnx
√−gR (1)

is not invariant under local dilatations

δgµν = −2Λ(x)gµν . (2)

However, we can enforce local dilatation invariance at the expense of intro-
ducing a ‘compensator’. Let φ(x) be a scalar field, which transforms as

δφ =
1

2
(n− 2)Λφ . (3)

Then the action

S̃[g, φ] = −
∫

dnx
√−g

(

φ2R− 4
n− 1

n− 2
∂µφ∂

µφ

)

(4)

is invariant under local dilatations. If we impose the ‘dilatational gauge’

φ(x) = a = const. , (5)

we obtain the gauge fixed action

S̃g.f. = −a2

∫

dnx
√−gR . (6)

This is proportional to the Einstein-Hilbert action (1), and becomes equal to
it if we choose the constant a to satisfy a2 = 1

2κ2 .

The actions S[g] and S̃[g, φ] are said to be ‘gauge equivalent’. We can go
from S[g] to S̃[g, φ] by adding the compensator φ, while we get from S̃[g, φ]
to S[g] by gauge fixing the additional local scale symmetry. Both theories are
equivalent, because the extra degree of freedom φ is balanced by the additional
symmetry.

There is an alternative view of the relation between S[g] and S̃[g, φ]. If we
perform the field redefinition

gµν = φ(n−2)/4g̃µν , (7)

then
S[g] = S̃[g̃, φ] . (8)
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Conversely, starting from S̃[g̃, φ], we can remove φ by a field-dependent gauge
transformation with parameter exp(Λ) = b

φ , where b = const. The field re-

definition (7) decomposes the metric into its trace (a scalar) and its trace-
less part (associated with the graviton). This is analogous to the Stückelberg
mechanism for a massive vector field, which decomposes the vector field into
a massless vector (the transverse part) and a scalar (the longitudinal part),
and which makes the action invariant under U(1) gauge transformations.

We conclude with some further remarks:

1. The same procedure can be applied in the presence of matter. The com-
pensator field has to be added in such a way that it compensates for the
transformation of matter fields under dilatations. Derivatives need to be
covariantized with respect to dilatations (we will see how this works in
section 2.2.)

2. It is possible to write down a dilatation invariant action for gravity, which
only involves the metric and its derivatives, but this action is quadratic
rather than linear in the curvature:1

S[g] =

∫

d4x
√−g

(

RµνR
µν − 1

3
R2

)

. (9)

This actions contains terms with up to four derivatives. These and other
higher derivative terms typically occur when quantum or stringy correc-
tions to the Einstein-Hilbert action are taken into account.

3. When looking at S̃[g, φ], one sees that the kinetic term for the scalar φ has
the ‘wrong’ sign, meaning that the kinetic energy is not positive definite.
This signals that φ is not a matter field, but a compensator.

2.2 Gravity as a constrained gauge theory of the conformal group

Let us recall some standard concepts of gauge theory. Given a reductive2 Lie
algebra with generators XA and relations [XA, XB] = fC

ABXC , we define a
Lie algebra valued gauge field (connection)

hµ = hA
µXA . (10)

The corresponding covariante derivative (frequently also called the connec-
tion) is

Dµ = ∂µ − ihµ , (11)

where it is understood that hµ operates on the representation of the field on
which Dµ operates. The field strength (curvature) is

1 In contrast to other formulae in this subsection, the following formula refers specif-
ically to n = 4 dimensions.

2 A direct sum of simple and abelian Lie algebras.
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RA
µν = 2∂[µh

A
ν] + 2hB

[µh
C
ν]f

A
BC . (12)

We now specialize to the conformal group, which is generated by trans-
lations P a, Lorentz transformations Mab, dilatations D and special confor-
mal transformations Ka. Here a, b = 0, 1, 2, 3 are internal indices. We denote
the corresponding gauge fields (with hindsight) by ea

µ, ω
ab
µ , bµ, f

a
µ , where µ is

a space-time index. The corresponding field strength are denoted R(P )a
µν ,

R(M)ab
µν , R(D)µν , R(K)a

µν .
So far the conformal transformations have been treated as internal sym-

metries, acting as gauge transformations at each point of space-time, but not
acting on space-time. The set-up is precisely as in any standard gauge theory,
except that our gauge group is not compact and wouldn’t lead to a unitary
Yang-Mills-type theory.

But now the so-called conventional constraints are imposed, which enforce
that the local translations are identified with diffeomorphisms of space-time,
while the local Lorentz transformations become Lorentz transformations of
local frames.

1. The first constraint is
R(P )a

µν = 0 . (13)

It can be shown that this implies that local translations act as space-
time diffeomorphisms, modulo gauge transformations. As a result, the
M-connection ωab

µ becomes a dependent field, and can be expressed in
terms of the P-connection ea

µ and the D-connection bµ:

ωab
µ = ω(e)ab

µ − 2e[aµ e
b]νbν , (14)

ω(e) c
µb =

1

2
e a

µ (−Ω c
ab +Ω c

b a +Ωc
ab) (15)

Ωc
ab = eµ

ae
ν
b

(

∂µe
c
ν − ∂νe

c
µ

)

, (16)

where ea
µe

ν
a = δν

µ .

2. The second constraint imposes ‘Ricci-flatness’ on the M-curvature:

eν
bR(M)ab

µν = 0 . (17)

This constraint allows to solve for the K-connection:

fa
µ =

1

2
eνa

(

Rµν − 1

6
Rgµν

)

, (18)

where
Rab

µν := R(ω)ab
µν := 2∂[µω

ab
ν] − 2ωac

[µω
db
ν] ηcd (19)

is the part of the M-curvature which does not involve the K-connection:

R(M)ab
µν = R(ω)ab

µν − 4f
[a
[µe

b]
ν] . (20)
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By inspection of (15) and (19) we can identify ω(e)ab
µ with the spin connec-

tions, Rab
µν with the space-time curvature, ea

µ with the vielbein and Ω c
ab with

the anholonomity coefficients.3 While ωab
µ and fa

µ are now dependent quan-
tities, the D-connection bµ is still an independent field. However, it can be
shown that bµ can be gauged away using K-transformations, and the vielbein
ea

µ remains as the only independent physical field. Thus we have matched the
field content of gravity. To obtain the Einstein-Hilbert action, we start from
the conformally invariant action for a scalar field φ:

S = −
∫

d4xeφ(Dc)
2φ , (21)

where (Dc)
2 = DµD

µ is the conformal D’Alambert operator. In the K-gauge
bµ = 0 this becomes

S =

∫

d4xe

(

∂µφ∂
µφ− 1

6
Rφ2

)

. (22)

As in our discussion of the Stückelberg mechanism, we can now impose the
D-gauge φ = φ0 = const. to obtain the Einstein-Hilbert action. Observe that
the kinetic term for φ has again the ‘wrong’ sign, indicating that this field is
a compensator. Note that the Einstein-Hilbert action is obtained from a con-
formal matter action, and not from a Yang-Mills-type action with Lagrangian
∼ (R(M)ab

µν)2. As we have seen already in the discussion of the Stückelberg
mechanism, such actions are higher order in derivatives, and become interest-
ing once we want to include higher order corrections to the Einstein-Hilbert
action.

2.3 Rigid N = 2 vector multiplets

Before we can adapt the method of the previous section to the case of N = 2
supergravity, we need to review rigidly supersymmetric N = 2 vector multi-
plets. An N = 2 off-shell vector multiplet has the following components:

(X,λi, Aµ|Yij) . (23)

X is a complex scalar and λi is a doublet of Weyl spinors. The N = 2 super-
symmetry algebra has the R-symmetry group SU(2) × U(1), and the index
i = 1, 2 belongs to the fundamental representation of SU(2). Aµ is a gauge
field, and Yij is an SU(2)-triplet (Yij = Yji) of scalars, which is subject to the

reality constraint Y
ij

= Yij
4. All together there are 8 bosonic and 8 fermionic

degrees of freedom.

3 The anholonomity coefficients measure the deviation of a given frame (choice of
basis of tangent space at each point) from a coordinate frame (choice of basis
corresponding to the tangent vector fields of a coordinate system).

4 SU(2) indices are raised and lowered with the invariant tenor εij = −εji.
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If we build an action with abelian gauge symmetry, then the gauge field
Aµ will only enter through its field strength Fµν = 2∂[µAν], which is part of
a so-called restricted5 chiral N = 2 multiplet

X =
(

X,λi, F
−
µν , . . . |Yij , . . .

)

, (24)

where the omitted fields are dependent. F−
µν is the anti-selfdual part of the

field strength Fµν . The selfdual part F+
µν resides in the complex conjugate

of the above multiplet, together with the complex conjugate scalar X and
fermions of the opposite chirality.

We take an arbitrary number n + 1 of such multiplets and label them
by I = 0, 1, . . . , n. The general Lagrangian is given by a chiral integral over
N = 2 superspace,

Lrigid =

∫

d4θF (XI) + c.c. , (25)

where F (XI) is a function which depends arbitrarily on the restricted chiral
superfields XI but not on their complex conjugates. Restricting the superfield
F (XI) to its lowest component, we obtain a holomorphic function F (XI) of
the scalar fields, called the prepotential. The bosonic part of the resulting com-
ponent Lagrangian is given by the highest component of the same superfield
and reads

Lrigid = i(∂µFI∂
µX

I − ∂µF I∂
µXI) +

i

4
FIJF

−I
µν F

−J|µν − i

4
F IJF

+I
µν F

+J|µν .

(26)

Here X
I

is the complex conjugate of XI , etc., and

FI =
∂F

∂XI
, FIJ =

∂2F

∂XI∂XJ
, etc. (27)

The equations of motion for the gauge fields are:6

∂µ

(

G
−|µν
I −G

+|µν
I

)

= 0 , (28)

∂µ

(

F
−|µν
I − F

+|µν
I

)

= 0 . (29)

Equations (28) are the Euler-Lagrange equations resulting from variations of
the gauge fields AI

µ. We formulated them using the dual gauge fields

5 While a general chiral N = 2 chiral multiplet has 16+16 components, a restricted
chiral multiplet is obtained by imposing additional conditions and has only 8 +
8 (independent) components. Moreover, the anti-selfdual tensor field F−

µν of a
restricted chiral multiplet is subject to a Bianchi identity, which allows to interpret
it as a field strength.

6 As an additional exercise, convince yourself that you get the Maxwell equations
if the gauge couplings are constant.
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G
±|µν
I := 2i

∂L
∂F I±

µν

. (30)

Equations (29) are the corresponding Bianchi identities. The combined set
of field equations is invariant under linear transformations of the 2n + 2
field strength (F I±, G±

I )T . Since the dual field strength are dependent quan-
tities, we would like to interpret the rotated set of field equations as the
Euler-Lagrange equations and Bianchi identites of a ‘dual’ Lagrangian. Up
to rescalings of the field strength, this restricts the linear transformations to
the symplectic group Sp(2n+2,R). These symplectic rotations generalize the
electric-magnetic duality transformations of Maxwell theory.7

SinceGI−
µν ∝ FIJF

J−
µν , the gauge couplings FIJ must transform fractionally

linearly: F→ (W + VF)(U + ZF)−1 , (31)

where F = (FIJ ) and

(

U Z
W V

)

∈ Sp(2n+ 2,R) . (32)

This transformation must be induced by a symplectic rotation of the scalars.
This is the case if (XI , FI)

T transforms linearly, with the same matrix as the
field strength.

Quantities which transform linearly, such as the field strength (F I±
µν , G

±
I|µν)T

and the scalars (XI , FI)
T are called symplectic vectors. A function f(X) is

called a symplectic function if

f(X) = f̃(X̃) . (33)

Note that the prepotential F (X) is not a symplectic function, but transforms
in a rather complicated way. However, we can easily construct examples of
symplectic functions, by contracting symplectic vectors. The following sym-
plectic functions will occur in the following:

K = i
(

XIF I − FIX
I
)

, (34)

F−
µν = XIG−

I|µν − FIF
I−
µν . (35)

The scalar part of the action (26) can be rewritten as follows:

Lrigid
scalar = −NIJ∂µX

I∂µXJ , (36)

where

7 To see this more clearly, take FIJ to be constant and restrict yourself to one single
gauge field. The resulting Sp(2,R) ≃ SL(2,R) mixes the field strength with its
Hodge dual.
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NIJ = −i
(

FIJ − F IJ

)

=
∂2K

∂XI∂X
J
. (37)

NIJ can be interpreted as a Riemannian metric on the target manifold of the
scalars XI , which we denote M . In fact, NIJ is a Kähler metric with Kähler
potential (34). Thus the scalar manifold M is a Kähler manifold. Moreover,M
is a non-generic Kähler manifold, because its Kähler potential can be expressed
in terms of the holomorphic prepotential F (XI). Such manifolds are called
‘affine special Kähler manifolds.’

An intrinsic definition of affine special Kähler manifolds can be given in
terms of the so-called special connection ∇ (which is different from the Levi-
Civita connection of the metric NIJ). This is explained in appendix A. Equiv-
alently, an affine special Kähler manifold can be chararacterised (locally) by
the existence of a so-called Kählerian Lagrangian immersion

Φ : M → T ∗Cn+1 ≃ C2n+2 . (38)

In this construction the special Kähler metric of M is obtained by pulling
back a flat Kähler metric from T ∗Cn+1. In other words, all specific properties
of M are encoded in the immersion Φ. Since the immersion is Lagrangian, it
has a generating function, which is nothing but the prepotential: Φ = dF . The
immersed manifold M is (generically) the graph of a map XI →WI = FI(X),
where (XI ,WI) are symplectic coordinates on T ∗Cn+1. Along the immersed
manifold, half of the coordinates of T ∗Cn+1 become functions of the other
half: the XI are coordinates on M while the WI can be expressed in terms of
the XI using the prepotential as WI = ∂F

∂XI . We refer the interested reader to
appendix A for more details on the mathematical aspects of this construction.

2.4 Rigid superconformal vector multiplets

The superconformal calculus provides a systematic way to obtain the La-
grangian of N = 2 Poincaré supergravity by exploiting its gauge equivalence
with N = 2 conformal supergravity. This proceeds in the following steps:

1. Construct the general Lagrangian for rigid superconformal vector multi-
plets.

2. Gauge the superconformal group to obtain conformal supergravity.
3. Gauge fix the additional transformations to obtain Poincaré supergravity.

One can use the gauge equivalence to study Poincaré supergravity in terms
of conformal supergravity, which is useful because one can maintain manifest
symplectic covariance. In practice one might gauge fix some transformations,
while keeping others intact, or use gauge invariant quantities.

As a first step, we need to discuss the additional constraints resulting from
rigid N = 2 superconformal invariance. Besides the conformal generators P a,
Mab, D, Ka, the N = 2 superconformal algebra contains the generators A
and V Λ of the U(1) × SU(2) R-symmetry, the supersymmetry generators Q
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and the special supersymmetry generators S. Note that the superconformal
algebra has a second set of supersymmetry transformations which balances
the additional bosonic symmetry transformations.

The dilatations and chiral U(1) transformations naturally combine into
complex scale transformations. The scalars have scaling weight w = 1 and
U(1) charge c = −1:

XI → λXI , λ = |λ|e−iφ ∈ C∗ . (39)

Scale invariance of the action requires that the prepotential is homogenous of
degree 2:

F (λXI) = λ2F (XI) . (40)

Geometrically, this implies that the scalar manifold M of rigid superconformal
vector multiplets is a complex cone. Such manifolds are called ‘conical affine
special Kähler manifolds’.

2.5 N = 2 conformal supergravity

The construction of N = 2 supergravity now proceeds along the lines of
the N = 0 example given in section 2.2. Starting from (25), one needs to
covariantize all derivatives with respect to superconformal transformations.
The corresponding gauge fields are: ea

µ (Translations), ωab
µ (Lorentz transfor-

mations), bµ (Dilatations), fa
µ (special conformal transformations), Aµ (chi-

ral U(1) transformations), Vj
µi (SU(2) transformations), ψi

µ (supersymmetry

transformations) and φi
µ (special supersymmetry transformations).

As in section 2.2 one needs to impose constraints, which then allow to
solve for some of the gauge fields. The remaining, independent gauge fields
belong to the Weyl multiplet,

(

ea
µ, ψ

i
µ, bµ, Aµ,Vj

µi|T−
ab, χ

i, D
)

, (41)

together with the auxiliary fields T−
ab (anti-selfdual tensor), χi (spinor doublet)

and D (scalar). The only physical degrees of freedom contributed to Poincaré
supergravity from this multiplet are the graviton ea

µ and the two gravitini ψi
µ.

The other connections can be gauged away or become dependent fields upon
gauge fixing.

While covariantization of (25) with respect to superconformal transforma-
tions leads to a conformal supergravity Lagrangian with up to two deriva-
tives in each term, it is also possible to include a certain class of higher
derivative terms. This elaborates on the previous observation that one can
also construct a Yang-Mills like action quadratic in the field strength. The
field strength associated with the Weyl multiplet form a reduced chiral ten-
sor multiplet W ab, whose lowest component is the auxiliary tensor field T−

ab.
The highest component contains, among other terms, the Lorentz curvature,
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which after superconformal gauge fixing becomes the anti-selfdual Weyl ten-
sor −C−

µνρσ . By contraction of indices one can form the (unreduced) chiral

multiplet W 2 = W abW
ab, which is also referred to as ‘the’ Weyl multiplet.

While its lowest component is Â = (T−
ab)

2, the highest component contains,
among other terms, the square of the anti-selfdual Weyl tensor. Higher cur-
vature terms can now be incorporated by allowing the prepotential to depend
explicitly on the Weyl multiplet: F (XI) → F (XI , Â). Dilatation invariance
requires that this (holomorphic) function must be (graded) homogenous of
degree 2:

F (λXI , λ2Â) = λ2F (XI , Â) . (42)

We refrain from writing down the full bosonic Lagrangian. However it is in-
structive to note that the scalar part, which is the analogue of (21) reads

8πe−1Lscalar = i
(

F ID
aDaX

I − FID
aDaX

I
)

. (43)

Here Da is the covariant derivative with respect to all superconformal trans-
formations.

2.6 N = 2 Poincaré supergravity

Our goal is to construct the coupling of n vector multiplets to N = 2 Poincaré
supergravity. The gauge equivalent superconformal theory involves the Weyl
multiplet and n+1 vector multiplets, one of which acts a compensator. More-
over, one needs to add a second compensating multiplet, which one can take to
be a hypermultiplet. The second compensator does not contribute any physi-
cal degrees of freedom to the vector multiplet sector. This is different for the
compensating vector multiplet. The physical fields in the N = 2 supergrav-
ity multiplet are the graviton ea

µ, the gravitini ψi
µ and the graviphoton Fµν .

While the first two fields come from the Weyl multiplet, the graviphoton is a
linear combination of the field strength of all the n+ 1 superconformal vector
multiplets:

F−
µν = XIG−

I|µν − FIF
I−
µν . (44)

At the two-derivative level, one obtains T−
µν = F−

µν when eliminating the
auxiliary tensor by its equation of motion. Note, however, that once higher
derivative terms have been added, this relation becomes more complicated,
and can only be solved iteratively in derivatives.

While all n + 1 gauge fields of the superconformal theory correspond to
physical fields of the Poincaré supergravity theory, one of the superconformal
scalars acts as a compensator for the complex dilatations. Gauge fixing im-
poses one complex condition on n+1 complex scalars, which leaves n physical
complex scalars. Geometrically, the scalar manifold of the Poincaré supergrav-
ity theory arises by taking the quotient of the ‘superconformal’ scalar manifold
by the action of the complex dilatations.
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To see what happens with the scalars, we split the superconformal co-
variant derivative Dµ into the covariant derivative Dµ, which contains the
connections for M,D,U(1), SU(2), and the remaining connections. Then the
scalar term (43) becomes

8πe−1Lscalar = i
(

F IDaDaX
I − FIDaDaX

I
)

−i
(

FIX
I − F IX

I
)

(

1

6
R−D

)

. (45)

In absence of higher derivative terms, the only other term containing the
auxiliary field D is

8πe−1Lcomp = χ

(

1

6
R +

1

2
D

)

, (46)

where χ depends on the compensating hypermultiplet. The equation of motion
for D is solved by8

1

2
χ = i

(

FIX
I − F IX

I
)

. (47)

When substituting this back, D cancels out, and we obtain

8πe−1(Lscalar + Lcomp) = i
(

F IDaDaX
I − FIDaDaX

I
)

+
(

i(FIX
I − F IX

I)
)

(

−1

2
R

)

. (48)

The second line gives the standard Einstein-Hilbert term, in Planckian units
GN = 1,

8πe−1L = −1

2
R+ · · · , (49)

once we impose the D-gauge

i
(

FIX
I −XIF I

)

= 1 . (50)

Geometrically, imposing the D-gauge amounts to taking the quotient of the
scalar manifold M with respect to the (real) dilatations XI → |λ|XI . The
chiral U(1) transformations act isometrically on the quotient, and therefore we
can take a further quotient by imposing a U(1) gauge. The resulting manifold
M = M/C∗ is the scalar manifold of the Poincaré supergravity theory. It is
a Kähler manifold, whose Kähler potential can be expressed in terms of the
prepotential F (XI). The target manifolds of vector multiplets of in N = 2
Poincaré supergravity are called ‘(projective) special Kähler manifolds.’

8 Thus, at the two-derivative level, D just acts as a Lagrange multiplier. This
changes once higher-derivative terms are added, but we won’t discuss the impli-
cations here.
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To see how the geometry of M arises, consider the scalar sigma model
given by the first line of (48)

8πe−1Lsigma = i(DµFIDµX
I −DµX

IDµF I) (51)

= −NIJDµX
IDµX

J
, (52)

where
NIJ = 2ImFIJ = −i(FIJ − F IJ) , (53)

and

DµX
I = (∂µ + iAµ)XI , DµX

I
= (∂µ − iAµ)XI , (54)

DµFI = (∂µ + iAµ)FI , DµF I = (∂µ − iAµ)F I . (55)

We imposed the K-gauge bµ = 0, so that only the U(1) gauge field Aµ appears
in the covariant derivative. This gauged non-linear sigma model is the only
place where Aµ occurs in the Lagrangian. Aµ can be eliminated by solving its
equation of motion

Aµ =
1

2
(F I

↔
∂ µ X

I −X
I ↔
∂ µ FI) . (56)

Substituting this back, we obtain the non-linear sigma model

8πe−1Lsigma = −(NIJ + eK(NX)I(NX)J)∂µX
I∂µX

J

=: −MIJ∂µX
I∂µX

J
(57)

Here we suppress indices which are summed over:

(NX)I := NIJX
J , etc .

The scalar metric MIJ has two null directions

XIMIJ = 0 = MIJX
J
. (58)

This does not imply that that the kinetic term for the physical scalars is
degenerate, because MIJ operates on the ‘conformal scalars’ XI , which are
subject to dilatations and U(1)-transformations. We have already gauge-fixed
the dilatations by imposing the D-gauge. We could similarly impose a gauge
condition for the U(1) transformations, but it is more convenient to introduce
the gauge invariant scalars

ZI =
XI

X0
. (59)

One of these scalars is trivial, Z0 = 1, while the others zi = Zi, i = 1, . . . , n are
the physical scalars of the Poincaré supergravity theory. Using the transver-
sality relations (58) and the homogenity of the prepotential, we can rewrite
the Lagrangian in terms of the gauge-invariant scalars ZI :
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8πe−1Lsigma = −gIJ∂µZ
I∂µZ

J
,

where

gIJ = − NIJ

(ZNZ)
+

(NZ)I(NZ)J

(ZNZ)2
. (60)

Note that we have used the homogenity of the prepotential to rewrite it and
its derivatives in terms of the ZI :

F (X) = (X0)2F (Z) , FI(X) = X0FI(Z) , FIJ (X) = FIJ (Z) , etc.

One can show that gIJ has the following properties:

1. gIJ is degenerate along the complex direction ZI , or, in other words, along
the orbits of the C∗-action. We will call this direction the vertical direc-
tion. As we will see below the vertical directions correspond to unphysical
excitations.

2. gIJ is non-degenerate along the horizontal directions, which form the or-
thogonal complement of the horizontal direction with respect to the non-
degenerate metric NIJ . As we will see below, this implies a non-degenerate
kinetic term for the physical scalars.

3. gIJ is positive definite along the horizontal directions if and only ifNIJ has
signature (2, 2n) or (2n, 2). This corresponds to the case where NIJ has
opposite signature along the vertical and horizontal directions. We need
to impose this to have standard kinetic terms for the physical scalars.

4. gIJ can be obtained from a Kähler potential which in turn can be ex-
pressed by the prepotential of the underlying superconformal theory:

gIJ =
∂2K

∂ZI∂ZJ
, K = − log

(

i(FIZ
I − ZIF I)

)

.

Here it is understood that we only set Z0 = 1 at the end.

Since Z0 = 1, and, hence, ∂µZ
0 = 1, the Lagrangian only depends on in the

physical scalars zi = Zi, i = 1, . . . , n. Following conventions in the literature,
we distinguish holomorphic indices i and anti-holomorphic indices i when
using the physical scalars zi, despite that we do not make such a distinction

for XI , ZI , etc. Thus the complex conjugate of zi = Zi is denoted zi = Z
i
.

To express the Lagrangian in terms of the physical scalars, we define

F(z1, . . . , zn) := F (Z0, Z1, . . . , Zn) .

The Lagrangian only depends on the horizontal part of gIJ , which is denoted
gij , and which is given by

gij =
∂2K

∂zi∂zj
. (61)

with Kähler potential
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K = − log
(

2i(F − F) − i(zi − zi)(Fi + F i)
)

, (62)

where Fi = ∂F
∂zi . The Lagrangian takes the form

8πe−1Lsigma = −gij∂µz
i∂µzj .

Geometrically, we have performed a quotient of the rigid superconformal scalar
manifold M by the C∗-action and obtained the metric gij of the scalar man-

ifold M of the Poincaré supergravity theory in terms of special coordinates
zi. Metrics and manifolds obtained in this way are called ‘projective special
Kähler metrics’ and ‘projective special Kähler manifolds,’ respectively. One
can reformulate the theory in terms of general holomorphic coordinates, but
we will not persue this here. The special coordinates are physically distin-
guished, because they are the lowest components of Poincaré vector multi-
plets. They are also natural from the geometrical point of view, because they
can be defined in terms of intrinsic properties of M , as explained in more
details in appendix A.

Since the zi are not part of a symplectic vector, the action of the symplectic
transformations in the scalar sector is complicated. Therefore it is often more
convenient to work on the rigid scalar manifoldM using the ‘conformal scalars’
XI and the symplectic vector (XI , FI)

T . As we have seen, the superconformal
and the super Poincaré theory are gauge-equivalent, and we know how to go
back and forth between the two. The advantage of the superconformal picture
is that there is an equal number of gauge fields and scalars, which all sit in
vector multiplets. Therefore symplectic transformations act in a simple way
on the scalars.

Let us finally have a brief look at the higher derivative terms. We expand
the function F (XI , Â) in Â:

F (XI , Â) =
∞
∑

g=0

F (g)(XI)Âg . (63)

While F (0)(XI) = F (XI) is the prepotential, the functions F (g)(XI) with
g > 0 are coupling functions multiplying various higher derivative terms. The
most prominent class of such terms are

F (g)(XI)(−C−
µνρσ)2(T−

µν)2g−2 + c.c. , (64)

where −C−
µνρσ is the antiselfdual Weyl tensor and T−

µν is the antiselfdual auxil-
iary field in the Weyl multiplet. To lowest order in derivatives, this field equals
the anti-selfdual graviphoton field strength F−

µν . Therefore such terms are re-
lated to effective couplings between two gravitons and 2g − 2 graviphotons.

N = 2 supergravity coupled to vector multiplets (and hypermultiplets)
arises by dimensional reduction of type-II string theory on Calabi Yau three-
folds. Terms of the above form arise from loop diagrams where the external
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states are two gravitons and 2g− 2 graviphotons, while an infinite number of
massive strings states runs in the loop. It turns out that in the correspond-
ing string amplitudes only genus-g diagrams contribute, and that only BPS
states make a net contribution. Moreover these amplitudes are ‘topological’:
upon topological twisting of the world sheet theory the couplings F (g)(XI)
turn into the genus-g free energies (logarithms of the partition functions) of
the topolocial type-II string. This means that the couplings F (g)(XI) can be
computed, at least in principle.

2.7 Further reading and references

Besides original papers, my main sources for this lecture are the 1984 Tri-
este lecture notes of de Wit [11], and an (unpublished) Utrecht PhD thesis
[12]. Roughly the same material was covered in Chapter 3 of my review [13].
Readers who would like to study special geometry and N = 2 supergravity
in the superconformal approach in detail should definitely look into the orig-
inal papers, starting with [14, 15]. Electric-magnetic duality in the presence
of R2-corrections was investigated in [16, 17], and is reviewed in [13]. Special
geometry has been reformulated in terms of general (rather than special) holo-
morphic coordinates [18, 19, 20]. We will not discuss this approach in these
lectures and refer the reader to [21] for a review of N = 2 supergravity within
this framework. The intrinsic definition of special Kähler geometry in terms
of the special connection ∇ was proposed in [22]. The equivalent characterisa-
tion by a Kählerian Lagrangian immersion into a complex symplectic vector
space is described in [23]. Key references about the topological string and its
role in computing couplings in the effective action are [24] and [25]. See also
[10] for a review of the role of the topological string for black holes.

2.8 Problems

Problem 1 The Stückelberg mechanism for gravity.

Compute the variation of the Einstein-Hilbert action

S[g] = − 1

2κ2

∫

dnx
√−gR (65)

and the variation of the action

S̃[g, φ] = −
∫

dnx
√−g

(

φ2R − 4
n− 1

n− 2
∂µφ∂

µφ

)

(66)

under local dilatations

δgµν = −2Λ(x)gµν , δφ =
1

2
(n− 2)Λφ . (67)

You can use that
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δ
√−g = −nΛ√−g ,

gµνRµν = −2(n− 1)∇2Λ . (68)

You should find that (66) is invariant while (65) is not, as explained in Lecture
I. Convince yourself that you can obtain (65) from (66) by gauge fixing.

If you are not familiar with the Stückelberg mechanism, use what you have
learned to make the action of a free massive vector field invariant with respect
to local U(1) transformations.

Problem 2 Einstein-Hilbert action from conformal matter.

Show that the Einstein-Hilbert action (65) can be obtained from the confor-
mally invariant matter action

S = −
∫

d4xeφD2
cφ , (69)

where D2
c = DµD

µ is the conformal D’Alambert operator, by gauge fixing the
K- and D-transformations.

Instruction: the scalar field φ is neutral under K-transformations and trans-
forms with weight w = 1 under Dµ. Its first and second conformally covariant
derivatives are:

Dµφ = ∂µφ− bµφ , (70)

DµD
aφ = (∂µ − 2bµ)Daφ− ωab

µ Dbφ+ fa
µφ . (71)

The K-connection fa
µ appears in the second line because the D-connection bµ

transforms non-trivially under K. Note that bµ is the only field in the problem
which transforms non-trivially under K, and that D2φ is invariant under K.
The K-transformations can be gauged fixed by setting bµ = 0. (In fact, it is
clear that bµ will cancel out of (69). Why?) Use this together with the result
of Problem 1 to obtain the Einstein-Hilbert action (65) by gauge fixing (69).

3 Lecture II: Attractor Mechanism, Variational

Principle, and Black Hole Partition Functions

We are now ready to look at BPS black holes in N = 2 supergravity with
vector multiplets. First we review the concept of a BPS state.

3.1 BPS states

The N -extended four-dimensional supersymmetry algebra has the following
form:
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{QA
α , Q

+B

β̇
} = 2σµ

αβ̇
δABPµ ,

{QA
α , Q

B
β } = ǫαβZ

AB .

A,B, . . . = 1, . . . , N label the supercharges, which we have taken to be Weyl
spinors. The generators ZAB = −ZBA are central, i.e. they communte with
all generators of the Poincaré Lie superalgebra. On irreducible representa-
tions they are complex multiples of the unit operators. One can then skew-
diagonalise the antisymmetric constant matrix ZAB, and the skew eigenvalues
Z1, Z2, . . . are known as the central charges carried by the representation. The
eigenvalue of the Casimir operator PµPµ is −M2, where M is the mass. Using
the algebra one can derive the BPS inequality

M2 ≥ |Z1|2 ≥ |Z2|2 ≥ · · · ≥ 0 ,

where we have labeled the central charges according to the size of their ab-
solute values. Thus the mass is bounded from below by the central charges.
Whenever a bound on the mass is saturated, some of the supercharges oper-
ate trivially on the representation, and therefore the representation is smaller
than a generic massive representation. Such multiplets are called shortened
multiplets or BPS multiplets. The extreme case is reached when all bounds
are saturated, M = |Z1| = |Z2| = · · ·. In these representations half of the
supercharges operate trivially, and the representation has as many states as
a massless one. These multiplets are called short multiplets or 1

2 -BPS multi-
plets.

Here are some examples of N = 2 multiplets.

1. M > |Z|: these are generic massive multiplets. One example is the ‘long’
vector multiplet, which has 8 + 8 on-shell degrees of freedom.

2. M = |Z|: these are short or 1
2 -BPS multiplet. Examples are hypermulti-

plets and ‘short’ vector multiplets, which both have 4+4 on-shell degrees
of freedom. The short vector multiplet is the ‘Higgsed’ version of the
massless vector multiplet discussed earlier in these lectures.9 The long
vector multiplet combines the degrees of freedom of a hypermultiplet and
a short vector multiplet. This shows that one cannot expect that the num-
ber of BPS multiplets is conserved when deforming the theory (by moving
through its moduli space of vacua), because BPS multiplets can combine
into non-BPS multiplets. However the difference between the number of
hypermultiplets and short vector multiplets is preserved under multiplet
recombination and has the chance of being an ‘index’.

Let us give some examples of N = 4 multiplets.

1. M > |Z1| > |Z2|: these are generic massive multiplets. The number of
states is 28.10

9 This has 8 + 8 off-shell degrees of freedom and 4 + 4 on-shell degrees of freedom.
10 We are referring here to representations of the algebra generated by the super-

charges. Irreducible representations of the full Poincaré Lie superalgebra are ob-
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2. M = |Z1| > |Z2|: these are called intermediate or 1
4 -BPS multiplets. One

quarter of the supercharges operate trivially, and they have (a multiple
of) 26 states.

3. M = |Z1| = |Z2|: these are short or 1
2 -BPS multiplets, with (a multiple

of) 24 states. One example are short N = 4 vector multiplets which have
8 + 8 states, as many as a massless N = 4 vector multiplet. Short or
massless multiplets have the same field content as an large N = 2 vector
multiplet, or, equivalently, as a short or massless N = 2 vector multiplet
plus a hypermultiplet.

Finally, there can of course also be singlets under the supersymmetry alge-
bra, states which are completely invariant. Such states are maximally super-
symmetric and can therefore be interpreted as supersymmetric ground states.

Further reading and references

This section summarises basic facts about the representation theory of Poincaré
Lie superalgebras, which can be found in textbooks on supersymmetry, i.p. in
Chapter II of [26] and Chapter 8 of [27].

3.2 BPS solitons and BPS black holes

One class of BPS states are states in the Hilbert space which sit in BPS rep-
resentations. They correspond to fundamental fields in the Lagrangian, which
transform in BPS representations of the supersymmetry algebra. Another class
of BPS states is provided by non-trivial static solutions of the field equations,
which have finite mass and are non-singular. Such objects are called solitons
and interpreted as extended particle-like collective excitations of the theory.

Because of the finite mass condition they have to approach Minkowski
space at infinity11 and can be classified according to their transformation
under the asymptotic Poincaré Lie superalgebra generated by the Noether
charges. If this representation is BPS, the soliton is called a BPS soliton.
The corresponding field configuration admits Killing spinors, i.e. there are
choices of the supersymmetry transformation parameters ǫ(x) such that the
field configuration is invariant:

δǫ(x)Φ(x)
∣

∣

Φ0(x)
= 0 .

Here Φ is a collective notation for all fundamental fields, and Φ0 is the invari-
ant field configuration. The maximal number of linearly independent Killing
spinors equals the number N of supercharges. Solutions with N Killing spinors

tained by replacing the lowest weight state by any irreducible representation of
the little group. Their dimension is therefore a multiple of 28.

11 We only consider theories where Minkowski space is a superysmmetric ground
state.
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are completely invariant under supersymmetry and qualify as supersymmet-
ric ground states.12 Generic solitonic solutions of the field equations do not
have Killing spinors and correspond to generic massive representations. Soli-
tonic solutions with N

n Killing spinors are invariant under 1
n of the asymptotic

symmetry algebra and correspond to 1
n -BPS representations.13

The particular type of solitons we are interested in are black hole solutions
of N = 2 supergravity. Black holes are asymptotically flat, have a finite mass,
and are ‘regular’ in the sense that they do not have naked singularities. For
static four-dimensional black holes in Einstein-Maxwell type theories with
matter, the BPS bound coincides with the extremality bound. Therefore BPS
black holes are extremal black holes, with vanishing Hawking temperature.
Since this makes them stable against decay through Hawking radiation, the
interpretation as a particle-like solitonic excitation appears to be reasonable.

We will restrict ourselves in the following to static, spherically symmet-
ric 1

2 -BPS solutions of N = 2 supergravity with n vector multiplets. Such
solutions describe single black holes.14 As a first step, let us ignore higher
derivative terms and work with a prepotential of the form F (X).

In an asymptotically flat space-time, we can define electric and magnetic
charges by integrating the flux of the gauge fields over an asymptotic two-
sphere at infinity:

(

pI

qI

)

=

( ∮

F I
µνd

2Σµν
∮

GI|µνd
2Σµν

)

. (72)

By construction, the charges form a symplectic vector (pI , qI)
T . The central

charge under the asymptotic Poincaré Lie superalgebra is given by the charge
associated with the graviphoton:

Z =

∮

F−
µνd

2Σµν =

∮

(F I−
µν FI −G−

I|µνX
I)d2Σµν = pIFI(∞) − qIX

I(∞) .

(73)
This is manifestly invariant under symplectic transformations. By common
abuse of terminology, the symplectic function

Z = pIFI − qIX
I

is also called the central charge, despite that it is actually a function of the
scalars which are in turn functions on space-time.

A static, spherically symmetric metric can be brought to the following
form:15

12 Minkowski space is a trivial example. Here all Killing spinors are constant (in
linear coordinates).

13 More precisely, the collective modes generated by the broken superysmmetries
fall into such representations.

14 There are also static multi-black hole solutions, which we will not discuss here.
15 The solution can be constructed without fixing the coordinate system, but we

present it in this way for pedagogical reasons.
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ds2 = −e2g(r)dt2 + e2f(r)(dr2 + r2dΩ2) , (74)

with two arbitrary functions f(r), g(r) of the radial variable r. We also im-
pose that the solution has four Killing spinors. In this case one can show that
g(r) = −f(r). For the gauge fields and scalars we impose the same symmetry
requirements as for the metric. Therefore each gauge field has only two inde-
pendent components, one electric and one magnetic, which are functions of
r:

F I
tr = F I

E(r) , F I
θφ = F I

M (r) .

Here t, r, θ, φ are tangent space indices.16

The physical scalar fields zi can be functions of the radial variable r,
zi = zi(r). In order to maintain symplectic covariance, we work in the gauge-
equivalent superconformal theory and use the conformal scalars XI . It turns
out to be convenient to rescale the scalars and to define

Y I(r) = Z(r)XI(r) ,

where Z(r) is the ‘central charge’. Note that

|Z|2 = ZZ = Z(pIFI(X) − qIX
I) = pIFI(Y ) − qIY

I ,

where we used that FI is homogenous of degree one.
In the following we will focus on the near-horizon limit. In the isotropic

coordinates used in (74), the horizon is located at r = 0. The scalar fields show
a very particular behaviour in this limit: irrespective of their ‘initial values’
zi(∞) at spatial infinity, they approach fixed point values zi

∗ = zi(pI , qI) at the
horizon. This behaviour was discovered by Ferrara, Kallosh and Strominger
and is called the black hole attractor mechanism. The fixed point values are
determined by the attractor equations, which can be brought to the following,
manifestly symplectic form:

(

Y I − Y
I

FI − F I

)

∗
= i

(

pI

qI

)

.

Here and in the following ‘∗’ indicates the evaluation of a quantity on the
horizon. Depending on the explicit form of the prepotential it may or may not
be possible to solve this set of algebraic equations to obtain explicit formulae
for the scalars as functions of the charges. The remaining data of the near-
horizon solution are the metric and the gauge fields. The near-horizon metric
takes the form

ds2 = − r2

|Z∗|2
dt2 +

|Z∗|2
r2

dr2 + |Z∗|2dΩ2
(2) ,

16 If we use world indices, F I
M depends on the angular variables. This dependence is

trivial in the sense that it disappears when the tensor components are evaluated
in an orthonormal frame.
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where Z∗ is the horizon value of the central charge,

|Z∗|2 =
(

pIFI(Y ) − qIY
I
)

∗ .

The near horizon geometry is therefore AdS2 × S2, with curvature radius
R = |Z∗|2. This is a maximally symmetric space, or more precisely the prod-
uct of two maximally symmetric spaces. The gauge fields become covariantly
constant in the near horizon limits, i.e., they become fluxes whose strength is
characterized by the charges (pI , qI). In suitable coordinates17 one simply has

F I
E = qI , F I

M = pI .

AdS2 ×S2, supported by fluxes and constant scalars is a generalisation of the
Bertotti-Robinson solution of Einstein-Maxwell theory.

This generalised Bertotti-Robinson solution is not only the near horizon
solution of BPS black holes, but also an interesting solution in its own right. It
can be shown that it is the most general static fully supersymmetric solution
(8 Killing spinors) of N = 2 supergravity with vector multiplets. Note that the
attractor equations follow from imposing full supersymmetry, or, equivalently,
the field equations. Thus in a Bertotti-Robinson background the scalars cannot
take arbitrary values. This is easily understood by interpreting the solution
as a flux compactification of four-dimensional supergravity on S2. Since S2

is not Ricci flat, flux must be switched on to solve the field equations. The
dimensionally reduced theory is a gauged supergravity theory with a non-
trivial scalar potential with a non-degenerate AdS2 ground state and fixed
moduli.

The BPS black hole solution, which has only four Killing spinor, interpo-
lates between two supersymmetric ground states with eight Killing spinors.
At infinity it approaches Minkowski space, and in this limit the values of the
scalars are arbitrary, because the four-dimensional supergravity theory has
no scalar potential and a moduli space of vacua, parametrised by the scalars.
At the horizon we approach another supersymmetric ground state, but here
the scalars have to flow to the fixed point values dictated by the attractor
equations. The black hole solution can be viewed as a dynamical system for
the radial evolution of the scalars18 from arbitrary initial values at r = ∞ to
fixed point values at r = 0.

For completeness we mention that not all flows correspond to regular black
holes. For non-generic choices of the charges (typically when switching off
sufficiently many charges) the scalar fields can run off to the boundary of
moduli space. In these cases |Z∗|2 becomes zero or infinity, so that there is
no black hole horizon. The original derivation of the attractor equations was

17 Essentially, r → 1
r

combined with a rescaling of t. In these coordinates it becomes
manifest that the metric is conformally flat.

18 The other non-trivial data, namely metric and gauge fields can be expressed in
terms of the scalars.
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in fact motivated by this observation: if one imposes that the scalars do not
run off to infinity at the horizon, this implies that the solution must approach
a supersymmetric ground state, which in turn implies that the geometry is
Bertotti-Robinson and that the scalars take fixed point values. In this context
the attractor equations were called stabilisation equations, because they forbid
that the moduli run off.

There can also be more complicated phenomena if the flow crosses, at
finite r, a line of marginal stability, where the BPS spectrum changes, or if it
runs into a boundary point or other special point in the moduli space. We will
concentrate on regular black hole solutions here, and make some comments
on so-called small black holes later.

The attractor behaviour of the scalars is important for the concistency of
black hole thermodynamics. The laws of black hole mechanics, combined with
the Hawking effect, suggest that a black hole has a macroscopic (thermody-
namical) entropy proportional to its area A:

Smacro =
A

4
.

The corresponding microscopic (statistical) entropy is given by the state de-
generacy19

Smicro = log #{Microstates corresponding to given macrostate} .

Both entropies should be equal, at least asymptotically in the semi-classical
limit (which, for non-rotating black holes, is the limit of large mass and
charges). Therefore it should not be possible to change the area continuously.
This is precisely what the attractor mechanism guarantees.

From the near horizon geometry we can read off that the area of the black
hole is A = 4π|Z∗|2. The entropy is given by the following symplectic function
of the charges:

Smacro =
A

4
= π|Z|2∗ = π|pIFI(X) − qIX

I |2∗ = π
(

pIFI(Y ) − qIY
I
)

∗ .

Further reading and references

For a general introduction to solitons (and instantons), see for example the
book by Rajamaran [28]. The idea to interprete extremal black holes as super-
symmetric solitons is due to Gibbons [29] (see also [30]). There are many good
reviews on BPS solitons in string theory, in particular [31] and [32]. The black
hole attractor mechanism was discovered by Ferrrara, Kallosh and Strominger
[33]. This section is heavily based on a paper written jointly with Cardoso,
de Wit and Käppeli [6], where we proved that the attractor mechanism is not

19 The macrostate of a black hole is given by its mass, angular momentum and
conserved charges.
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only sufficient, but also necessary for 1
2 -BPS solution, and that the Bertotti-

Robinson solution is the only static solution preserving full supersymmetry.
We refer to Sen’s recent review [9] for the discussion of non-supersymmetric
attractors.

We mentioned that not all attractor flows correspond to regular black holes
solutions. One phenomenon which can occur is that the solution becomes
singular before the horizon is reached (i.e. the solution becomes singular at
finite values of r.) In string theory such singularities can usually be explained
by a breakdown of the effective field theory. In particular, for domain walls
and black holes in five-dimensional string compactifications it has been shown
that one always reaches an internal boundary of moduli space before the
singularity forms [43, 44]. When the properties of the internal boundary are
taken into account, the solutions becomes regular.20 In four dimensions the
variety of phenomena appears to be more complex. There are so-called split
attractor flows, which correspond to situations where the flow crosses a line
of marginal stability [45]. This has the effect that solutions which look like
single-centered black hole solutions when viewed form infinity, turn out to be
complicated composite objects when viewed from nearby. The role of lines of
marginal stability has been studied recently in great detail in [71].

3.3 The black hole variational principle

Almost immediately after the black hole attractor mechanism was discovered,
it was observed that the attractor equations follow from a variational prin-
ciple. More recently it has been realized that this variational principle plays
an important role in black hole thermodynamics and can be used to relate
macrophysics (black hole solutions of effective supergravity) to microphysics
(string theory, and in particular BPS partition functions and the topological
string) in an unexpectedly direct way.

To explain the variational principle we start by defining the ‘entropy func-
tion’

Σ(Y, Y , p, q) := F(Y, Y ) − qI(Y
I + Y

I
) + pI(FI + F I) ,

where F (Y, Y ) is the ‘free energy’

F(Y, Y ) = −i(FIY
I − Y IF I) .

The terminology will become clear later. If we extremize the entropy function
with respect to the scalars, the equations characterising critical points of Σ
are precisely the attractor equations:

∂Σ

∂Y I
= 0 =

∂Σ

∂Y
I
⇐⇒

(

Y I − Y
I

FI − F I

)

∗
= i

(

pI

qI

)

.

20 At internal boundaries one typically encounters additional massless states, and
this changes the flow corresponding to the solution.
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And if we evaluate the entropy function at its critial point, we obtain the
entropy, up to a conventional factor:

πΣ∗ = Smacro(p, q) .

The geometrical meaning of the entropy function becomes clear if we use the
special affine coordinates

xI = ReY I ,

yI = ReFI(Y ) , (75)

instead of the special coordinates Y I = xI + iuI . The special affine coordi-
nates (qa) = (xI , yI)

T have the advantage that they form a symplectic vector.
In special affine coordinates, the special Kähler metric can be expressed in
terms of a real Kähler potential H(xI , yI), called the Hesse potential. The
Hesse potential is related to the prepotential by a Legendre transform, which
replaces uI = ImY I by yI = Re(Y I) as an independent field:

H(xI , yI) = 2
(

ImF (xI + iuI(x, y)) − yIuI(x, y)
)

,

where

yI =
∂ImF

∂uI
.

If we express the entropy function in terms of special affine coordinates, we
find:

Σ(x, y, q, p) = 2H(x, y) − 2qIx
I + 2pIyI ,

where
2H(x, y) = F(Y, Y ) = −i(FIY

I − Y IF I) .

Thus, up to a factor, the Hesse potential is the free energy. The critical points
of the entropy function satisfy the black hole attractor equations, which in
special affine coordinates take the following form:

∂H

∂xI
= qI ,

∂H

∂yI
= −pI .

The black hole entropy is obtained by substituting the critical values into the
entropy function:

Smacro(p, q) = 2π

(

H − xI ∂H

∂xI
− yI

∂H

∂yI

)

∗
.

This shows that, up to a factor, the macroscopic black hole entropy is Legendre
transform of the Hesse potential. Note that at the horizon the scalar fields
are determined by the charges, so that the charges provide coordinates on
the scalar manifold. More precisely, the charges are not quite coordinates,
because they can only take discrete values, but by the attractor equations
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they are proportional to continuous quantities which provide coordinates. The
attractor equations can be rewritten in the form

(

2uI

2vI

)

=

(

pI

qI

)

, (76)

where uI = ImY I and vI = ImFI . It can be shown that (uI , vI) is another
system of special affine coordinates. Thus the attractor equations specify a
point on the scalar manifold in terms of the coordinates (uI , vI). The extrem-
isation of the entropy function can be viewed as a Legendre transform from
one set of special affine coordinates to another.

The special affine coordinates (xI , yI) also have a direct relation to the
gauge fields, which even holds away from the horizon. By the gauge field
equations of motion in a static (or stationary) background the scalars (xI , yI)
are proportional to the electrostatic and magnetostatic potentials (φI , χI):

(

2xI

2yI

)

=

(

φI

χI

)

.

Thermodynamically, the electrostatic and magnetostatic potentials are the
chemical potentials associated with the electric and magnetic charges in a
grand canonical ensemble.

Further reading and references

The black hole variational principle described in this section was formulated
by Behrndt et al in [34]. The reformulation in terms of real coordinates is
relatively recent [35]. The relation of the black hole variational principle to
the work of Ooguri, Strominger and Vafa [1] will be explained in the following
sections. Sen’s entropy function (see [9] for a review and references), which can
be used to establish the attractor mechanism for general extremal black holes,
irrespective of supersymmetry and details of the Lagrangian, can be viewed
as a generalisation of the entropy function discussed here, in the sense that
the two entropy functions differ by terms which vanish in BPS backgrounds
[36].21

For completeness, we need to mention that there is yet another ‘variational’
approach to the black hole entropy. The concept of a black hole effective po-
tential was already introduced in [46]. The idea is to use the symmetries of
static, spherically symmetric black holes to reduce the dynamics to the one
of particle moving in an effective potential. This does not rely on supersym-
metry and has become, besides Sen’s entropy function, the second approach
for studying the attractor mechanism for non-BPS black holes [47]. The two

21 To be precise, Sen’s formalism is based on an entropy function which is based on
the ‘mixed’ rather than the ‘canonical’ ensemble. This is explained in the next
section.
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approaches are not completely unrelated. Dimensional reduction along Killing
vectors plays a role in both of them, since Sen’s entropy function is obtained
by dimenensionally reducing the action, evaluated on the horizon, along the
S2 factor of the horizon geometry AdS2 × S2, and then taking a Legendre
transform.22

3.4 Canonical, microcanonical and mixed ensemble

For a grand canonical ensemble, the first law of thermodynamics takes the
following form:

δE = TδS − pδV + µiδNi .

Here E is the energy, T the temperatue, S the entropy, p the pressure, V
the volume, µi the chemical potential and Ni the particle number of the i-th
species of particles. In relativistic systems the particle number is replaced by
the conserved charge under a gauge symmetry. For a general stationary black
hole, the first law of black hole mechanics has the same structure:

δM =
κS

2π
δA+ ωδJ + φIδqI + χIδp

I .

Here M is the mass, κS the surface gravity, A the area, ω the rotation velocity,
J the angular momentum, and φI , χI , p

I , qI are the electric and magnetic
potentials and charges. The Hawking effect and the generalized second law of
thermodynamics suggest to take the formal analogy between thermodynamics
and black hole physics seriously. In particular, the Hawking temperature of a
black hole is T = κS

2π , which fixes the relation between area and entropy to be

S = A
4 .

In thermodynamics we consider other ensembles as well. The canonical
ensemble is obtained by freezing the particle number while the microcanonical
ensemble is obtained by freezing the energy as well. In general, the result for
a thermodynamical quantity will depend on the ensemble one uses. However,
all ensembles give the same result in the thermodynamical limit.

We will only discuss non-rotating black holes, ω = 0. The analogous en-
semble in thermodynamics does not seem to have a particular name, but,
by common abuse of terminology, we will call this the canonical ensemble.
Moreover, we only consider extremal black holes, with zero temperature. For
κS = 0 the first law does not give directly a relation between mass and en-
tropy, but we can interprete extremal black holes as limits of non-extremal
ones. The independent variables in the canonical ensemble are the potentials
(φI , χI) ∝ (xI , yI). This ensemble corresponds to a situation where the electric
and magnetic charge is allowed to fluctuate, while the corresponding chemi-
cal potentials are prescribed. The ensemble obtained by fixing the electric and

22 This is a partial Legendre transform, because the mixed ensemble is used. See
the next section for explanation.
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magnetic charges is called the microcanonical ensemble. Here the independent
variables are (pI , qI) ∝ (uI , vI).

At the microscopic (‘statistical mechanics’) level, all three ensembles are
characterised by a corresponding partition function. The microcanonical par-
tition function is simply given by the microscopic state degeneracy:

Zmicro(p, q) = d(p, q) ,

where d(p, q) is the number of microstates of a BPS black hole with charges
pI , qI . The microscopic (statistical) entropy of the black hole is

Smicro(p, q) = log d(p, q) .

The partition function of the canonical ensemble is obtained by a formal
discrete Laplace transform:

Zcan(φ, χ) =
∑

p,q

d(p, q)eπ(qφ−pχ) . (77)

This relation can be inverted (formally):

d(p, q) =

∮

dφdχZcan(φ, χ)e−π(qφ−pφ) .

These partition functions are supposed to provide the microscopic descrip-
tion of BPS black holes. The macroscopic description is provided by black hole
solutions of the effective supergravity theory, through the attractor equations,
the macroscopic entropy and the entropy function. The variational principle
suggests that the Hesse potential should be interpreted as the BPS black
hole free energy with respect to the microscopic ensemble. This leads to the
conjecture

e2πH(φ,χ) ≈ Zcan =
∑

p,q

d(p, q)eπ[qIφI−pIχI ] , (78)

or, using special coordinates instead of special affine coordinates:

eπF(Y,Y ) ≈ Zcan =
∑

p,q

d(p, q)eπ[qI(Y I+Y
I
)−pI(FI+F I )] . (79)

Here ‘≈’ means asymptotic equality in the limit of large charges, which is
the semiclassical and thermodynamic limit. Ideally, one would hope to find
an exact relation between macroscopic and microscopic quantities, but so far
there is only good evidence for a weaker, asymptotic relation. We can formally
invert (78), (79) to obtain a prediction for the state degeneracy in terms of
the macroscopically defined free energy:

d(p, q) ≈
∫

dxdyeπΣ(x,y) ≈
∫

dY dY | det[ImFKL]|eπΣ(Y,Y )
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Observe that this formula is manifestly invariant under symplectic transfor-
mations, because

dxdy :=
∏

I,J

dxIdyJ = (dxI ∧ dyI)
top

is the natural volume form on the scalar manifold (the top exterior power of
the symplectic form dxI ∧ dyI), and Σ(x, y) is a symplectic function.23 Note
that there is a non-trivial Jacobian if we go to special coordinates.

By the variational principle, the saddle point value of πΣ is the macro-
scopic entropy. Therefore it is obvious that microscopic and macroscopic en-
tropy agree to leading order in a saddle point evaluation of the integral:

eSmicro(p,q) = d(p, q) ≈ eSmacro(p,q)(1+···) .

However, in general the microscopic entropy (defined through state counting)
and the macroscopic entropy (defined geometrically through the area law)
will be different. The reason is that the macroscopic entropy is the Legendre
transform of the canonical free energy, while the microcanonical and canonical
partition functions are related by the Laplace transform (77). The Legendre
tranform between canonical free energy and macroscopic entropy provides the
leading order approximation of this Laplace transform. In other words, the
macroscopic entropy is not computed in the microcanonical ensemble, and we
can only expect it to agree with the microscopic entropy in the thermody-
namical limit.

The mixed ensemble

We will now consider the so-called mixed ensemble, where the independent
variables are pI and φI . This corresponds to a situation where the magnetic
charge is fixed while the electric charge fluctuates and the electrical potential
is prescribed. This ensemble has the disadvantage that the independent vari-
ables do not form a symplectic vector, which obscures symplectic covariance.
However, the mixed ensemble is natural in the functional integral framework,
and one obtains a direct relation between black hole thermodynamics and the
topological string.

The partition function of the mixed ensemble is obtained from the micro-
canonical partition function through a Laplace transform with respect to half
of the variables:

Zmix(p, φ) =
∑

q

d(p, q)eπqφ ,

d(p, q) =

∮

Zmix(p, φ)e−πqφ .

23 Observe that the relevant scalar manifold is M rather than M .
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Let us discuss this ensemble from the macroscopic point of view. In our
previous treatment of the variational principle, we extremized the entropy
function with respect to all scalar fields/potentials at once. This extremisation
process can be broken up into several steps. The ‘magnetic’ attractor equations

Y I − Y
I

= ipI

fix the imaginary parts of the Y I :

Y I =
1

2
(φI + ipI) .

If we substitute this into Σ we obtain a reduced entropy function:

Σ(φ, p, q)mix = Fmix(p, φ) − qIφ
I ,

where
Fmix(p, φ) = 4ImF (Y, Y )

is interpreted as the free energy in the mixed ensemble. Σmix can be inter-
preted as the entropy function in the mixed ensemble, because there is a new,
reduced variational principle in the following sense: if we extremize Σmix with
respect to the remaining scalars φI = 1

2ReY I , then we obtain the remaining
‘electric’ attractor equations:

FI − F I = qI .

If this is substituted back into the mixed entropy function, we obtain the
macroscopic entropy:

Smacro(p, q) = πΣmix,∗ .

The extremisation of the mixed entropy function defines a Legendre transform
between the mixed free energy and the entropy. Note that the mixed free
energy is the imaginary part of the prepotential.

The mixed free energy should be related to the mixed partition function.
One conceivable relation is the original ‘OSV-conjecture’

eπFmix(p,φ) ≈ Zmix(p, φ) . (80)

To leading order in a saddle point approximation the variational principle
guarantees that macroscopic and microscopic entropy agree. But one disad-
vantage of the mixed ensemble is that the independent variables pI , φI do not
form a symplectic vector. Therefore symplectic covariance is obscure.

Let us then compare (80) to the symplectically covariant conjecture (79)
involving the canonical ensemble. Since the variational principle can be broken
up into two steps, we can perform a partial saddle point approximation of (79)
with respect to the imaginary parts of the scalars and obtain

d(p, q) ≈
∫

dφ
√

| det ImFIJ |eπ[Fmix(p,φ)−qφ] .
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This can be formally inverted with the result:

√
∆−eπFmix(p,φ) ≈ Zmix =

∑

q

d(p, q)eπqIφI

. (81)

Thus by imposing symplectic covariance we predict the presence of a non-
trivial ‘measure factor’ in the mixed ensemble.

Further reading and references

The idea to interprete the (partial) Legendre transform of the black hole en-
tropy as a free energy (in the mixed ensemble) is due to Ooguri, Strominger
and Vafa [1] and has triggered an immense number of publications which elab-
orate on their observation. Our presentation, which is based on [36], uses the
variational principle of [34] to reformulate the ‘OSV-conjecture’ in a mani-
festly symplectically covariant way.

3.5 R
2-corrections

Non-trivial tests of conjectures about state counting and partition functions
depend on the ability to compute subleading corrections to the macroscopic
entropy. Such corrections are due to quantum and stringy corrections to the
effective action, which manifest themselves as higher derivative terms. Within
the superconformal calculus one class of such terms can be handled by giving
the prepotential an explicit dependence on the lowest component of the Weyl
multiplet. Incidentially, in type-II Calabi-Yau compactifications the same class
of terms is controlled by the topolocially twisted world sheet theory. Therefore
these higher derivative couplings can be computed, at least in principle.

It is possible to find the most general stationary 1
2 -BPS solution for a

general prepotential of the form F (XI , Â), at least iteratively. Here we re-
strict ourselves to the near-horizon limit of static, spherically symmetric
single black hole solutions. It is convenient to introduce rescaled variables

Y I = ZXI and Υ = Z
2
Â, and by homogenity we get a rescaled prepotential

F (Y I , Υ ) = Z
2
F (XI , Â). The near horizon solution is completely determined

by the generalized attractor equations

(

Y I − Y
I

FI(Y, Υ ) − F I(Y , Υ )

)

∗
= i

(

pI

qI

)

, Υ∗ = −64 . (82)

This is symplectically covariant, because (Y I , FI(Y, Υ ))T is a symplectic vec-
tor. The variable Υ is invariant and takes a particular numerical value at the
horizon. The geometry is still AdS2 × S2, but the radius and therefore the
area is modified by the higher derivative corrections:

A = 4π|pIFI(X, Â) − qIX
I |2∗ = 4π

(

pIFI(Y, Υ ) − qIY
I
)

∗ .
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But this is not the only modification of the entropy, because in theories with
higher curvature terms the entropy is not determined by the area law. Wald
has shown by a careful derivation of the first law of black hole mechanics for
generally covariant Lagrangians (admitting higher curvature terms) that the
definition of the entropy must be modified, if the first law is still to be valid.
Entropy, mass, angular momentum and charges can be defined as surface
charges, which are the Noether charges related to the Killing vectors of the
space-time. The entropy is given by the integral of a Noether two-form over
the event horizon:

S =

∮

Q .

The symmetry associated with this Noether charge is the one generated by
the so-called horizontal Killing vector field. For static black holes this is the
timelike Killing vector field associated with the time-independence of the back-
ground, while for rotating black holes it is a linear combination of the timelike
and the axial Killing vector field. In practice the Noether charge can be ex-
pressed in terms of variational derivatives of the Lagrangian with respect to
the Riemann tensor:

S =

∮

δL
δRµνρσ

εµνερσ

√
hd2Ω2 .

Here εµν is the normal bivector, normalized to εµνε
µν = −2 and

√
hd2Ω is

the induced volume element of the horizon. If one evaluates this formula for
N = 2 supergravity with prepotential F (Y I , Υ ), the result is

Smacro = π

(

(pIFI(Y, Υ ) − qIY
I) − 256 Im

(

∂F

∂Υ

))

∗
. (83)

This is the sum of two symplectic functions. The first term corresponds to
the area law while the second is an explicit modification. This modification is
crucial for the matching of subleading contributions to the macroscopic and
microscopic entropy in string theory.

R2-corrections can be incorporated into the variational principle in a
straightforward way. One defines a generalized Hesse potential as the Legendre
transform of (two times the imaginary part of) the prepotential F (Y I , Υ ):

H(x, y, Υ, Υ ) = 2
(

ImF (Y I , Υ ) − yIu
I
)

,

where

yI = ReFI(Y
I , Υ ) =

∂ImF (Y I , Υ )

∂uI
.

The canonical free energy is

F(Y, Y ) = 2H(x, y) = −i(Y I
FI − Y IF I) − 2i(ΥFΥ − ΥFΥ ) .
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Here and in the following we adopt a notation where we usually surpress the
dependence on Υ , unless where we want to emphasize that R2-corrections
have been taken into account. The entropy function takes the form

Σ(x, y, p, q) = 2(H − qx+ py) ,

where H is now the generalized Hesse potential. It is straightforward to show
that the extremization of this entropy function gives the attractor equations
(82), and that its critical values gives the entropy (83): Smacro = πΣ∗.

Further reading and references

R2-corrections to BPS solutions of N = 2 supergravity with vector (and
hyper) multiplets were first obtained in [5] in the near horizon limit. The
comparision with subleading corrections to state counting in N = 2 string
compactifications [3, 4] showed that is crucial to use Wald’s modified defini-
tion of the black hole entropy [7]. This approach assumes a Lagrangian which
is covariant under diffeomorphisms, and identifies the correct definition of the
entropy by imposing the validity of the first law of black hole mechanics. The
entropy is found to be a Noether surface charge, which can be expressed in
terms of variational derivatives of the Lagrangian [8]. The full derivation is
quite intricate, and while no concise complete review is available, some ele-
ments of it have been reformulated in [37] from a more conventional gauge
theory perspective. Otherwise, see [13] for a more detailed account on Wald’s
entropy formula and its merits in string theory. Sen’s entropy function for-
malism [9] is based on Wald’s definition of black hole entropy.

The general class of stationary 1
2 -BPS solutions inN = 2 supergravity with

R2-terms was described in [6]. The generalisation of the black hole variational
principle to include R2 terms was found in [35].

3.6 Non-holomorphic corrections

There is a further type of corrections which need to be taken into account,
the so-called non-holomorphic corrections. One way of deducing that such
corrections must be present is to investigate the transformation properties of
the entropy under string dualities, specifically under S-duality and T-duality.
We will discuss an instructive example in section 4.3. The consequence is
that the entropy and the attractor equations can only be duality invariant, if
there are additional contributions to the entropy and to the symplectic vec-
tor (Y I , FI(Y, Υ )), which cannot be derived from a holomorphic prepotential
F (Y, Υ ). This is related to a generic feature of string-effective actions and their
couplings. One has to distinguish between two types of effective actions. The
Wilsonian action is always local and the corresponding Wilsonian couplings
are holomorphic functions of the moduli (in supersymmetric theories). The
other type of effective action is the generating functional of the scattering
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amplitudes. If massless modes are present this is in general non-local, and
the associated physical couplings have a more complicated, non-holomorphic
dependence on the moduli. Both types of actions differ by threshold correc-
tions associated with the massless modes, which can be computed by field
theoretic methods. The supergravity actions which we have constructed and
discussed so far are based on a holomorphic prepotential and have to be in-
terpreted as Wilsonian actions. Their couplings are holomorphic, and they
are different from the physical couplings, which can be extracted from string
scattering amplitudes. The Wilsonian couplings are not necessarily invariant
under symmetries, such as string dualities, wheras the physical couplings are.
The same distinction between holomorphic, but non-covariant quantities and
non-holomorphic, but covariant quanities occurs for the topological string,
which is the tool used to compute the couplings. Here the non-holomorphicity
arises from the integration over the world-sheet moduli space, and it is en-
coded in the holomorphic anomaly equations.

In the following we will describe a general formalism for incorporating
non-holomorphic corrections to the attractor equations and the entropy. This
formalism is model-independent (as such), but we should stress that it is in-
spired by the example which we are going to discuss in section 4.3. While it
has been shown to work in N = 4 compacatifications, it is not clear a priori
whether the non-holomorphic modifications that are introduced are general
enough to cover genericN = 2 compactifications. Moreover, it should be inter-
esting to investigate the relation between this formalism and the holomorphic
anomaly equation of the topological string in more detail.

The basic assumption underlying the formalism is that all non-holomorphic
modifications are captured by a single real-valued function Ω(Y, Y , Υ, Υ ),
which is required to be (graded) homogenous of degree two:

Ω(λY I , λY
I
, λ2Υ, λ

2
Υ ) = |λ|2Ω(Y, Y , Υ, Υ ) .

We then define a generalized Hesse potential by taking the Legendre transform
of ImF +Ω:

Ĥ(x, y) = 2
(

ImF (x+ iu, Υ ) +Ω(x, y, Υ, Υ ) − qx+ pŷ
)

, (84)

where
ŷI = yI + i(ΩI −ΩI) . (85)

Clearly, this modfication is only non-trivial if Ω is not a harmonic function,
because otherwise it could be absorbed by redefining the holomorphic function
F .

We now take the generalized Hesse potential as our canonical free energy
and define the entropy function

Σ = 2(Ĥ − qx+ pŷ) . (86)

By variation of the entropy function with respect to x, ŷ we obtain the attrac-
tor equations
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∂Ĥ

∂x
= q ,

∂Ĥ

∂ŷ
= −p , (87)

and by substituting the critical values back into the entropy function we obtain
the macroscopic black hole entropy

Smacro = πΣ∗ = 2π

(

Ĥ − x
∂Ĥ

∂x
− ŷ

∂Ĥ

∂ŷ

)

∗
. (88)

In practice, one works with special coordinates rather than special affine
coordinates, because explicit expressions for subleading contributions to the
couplings are only known in terms of complex coordinates. In special coordi-
nates the entropy function has the following form:

Σ(Y, Y , p, q) = F(Y, Y , Υ, Υ ) − qI(Y
I + Y

I
) + pI(FI + F I + 2i(ΩI −ΩI)) ,

with canonical free energy

F(Y, Y , Υ, Υ ) = −i(Y I
FI−Y IF I)−2i(ΥFΥ−ΥFΥ )+4Ω−2(Y I−Y I

)(ΩI−ΩI) .

The attractor equations are

(

Y I − Y
I

FI − F I + 2i(ΩI +ΩI)

)

=

(

pI

qI

)

,

and the entropy is

Smacro = π
(

|Z|2 − 256Im(FΥ + iΩΥ )
)

∗ . (89)

By inspection, the net effect of the non-holomorphic corrections is to replace
F → F + 2iΩ in the entropy function and in the attractor equations, but
F → F + iΩ in the definition of the Hesse potential and in the entropy.24

As before we can impose half of the attractor equations and go from the
canonical to the mixed ensemble. The modified mixed free energy is found to
be

Fmix = 4(ImF + Ω) .

Since the non-holomorphic modifications are enforced by duality invari-
ance, they are relevant for the conjectures about the relation between macro-
scopic quantities (free energy and macroscopic entropy) and microscopic quan-
tities (partition functions and microscopic entropy).

Our basic conjecture is that the canonical free energy, including non-
holomorphic modifications, is related to the canonical partition function by:

24 As an exercise, the curious reader is encouraged to verify this statement by him-
self, starting from the definition of the generalized Hesse potential and re-deriving
all the formulae step by step.
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e2πH(x,y) ≈ Zcan =
∑

p,q

d(p, q)e2π[qIxI−pI ŷI ] . (90)

In special coordinates, this reads

eπF(Y,Y ) ≈ Zcan =
∑

p,q

d(p, q)eπ[qI(Y I+Y
I
)−pI(F̂I+F̂ I )] . (91)

We can formally invert these formulae to get a prediction of the state degen-
eracy in terms of macroscopic quantities:

d(p, q) ≈
∫

dxdŷeπΣ(x,ŷ) ≈
∫

dY dY ∆−(Y, Y )eπΣ(Y,Y ) , (92)

where we defined

∆±(Y, Y ) = | det
[

ImFKL + 2Re(ΩKL ±ΩKL)
]

| . (93)

In saddle point approximation, we predict the following relation between the
microscopic and the macroscopic entropy:

eSmicro(p,q) = d(p, q) ≈ eSmacro(p,q)

√

∆−

∆+
≈ eSmacro(p,q)(1+···) .

Here we used that both the measure factor ∆− and the fluctuation determi-
nant ∆+ are subleading in the limit of large charges.

We can also perform a partial saddle point approximation

d(p, q) ≈
∫

dφ
√

∆−(p, φ)eπ[Fmix(φ,p)−qIφI ]

and get a conjecture for the relation between the mixed free energy and the
mixed partition function:

√
∆−eπFmix(p,φ) ≈ Zmix =

∑

q

d(p, q)eπqIφI

. (94)

The conjecture put forward by Ooguri, Strominger and Vafa is:

eπFhol

mix
(p,φ) ≈ Z

(mix)
BH =

∑

q

d(p, q)eπqIφI

. (95)

This differs from (94) in two ways: (i) the measure factor ∆− is absent,
and (ii) the mixed free energy does not include contributions from non-
holomorphic terms. Since these modifications are subleading, the black hole
variational principle guarantees that both formulae agree to leading order for
large charges. As indicated by our presentation, we expect that the measure
factor and the non-holomorphic contributions to the free energy are present,
because they are needed for symplectic covariance and duality invariance. In
fact, the presence of subleading modifications in (94) has been verified, and
we will review this later.
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The relation to the topological string

One nice feature of (95) is that provides a direct link between the mixed black
hole partition function and the partition function of the topological string. The
coupling functions F (g)(X) in the effective action of type-II strings compact-
ified on a Calabi-Yau threefold are related to particular set of ‘topological’
amplitudes. If one performs a topological twist of the worldsheet conformal
field theory, the function F (g)(X) becomes the free-energies of the twisted
theory on a world-sheet of genus g. The generalized prepotential F (X, Â) is
therefore proportional to the all-genus free energy, i.e., to the logarithm of the
all-genus partition function Ztop of the topological string. As we have seen,

the mixed free energy Fhol
mix is proportional to the imaginary part of F (X, Â).

Taking into account conventional normalization factors, (95) can be rewritten
in the following, suggestive form:

Zmix
BH ≈ |Ztop|2 . (96)

However, general experience with holomorphic quantities in supersymmetric
theories suggests that such a relation should not be expected to be exact, but
should be modified by a non-holomorphic factor.25 And indeed, work done
over the last years on state counting and partition functions in N = 2 com-
pactifications, has established that the holomorphic factorisation of the black
hole partition function holds to leading order, but is spoiled by subleading
corrections. The underlying microscopic picture is that the black hole cor-
responds, modulo string dualities, to a system of branes and antibranes. To
leading order, when interactions can be neglected, this leads to the holomor-
phic factorisation.

Currently, the detailed microscopic interpretation of the modified con-
jecture (91), (94) and its relation to the topological string is still an open
question. In the following two lectures, we will discuss how the general ideas
explained in this lecture can be tested in concrete examples.

Further reading and references

This section is mostly based on [35], where we used the results of [38] to
formulate a modified version of the ‘OSV conjecture’ [1]. The relation between
Wilsonian and physical couplings in string effective actions was worked out
in [39] and is reviewed in [40]. Concrete examples for the failure of physical

25 One example is the mass formula M2 = e−K |M|2 for orbifold models, where K is
the Kähler potential and M is the chiral mass which depends holomorphically on
the moduli. In this case the presence of the non-holomorphic factor e−K can be
inferred from T-duality. Another example, which has been pointed out to me by S.
Shatashvili, is the path integral measure for strings. While it shows holomorphic
factorisation for critial strings, this is spoiled by a correction factor, namely the
exponential of the Liouville action, for the generic, non-critical case.
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quantities of supersymmetric theories to show holomorphic factorisation are
provided by mass formulae (see e.g. [41]) and by the path integral measure of
the non-critical string (see e.g. [42] for a discussion). The topological string
can be used to derive the physical couplings of N = 2 compactifications
[24, 25]. In this case the non-holomorphic corrections are captured by the
holomorphic anomaly equations. The relation between these and symplectic
covariance in supergravity have been discussed in [48], while the relevance of
non-holomorphic corrections for black hole entropy was explained in [38]. The
role of non-holomorphic corrections for the microscopic aspects of the OSV
conjecture has been addressed in [49]. The ramifications of the OSV conjecture
for ‘topological M-theory’, and the role of non-holomorphic corrections in this
context have been discussed in [42, 50].

References for tests of the OSV conjecture will be given in Lecture IV.

4 Lecture III Black holes in N = 4 supergravity

4.1 N = 4 compactifications

The dynamics of string compactifications with N = 4 supersymmetry is con-
siderably more restricted than the dynamics of N = 2 compactifications. In
particular, the classical S- and T-duality symmetries are exact, and there
are fewer higher derivative terms. Therefore N = 4 compactifications can be
used to test conjectures by precision calculations. We consider the simplest
example, the compactification of the heterotic string on a six-torus. This is
equivalent to the compactification of the type-II string on K3 × T 2, but we
will mostly use the heterotic language.

The massless spectrum consists of the N = 4 supergravity multiplet (gravi-
ton, four gravitini, six graviphotons, four fermions, one complex scalar, which
is, in heterotic N = 4 compactifications, the dilaton) together with 22 N = 4
vector multiplets (one gauge boson, four gaugini, six scalars). Since the gravity
multiplet contains six graviphotons, the resulting gauge group is U(1)28 (at
generic points of the moduli space). The corresponding electric and magnetic
charges each live on a copy of the Narain lattice Γ = Γ22;6, which is an even
self-dual lattice of signature (22, 6):

(p, q) ∈ Γ ⊕ Γ .

Locally, the moduli space is

M ≃ SL(2,R)

SO(2)
⊗ SO(22, 6)

SO(22) ⊗ SO(6)
,

where the first factor is parametrised by the (four-dimensional, heterotic)
dilaton S,

S = e−2φ + ia .
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The vacuum expectation value of φ is related to the four-dimensional heterotic
string coupling gS by e〈φ〉 = gS , and a is the universal axion (the dual of the
universal antisymmetric tensor field). The global moduli space is obtained by
modding out by the action of the duality group

SL(2,Z)S ⊗ SO(22, 6,Z)T .

The T-duality group SO(22, 6,Z)T is a perturbative symmetry under which
the dilaton S is inert, and which acts linearly on the Narain lattice Γ . The
S-duality group SL(2,Z)S is a non-perturbative symmetry, which acts on the
dilaton by fractional linear transformations,

S → aS + ib

−icS + d
,

(

a b
c d

)

∈ SL(2,Z) , (97)

while it acts linearly on the charge lattice Γ ⊕ Γ by

(

p
q

)

−→
(

a I28 b I28
c I28 d I28)( pq) . (98)

Using the Narain scalar product, we can form three quadratic T-duality in-
variants out of the charges: p2, q2, p ·q. Under S-duality these quantities form a
‘vector’, i.e., they transform in the 3-representation, which is the fundamental
representation of SO(2, 1) ≃ SL(2). The scalar product of two such S-duality
vectors is an S-duality singlet. One particularly important example is the S-
and T-duality invariant combination of charges

p2q2 − (p · q)2 ,

which discriminates between different types of BPS multiplets. Recall that
the N = 4 algebra has two complex central charges. Short (1

2 -BPS) multiplets
satisfy

M = |Z1| = |Z2| ⇔ p2q2 − (p · q)2 = 0 ,

whereas intermediate (1
4 -BPS) multiplets satisfy

M = |Z1| > |Z2| ⇔ p2q2 − (p · q)2 6= 0 .

4.2 N = 4 supergravity in the N = 2 formalism

In constructing BPS black hole solutions, we can make use of the N = 2
formalism. The N = 4 gravity multiplet decomposes into the N = 2 gravity
multiplet, one vector multiplet (which contains the dilaton), and 2 gravitino
multiplets (each consisting of a gravitino, two graviphotons, and one fermion).
Each N = 4 vector multiplet decomposes into an N = 2 vector multiplet plus
a hypermultiplet. We will truncate out the gravitino and hypermultiplets and
work with the resulting N = 2 vector multiplets. This means that we ‘loose’
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four electric and four magnetic charges, corrsponding the the four gauge fields
in the gravitino multiplets. But as we will see we can use T-duality to obtain
the entropy formula for the full N = 4 theory.

At the two-derivative level, the effective action is anN = 2 vector multiplet
action with prepotential

F (Y ) = −Y
1Y aηabY

b

Y 0
, (99)

where
Y aηabY

b = Y 2Y 3 − (Y 4)2 − (Y 5)2 − · · · .
The dilaton is given by

S = −iY
1

Y 0
.

The corresponding scalar manifold is (locally)

M ≃ SL(2,R)

SO(2)
⊗ SO(22, 2)

SO(22) ⊗ SO(2)
,

with duality group SL(2,Z)S ⊗ SO(22, 2,Z)T .
The prepotential (99) corresponds to a choice of the symplectic frame

where the symplectic vector of the scalars is (Y I , FI(Y ))T . The magnetic
and electric charges corresponding to this frame are denoted (pI , qI). This
symplectic frame is called the supergravity frame in the following. Heterotic
string perturbation theory distinguishes a different symplectic frame, called
the heterotic frame, which is defined by imposing that all gauge coupling go to
zero in the limit of weak string coupling gS → 0 (equivalent to S → ∞). In this
frame p1 is an electric charges while q1 is a magnetic charge. An alternative
way of defining the heterotic frame is to impose that the electric charges are
those which are carried by heterotic strings, while magnetic and dyonic charges
are carried by solitons (wrapped five-branes). The heterotic frame has the
particular property that ‘there is no prepotential’ (see also appendix A). The
symplectic transformation relating the heterotic frame and the supergravity
frame is p1 → q1, q1 → −p0. If one applies this transformation to (Y I , FI)

T ,
then the transformed Y I are dependent and do not form a coordinate system
on M (the complex cone over M , while the transformed FI do not form a
gradient.

Since one frame is not adapted to string perturbation theory while the
other is inconvenient, one uses a hybrid formalism, where calculations are
performed in the supergravity frame but interpreted in the heterotic frame.
The vectors of physical electric and magnetic charges are:

q = (q0, p
1, qa) ∈ Γ ,

p = (p0,−q1, pa) ∈ Γ , (100)

where a, b = 2, . . .. In this parametrisation, the explicit expressions for the
T-duality invariant scalar products are:
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q2 = 2(q0p
1 − 1

4
qaη

abqb)

p2 = 2(−p0q1 − paηabp
b)

p · q = q0p
0 − q1p

1 + q2p
2 + q3p

3 + · · · , (101)

where

paηabp
b = p2p3 − (p4)2 − (p5)2 − · · · ,

qaη
abqb = 4q2q3 − (q4)

2 − (q5)
2 − · · · . (102)

In the heterotic frame, S-duality acts according to (98), and the three
quadratic T-duality invariants transform in the vector representation of
SO(2, 1) ≃ SL(2), where SO(2, 1) is realised as the invariance group of the
indefinite bilinear form a1a2−a2

3. The scalar product of two S-duality vectors
is a scalar, and the quartic S- and T-duality invariant of the charges is

q2p2 − (p · q)2 =
(

q2, p2, p · q
)





0 1
2 0

1
2 0 0
0 0 −1









q2

p2

p · q



 .

For a prepotential of the form (99) the attractor equations can be solved
in closed form, and the resulting formula for the entropy is

Smacro = π
√

p2q2 − (p · q)2 . (103)

This formula is manifestly invariant under SL(2,Z)S ⊗ SO(22, 2,Z)T , and
we can reconstruct the eight missing charges by passing to the corresponding
invariant of the full duality group SL(2,Z)S⊗SO(22, 6,Z)T . This result agrees
with the direct derivation of the solution within N = 4 supergravity.

When using the prepotential (99) we neglect higher derivative corrections
to the effective action. Therefore the solution is only valid if both the string
coupling and the curvature are small at the event horizon. This is the case if
the charges are uniformly large in the following sense:

q2p2 ≫ (p · q)2 ≫ 1 .

Note that if the scalars take values inside the moduli space26 then q2 < 0 and
p2 < 0 in our parametrisation.

From the entropy formula (103) it is obvious that there are two different
types of BPS black holes in N = 4 theories.

• If p2q2 − (p · q)2 6= 0 the black hole is 1
4 -BPS and has a finite horizon.

These are called large black holes.

26 The moduli space is realised as an open domain in Rn, which is given by a set of
inequalities. In our parametrisation one of these inequalities is ReS = e−2φ > 0,
which implies that the dilaton lives in a half plane (the right half plane). Solutions
where ReS < 0 at the horizon are therefore unphysical. Similar remarks apply to
the other moduli.
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• If p2q2 − (p · q)2 = 0 the black hole is 1
2 -BPS and has a vanishing horizon.

These are called small black holes. They are null singular, which means
that the event horizon coincides with the singularity.

Further reading and references

The conventions used in this section are those of [38]. See there for more
information and references about the relation between N = 4 and N = 2
compactifications. The entropy for large black holes in N = 4 compactifica-
tions was computed in [51, 52] and rederived using the N = 2 formalism in
[38].

4.3 R
2-corrections for N = 4 black holes

Let us now incorporate higher derivative corrections. Since no treatment
within N = 4 supergravity is available, it is essential that we can fall back onto
the N = 2 formalism. One simplifying feature of N = 4 compactifications is
that all higher coupling functions F (g)(Y ) with g > 1 vanish. The only higher
derivative coupling is F (1)(Y ), which, moreover, only depends on the dilaton
S. The generalized prepotential takes the following form:

F (Y, Υ ) = −Y
1Y aηabY

b

Y 0
+ F (1)(S)Υ .

In order to find duality covariant attractor equations and a duality invariant
entropy, we must incorporate the non-holomorphic corrections to the Wilso-
nian coupling F (1)(Y ), which are encoded in a homogenous, real valued, non-
harmonic function Ω(Y, Y , Υ, Υ ).

One way to find this function is to compute the physical coupling of the
curvature-squared term in string theory. Since this coupling depends on the
dilaton (but not on the other moduli), it can receive non-perturbative cor-
rections (though no perturbative ones). At this point one has to invoke the
duality between the heterotic string on T 6 and the type-IIA string onK3×T 2.
Since the heterotic dilaton corresponds to a geometric type-IIA modulus, the
exact result can be found by a perturbative calculation in the IIA theory.
This calculation is one-loop, and can be done exactly in α′, because there is
no dependence on the K3-moduli.

Alternatively, one can start with the perturbative heterotic coupling and
infer the necessary modifications of the attractor equations and of the entropy
by imposing S-duality invariance. It turns out that there is a minimal S-duality
invariant completion, which in principle could differ from the full result by
further subleading S-duality invariant terms. But for the case at hand the
minimal S-duality completion turns out to give complete result.

At tree level, the coupling function F (1) is given by

F
(1)
tree(S) = c1iS , where c1 = − 1

64
.
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We know a priori that there can be instanton correctionsO(e−S). The function
F (1)(S) determines the ‘R2-couplings’

LR2 ≃ 1

g2
CµνρσC

µνρσ +ΘCµνρσC̃
µνρσ , (104)

where Cµνρσ is the Weyl tensor, through g−2 ≃ ImF (1) and θ ≃ ReF (1).
Therefore ImF (1) must be an S-duality invariant function, whereas ReF (1)

must only be invariant up to discrete shifts. Accoring to (97), the linear tree-
level piece is not invariant. Restrictions on the functional dependence of F (1)

on S result from the requirement that the S-duality transformation (97) of the
dilaton induces the symplectic transformation (98) of the symplectic vector
(Y I , FI)

T . This implies that

f(S) := −i∂F
(1)

∂S

must transform with weight 2:

f

(

aS − ib

icS + d

)

= (icS + d)2f(S) .

A classical result in the theory of modular forms27 implies that f(S), (and,
hence, F (1)) cannot be holomorphic. The holomorphic object which comes
closest to transforming with weight 2 is the holomorphic second Eisenstein
series

G2(S) = −4π∂Sη(S) ,

where η(S) is the Dedekind η-function.28 To obtain a function which trans-
forms with weight 2 one needs to add a non-holomorphic term and obtains
the non-holomorphic second Eisenstein series:

G2(S, S) = G2(S) − 2π

S + S
.

This is the only candidate for f(S). We will write f(S, S) in the following,
to emphasize that this function is non-holomorphic. We need to check that
we get the correct asymptotics in the weak coupling limit S → ∞. Since
F (1) → c1iS, we know that f(S, S) must go to a constant. This is indeed true
for the second Eisenstein series (the non-holomorphic term is subleading):

G2(S, S) → π2

3
,

and therefore the minimal choice for f(S, S) is

27 We refer the reader to appendix B for a brief review of modular forms and refer-
ences.

28 Here G2(S) is short for G2(iS), etc.
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f(S, S) = c1
3

π2
G2(S, S) .

This can be integrated, and we obtain the non-holomorphic function

F (1)(S, S) = −ic1
6

π

(

log η2(S) + log(S + S)
)

. (105)

This function generates a symplectic vector (Y I , FI(Y, Y ))T with the correct
behaviour under S-duality. Moreover, the function pIFI(Y, Y ) − qIY

I , which
is proportional to the area, is S-duality invariant. However F (1)(S, S) is not
S-duality invariant, but transforms as follows:

F (1)(S, S) → F (1)(S, S) + ic1
6

π
log(−icS + d) .

This was to be expected, because derivatives (and, hence, integrals) of mod-
ular forms are not modular forms but transform with additional terms. The
function F (1)(S, S) was constructed by requiring that its derivative is a mod-
ular form of weight 2. Therefore it does not quite transform as a modular
form of weith zero (modular function). In order to get an S-duality invariant
function, we need to add a further non-holomorphic piece:

F
(1)
phys(S, S) = F (1)(S, S) + ic1

3

π
log(S + S) = F (1)(S)hol + ic1

6

π
log(S + S) ,

where

F
(1)
hol (S) = −ic1

6

π
log η2(S) .

The invariant function F
(1)
phys is the minimal S-duality completion of the R2-

coupling (104). An explicit caculation of this coupling in string theory shows
that this is in fact the full R2-coupling.

Since the entropy must be S-duality invariant, it is also clear that the
correct way of generalizing the holomorphic function F (1)(S) in the entropy
formula is:29

Smacro = π
[

(pIFI(Y, Y ) − qIY
I) + 4Im

(

ΥF
(1)
phys(S, S)

)]

∗
.

Note that the non-holomorphic modifications are purely imaginary. There-
fore they only modify the R2-coupling g−2 ≃ ImF (1) and reside in a real-
valued, non-harmonic function Ω. In the following we find it convenient to
absorbe the holomorphic function ΥF (1)(S) into Ω:

Ω(S, S, Υ, Υ ) = Im

(

ΥF (1)(S, S) + Υ ic1
3

π
log(S + S)

)

= Im

(

ΥF (1)(S) − Υ ic1
3

π
log(S + S)

)

. (106)

29 Remember Υ∗ = −64.
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This function encodes all higher derivative corrections to the tree-level prepo-
tential.

We already mentioned that the holomorphic R2-corrections correspond to

instantons. To make this explicit we expand F
(1)
hol (S) for large S:

F
(1)
hol (S) ≃ log η24(S) = −2πS − 24e−2πS + O(e−4πS) .

This shows that the R2-coupling has a classical piece proportional to S,
followed by an infinite series of instanton corrections, which correspond to
wrapped five-branes.

Further reading and references

This section is based on [38]. The treatment of the non-holomorphic correc-
tions illustrates the general formalism introduced in [35]. In fact, the formalism
is modelled on this example, and it is not excluded that generic N = 2 com-
pactifications need more general modifications. The R2-term in the effective
action for N = 4 compactifications was computed in [53].

4.4 The reduced variational principle for N = 4 theories

It is possible and in fact instructive to analyse the attractor equations and
entropy without using the explicit form of Ω. Using that Ω depends on the
dilaton S, but not on the other moduli T a ≃ Y a

Y 0 , one can solve all but two
of the attractor equations explicitly. The remaining two ‘dilaton attractor
equations’ are the only ones which involve Ω, and they determine the dilaton
as a function of the charges. Substituting the solved attractor equations into
the entropy function, we obtain the following, reduced entropy function:

Σ(S, S, p, q) = −q
2 − ip · q(S − S) + p2|S|2

S + S
+ 4Ω(S, S, Υ, Υ ) . (107)

Extremisation of this function yields the remaining dilatonic attractor equa-
tions

∂SΣ = 0 = ∂SΣ ⇔ Dilaton attractor equations,

and its critical value gives the entropy:

Smacro(p, q) = πΣ∗(p, q)

=

(

−q
2 − ip · q(S − S) + p2|S|2

S + S
+ 4Ω(S, S, Υ, Υ )

)

|∂SΣ=0

.(108)

The entropy function is manifestly S-duality and T-duality invariant, provided
that Ω is an S-duality invariant function.30

30 1

S+S
(1, |S|2,−i(S−S) transforms as an SO(2, 1) (co-)vector under S-duality, and

therefore the contraction with the vector (q2, p2, p · q) gives an invariant.
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Further reading and references

The observation that all but two of the N = 4 attractor equations can be
solved, even in presence of R2-terms, was already made in [38] and exploited
in [54] and [35].

4.5 Small N = 4 black holes

Let us now have a second look at small black holes. For convenience we take
them to be electric black holes, p = 0. By this explicit choice, S-duality is no
longer manifest, but T-duality remains manifest. As we saw above, as long
as Ω = 0 the area of a 1

2 -BPS black hole vanishes, A = 0, and therefore
the Bekenstein-Hawking entropy is zero, too. In fact, the moduli also show
singular behaviour, and, in particular, the dilaton runs of to infinity at the
horizon S∗ = ∞. Thus small black holes live on the boundary of moduli space.

The lowest order approximation to the R2-coupling is to take its classical
part,

F (1) ≃ log η24(S) = −2πS + O(e−2πS) ,

and to neglect all instanton and non-holomorphic corrections. In this approx-
imation one can solve the dilatonic attractor equations explicitly. This results
in the following, non-vanishing and T-duality invariant area:

A = 8π

√

1

2
|q2| 6= 0 .

Thus the R2-corrections smooth out the null-singularity and create a finite
horizon. We need to impose that |q2| ≫ 131 in order that the dilaton S is
large, which we need to impose because we neglect subleading corrections to
the R2-coupling. Note that in contrast to the two-derivative approximation
the dilaton is now finite at the horizon. Thus not only the metric but also the
moduli are smoothed by the higher derivative corrections. The horizon area is
small in string units, even though it is large in Planck units. This motivates
the terminology ‘small black holes.’

The resulting Bekenstein-Hawking entropy is:

SBekenstein−Hawking =
A

4
= 2π

√

1

2
|q2| .

However, since the area law does not apply to theories with higher curvature
terms, the correct way to compute the macroscopic black hole entropy is (83).
Evaluating this for the case at hand gives

Smacro =
A

4
+ correction =

A

4
+
A

4
=
A

2
= 4π

√

1

2
|q2| .

31 In our parametrisation q2 < 0, if the horizon values of the scalars are inside the
moduli space.
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In this particular case the correction is as large as the area term itself. Later
we will have the opportunity to confront both formulae with string microstate
counting.

In the limit of large S the next subleading correction comes from the non-
holomorphic corrections ∝ log(S + S). We can still find an explicit formula
for the entropy:

Smacro = 4π

√

1

2
|q2| − 6 log |q2| ,

which we will compare to microstate counting later.
If we include further corrections, ultimately the full series of instanton

corrections encoded in log η24(S), we cannot find an explicit formula for the
entropy anymore. However, we know that the exact macrocsopic entropy is
given as the solution of the extremisation problem for the dilatonic entropy
function (107). This can be used for a comparison with state counting.

Further reading and references

The observation that R2-corrections smooth or ‘cloak’ the null singularity of
small black holes was made in [55]. This result follows immediately from [38].

5 Lecture IV: N = 4 state counting and black hole

partition functions

The BPS spectrum of the heterotic string on T 6 consists of the excited modes
of the heterotic string itself, and solitons. Heterotic string states are labeled
by 28 quantum numbers: six winding numbers, six discrete momenta around
T 6 and 16 charges of the unbroken U(1)16 ⊂ E8 ⊗ E8 gauge group. They
combine into 22 left- and 6 right-moving momenta, which take values in the
Narain lattice:

(pL; pR) ∈ Γ .

Modular invariance of the world sheet conformal field theory implies that the
lattice Γ must be even and selfdual with repect to the bilinear form p2

L − p2
R,

which has signature (+)22(−)6. From the four-dimensional point of view, the
28 left- and rightmoving momenta are the 28 electric charges with respect to
the generic gauge group U(1)16+6+6: q = (pL; pR) ∈ Γ .

Similarly, the winding states of heterotic five-branes carry magnetic charges
p ∈ Γ ∗ = Γ . If purely electric or purely magnetic states satisfy a BPS bound,
they must be 1

2 -BPS states, because p2q2 − p · q = 0 if either p = 0 or q = 0.
However, there are also dyonic solitonic states with q2p2 − p · q 6= 0, which are
1
4 -BPS. By string–black hole complementarity, the BPS states with charges
(p, q) ∈ Γ ⊕ Γ should be the microstates of N = 4 black holes with the same
charges. We will now discuss how these states are counted and compare our
results to the macroscopic black hole entropy and free energy.
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5.1 Counting 1

2
-BPS states

Without loss of generality, we take the 1
2 -BPS states to be electric, p = 0.

Such states correspond to excitations of the heterotic string, and are called
Dabholkar-Harvey states. Recall that the world-sheet theory of the heterotic
string has two different sectors. The left-moving sector consists of 24 world
sheet bosons (using the light cone gauge), namely the left-moving projections
of the eight coordinates transverse to the world sheet, and 16 bosons with
values in the maximal torus of E8 ⊗ E8. The right-moving sector consists
of the right-moving projections of the eight transvserse coordinates, together
with eight right-moving fermions. This sector is supersymmetric in the two-
dimensional, world-sheet sense. World-sheet supersymmetry combined with
a condition on the spectrum of charges implies the existence of an extended
chiral algebra on the world-sheet, which is equivalent toN = 4 supersymmetry
in the ten-dimensional, space-time sense. The generators of the space-time
supersymmetry algebra are build exclusively out of right-moving degrees of
freedom. To obtain BPS states one needs to put the right-moving sector into
its ground state, but still has the freedom to excite the left-moving sector. A
basis of such states is

αi1
−m1

αi2
−m2

· · · |q〉 ⊗ 16 , (109)

where αik

−ml
are creation operators for the oscillation modes of the string. The

indices ik = 1, . . . , 24 label the directions transverse to the world-sheet of the
string, while mk = 1, 2, 3, . . . label the oscillation modes. q = (pL; pR) = Γ
are the electric charges, which correspond to the winding modes, momentum
modes and U(1)16 charges. 16 denotes the ground state of the right-moving
sector, which carries the degrees of freedom of an N = 4 vector multiplet
(with 16 on-shell degrees of freedom). States of this form are invariant under
as many supercharges as the right-moving groundstate, and therefore they
belong to 1

2 -BPS multiplets. To be physical, the state must satisfy the level
matching condition,

N − 1 +
1

2
p2

L = Ñ +
1

2
p2

R , (110)

where N, Ñ are the total left-moving and right-moving excitation numbers.
BPS states have Ñ = 0, and therefore the excitation level is fixed by the
charges:

N−1+
1

2
p2

L = Ñ+
1

2
p2

R ⇒ N =
1

2
p2

R− 1

2
p2

L−1 = −q2−1 = |q2|−1 . (111)

This is equivalent to the statement that the mass saturates the BPS bound.
Note that q2 < 0 for physical BPS states. For large charges we can use N ≈
|q2|.

The problem of counting 1
2 -BPS states amounts to counting in how many

ways a given total excitation number N ≈ |q2| can be distributed among
the creation operators αi

−m. If we ignore the additional space-time index
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i = 1, . . . , 24, this becomes the classical problem of counting the partitions of
an integer N , which was studied by Hardy and Ramanujan. The space-time
index i adds an additional 24-fold degeneracy, and we might say that we have
to count partitions of N into integers with 24 different ‘colours’. Incidentially
exactly the same problems arises (up to the overall factor 16 from the de-
generacy of the right-moving ground state) when counting the physical states
of the open bosonic string. From the world-sheet perspective, both problems
amount to finding the partition function of 24 free bosons, which is a standard
problem in quantum statistics and conformal field theory.

The reader is encouraged to solve Problem 3, which is to derive the fol-
lowing formula for the state degeneracy:

d(q) = d(q2) = 16

∮

dτ
eiπτq2

η24(τ)
, (112)

where τ = τ1+iτ2 ∈ H, where H = {τ ∈ C|τ2 > 0} is the upper half plane and
where η(τ) is the Dedekind η-function. The integration contour runs through
a strip of width one in the upper half plane, i.e., it connects two points τ (1)

and τ (2) = τ (1) + 1. Since the integrand is periodic under τ → τ + 1 (which
is a general property of modular forms), this integration contour is effectively
closed. (It becomes a closed contour when going to the new variable e2πiτ ,
which takes values in the interior of the unit disc.)

In its present form this expression is not very useful, because we want to
know d(q) explicitly, at least asymptotically for large values of |q2|. This type
of problem was studied already by Hardy and Ramanujan, and a method for
solving it exactly was found by Rademacher. For our specific problem with 24
‘colours’ the Rademacher expansion takes the following form:

d(q2) = 16

∞
∑

c=1

c−14Kl

(

1

2
|q2|,−1; c

)

Î13

(

4π

c

√

1

2
|q2|
)

, (113)

where Î13 = is the modified Bessel function of index 13, and Kl(l,m; c) are
the so-called Kloosterman sums.

Modified Bessel functions have the following integral representation:

Îν(z) = −i(2π)ν

∫ ǫ+i∞

ǫ−i∞

dt

tν+1
et+ z

2

4t ,

and their asymptotics for Re(z) → ∞ is:

Îν(z) ≈ ez

√
2

( z

4π

)−ν− 1

2

(

1 − 2ν2 − 1

8z
+ O(z−2)

)

.

We will not need the values of the Kloostermann sums, except thatKl(l,m; 1) =
1.
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In the limit of large |q2| the term with c = 1 is leading, while the terms
with c > 1 are exponentially surpressed:

d(q2) = 16 Î13(4π

√

1

2
|q2|) + O(e−|q2|) .

Using the asymptotics of Bessel functions, this can be expanded in inverse
powers of |q2|:

Smicro(q
2) = log d(q2) ≈ 4π

√

1

2
|q2| − 27

4
log |q2|+15

2
log(2) − 675

32π|q2| + · · ·

The first two terms correspond to a saddle point evaluation of the integral
representation (112): The first term is the value of integrand at its saddle
point, while the second term is the ‘fluctuation determinant’. The derivation
of the first two terms using a saddle point approximation of (112) is left to
the reader as Problem 4. A derivation of the full Rademacher expansion (113)
can be found in the literature.

Further reading and references

An excellent and accessible account on the Rademacher expansion can be
found in [56]. See in particular the appendix of this paper for two versions of
the proof of the Rademacher expansion. We have also borrowed some formulae
from [57, 58], who have studied the state counting for 1

2 -BPS states in great
detail, including various N = 4 and N = 2 orbifolds of the toroidal N = 4
compactification considered in this lecture.

5.2 State counting for 1

4
-BPS states

For the problem of counting 1
4 -BPS states the dual type-II picture of the

N = 4 compactification is useful. Here all the heterotic 1
2 - and 1

4 -BPS states
arise as winding states of the NS-five-brane. It is believed that the dynamics
of an NS-five-brane is described by a string field theory whose target space is
the world volume of the five-brane. If one assumes that the counting of BPS
states is not modified by interactions, the problem of state counting reduces
to counting states in a multi-string Fock space. For 1

2 -BPS states the resulting
counting problem is found to be equivalent to the one described in the last
section, as required by consistency. For 1

4 -BPS states the counting problem is
more complicated, but one can derive the following integral representation:

d(p, q) =

∮

dρdσdv
eiπ[ρp2+σq2+(2v−1)pq)]

Φ10(ρ, σ, v)
. (114)

This formula requires some explanation. Essentially it is a generalisation of
(112), where the single complex variable τ has been replaced by three complex
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variables ρ, σ, τ , which live in the so called rank-2 Siegel upper half space S2.
In general the rank-n Siegel upper half space is the space of all symmetric
(n × n)-matrices with positive definit imaginary part. This is a symmetric
space,

Sn ≃ Sp(2n)

U(n)
,

which can be viewed as a generalisation of the upper half plane

H =
Sp(2)

U(1)
= S1 .

The group Sp(2n,Z) acts by fractional linear transformations on the (n× n)
matrices Ω ∈ Sn,

Ω → (AΩ +B)(CΩ +D)−1 , where

(

A B
C D

)

∈ Sp(2n) .

The discrete subgroup Sp(2n,Z) is a generalisation of the modular group
Sp(2,Z) ≃ SL(2,Z), and there is a corresponding theory of Siegel modular
forms. A Siegel modular form is said to have weight 2k, if it transforms as

Φ(Ω) → Φ
(

(AΩ +B)(CΩ +D)−1
)

= (det(CΩ +D))kΦ(Ω) .

In the rank-2 case, we can parametrise the matrix Ω as

Ω =

(

ρ v
v σ

)

,

and positive definitness of the imaginary part implies that

ρ2 > 0 , σ2 > 0 , ρ2σ2 − v2 > 0 ,

where ρ = ρ1 + iρ2, etc.
In the theory of rank-2 Siegel modular forms, the analogon of the weight-12

cusp form η24(τ) is the weight-10 Siegel cusp form Φ10(ρ, σ, v), which enters
into the state counting formula (114). Like modular forms, Siegel modular
forms are periodic in the real parts of the variables ρ, σ, v. The integration con-
tour in the Siegel half space is along a path of the form ρ→ ρ+1, σ → σ+1,
v → v+ 1, which is effectively a closed contour since the integrand is periodi-
cal.32 The state counting formula (114) is manifestly T-duality invariant. It is
also formally S-duality invariant, in the sense that S-duality transformations
can be compensated by Sp(4,Z) transformations of the integration variables.

As in the 1
2 -BPS case one would like to evaluate (114) asymptotically, in

the limit of large charges q2p2−(p ·q)2 ≫ 1. One important difference between
Φ10 and η24 is that the Siegel cusp form has zeros in the interior of the Siegel

32 In the numerator one has to use that the Narain lattice is even selfdual.
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half space S2, namely at v = 0 and its images under Sp(4,Z). The v-integral
therefore evaluates the residues of the integrand. At v = 0, the asymptotics
of Φ10 is

Φ ≃v=0 v
2η24(ρ)η24(σ) .

The asymptotics at the other zeros can be found by applying Sp(4,Z) trans-
formations.

If one sets the magnetic charges to zero, the residue at v = 0 is the only
one which contributes to (114). This can be used to derive the 1

2 -BPS formula
(112) as a special case of (114).33

For 1
4 -BPS states it can be shown that for large charges the dominant

contribution comes from the residue at

D = v + ρσ − v2 = 0 ,

while all other residues are exponentially surpressed. Neglecting the sublead-
ing residues, one can perform the v-integral. The remaining integral has the
following structure:

d(p, q) =

∮

dρdσeiπ(X0+X1)(ρ,σ)∆(ρ, σ) . (115)

The parametrisation has been chosen such that X1 and ∆ are subleading for
large charges.

This integral can be evaluated in a saddle point approximation, analogous
to (112). The leading term for large charges is given by the approximate saddle
point value of the integrand,

d(p, q) ≈ eiπ X0|
∗ = eπ

√
p2q2−(pq)2 . (116)

This result is manifestly T- and S-duality invariant.
A refined approximation can be obtained as follows: one identifies the exact

critical point of eiπX = eiπ(X0+X1), expands the integrand eiπX∆ to second
order and performs a Gaussian integral. This is different from a standard
saddle point approximation, where one would expand around the critical point
of the full integrand eiπX∆. This modification is motivated by the observation
that the critical point of iπX agrees exactly with the the critical point of the
reduced dilatonic entropy function (107), which gives the exact macroscopic
entropy:

iπX∗ = πΣ∗ = Smacro(p, q) .

At the critical point one has the following relation between the critical values
of ρ, σ and the fixed point value of the dilaton:

ρ∗ =
i|S∗|2
S∗ + S∗

, σ∗ =
i

S∗ + S∗
.

33 Incidentially, the problem is equivalent to the factorisation of a genus-2 string
partition function into two genus-1 string partition functions.
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One might think that the subleading contributions from ∆ spoil the re-
sulting equality between microscopic and macroscopic entropy. However, these
cancel against the contributions from the Gaussian integration (the ‘fluctua-
tion determinant’), at least to leading order in an expansion in inverse powers
of the charges:

eSmicro(p,q) = d(p, q) ≈ eπΣ∗+··· = eSmacro(p,q)+··· . (117)

This shows that the modified saddle point approximation is compatible with a
systematic expansion in large charges. Moreover, there is an intriguing direct
relation between the saddle point approximation of the exact microscopic state
degeneracy (114) and the black hole variational principle.

Further reading and references

The state counting formula for 1
4 -BPS states in N = 4 compactifications

was proposed in [59]. There several ways of deriving it were discussed, which
provide very strong evidence for the formula. Further evidence was obtained
more recently in [60], by using the relation between four-dimensional and five-
dimensional black holes [61]. While the leading order matching between state
counting and black hole entropy was already observed in [59], the subleading
corrections were obtained in [54] by using the modified saddle point evaluation
explained above.

Another line of development is the generalisation from toroidal compacti-
fications to a class of N = 4 orbifolds, the so-called CHL-models [62, 63]. The
issue of choosing integration countours is actually more subtle than appar-
ent from our review, see [64, 65] for a detailed account. For a comprehensive
account of Siegel modular forms, see [86].

5.3 Partition functions for large black holes

The strength of this result becomes even more obvious when we use it to
compare the (microscopically defined) black hole partition function to the
(macroscopically defined) free energy.

One way of doing this is to the evaluate mixed partition function Zmix(p, φ) =
∑

q d(p, q)e
πqIφI

using integral representation (114) of d(p, q). The result can
be brought to the following form

Zmix(p, φ) =
∑

shifts

√

∆̃(p, φ)eπFmix(p,φ) . (118)

Fmix is the black hole free energy, including all, both the holomorphic and the
non-holomorphic corrections:

Fmix(p, φ) =
1

2
(S+S)

(

paηabp
b − φaηabφ

b
)

−i(S−S)paηabφ
b+4Ω(S, S, Υ, Υ ) .
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By imposing the magnetic attractor equations in the transition to the mixed
ensemble, the dilaton has become a function of the electric potentials and the
magnetic charges:

S =
−iφ1 + p1

φ0 + ip0
.

The mixed partition functions is by construction invariant under shifts
φ → φ + 2i. The mixed free energy is found to have a different periodicity,
and this manifests itself by the appearance of a finite sum over additional shifts
of φ in (118). As predicted on the basis of symplectic covariance, the relation
between the partition function and the free energy is modified by a ‘measure
factor’ ∆̃−, which we do not need to display explicitly. This factor agrees
with the measure factor ∆− in (94), which we found by imposing symplectic
covariance in the limit of large charges:

∆̃− ≈ ∆− .

Since we already made a partial saddle point approximation when going from
the canonical to the mixed ensemble, we could not expect an exact agreement.
It is highly non-trivial that we can match the full mixed free energy, including
the infinite series of instanton corrections. Moreover, we have established that
there is a non-trivial measure factor, which agrees to leading order with the
one constructed by symmetry considerations.

Further reading, references, and some comments

The idea to evaluate the mixed partition function using microscopic state
counting in order to check the OSV conjecture for N = 4 compactifiactions
was first used in [66]. This confirmed the expectation that the OSV conjecture
needs to be modified by a measure factor once subleading corrections are
taken into account. This result was generalized in [35], where we showed that
the measure factor agrees asymptotically with our conjecture which is based
on imposing symplectic covariance. Above, we pointed out that in (118) we
obtain the full mixed Fmix, including the non-holomorphic corrections. Of
course, this way of organising the result is motivated by our approach to non-
holomorphic corrections, and it is consistent to regard these contributions as
part of the measure factor, as other authors appear to do. Further work is
needed, in particular on the role played by the non-holomorphic corrections
in the microscopic description, before we can decide which way interpreting
the partition function is more adaequate. Let us also mention that while we
specifically considered toroidal N = 4 compactifications in this section, all
results generalise to CHL models.

There has also been much activity on N = 2 compactifications over the
last years. Much of this work has focussed on establishing and explaining the
asymptotic factorisation

Zmix ≃ |Ztop|2
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predicted by the OSV conjecture [67, 68, 69, 70]. The strategy persued in these
papers is to use string-dualities, in particular the AdS3/CFT2-correspondence,
to reformulate the proplem in terms of two-dimensional conformal field the-
ory. In comparison to the simpler N = 4 models, the relevant microscopic
partition functions are related to the so-called elliptic genus of the under-
lying CFT. Roughly, the elliptic genus is a ‘BPS partition function’, i.e. a
partition function which has been modified by operator insertions such that it
only counts BPS states. The main problem is to find a suitable generalisation
of the Rademacher expansion which allows to evaluate these BPS partition
functions asymptotically for large charges. The picture emerging from this
treatment is that the black hole can be described microscopically (modulo
string dualities) as a non-interacting state of branes and anti-branes. This
explains the asymptotic factorisation.

But as we have stressed throughout, non-holomorphic corrections are ex-
pected to manifest themselves at the subleading level, which microscopically
correspond to interactions between branes and antibranes. And indeed, a more
recent refined analysis [71] has revealed the presence of a measure factor, which
agrees with the one found in [66] and [35] in the limit of large charges.

There is one further point which we need to comment on. During this
lecture we have tentatively assumed that ‘state counting’ means literally to
count all the BPS states. But, as we have mentioned previously, the BPS
spectrum changes when crossing a line of marginal stability. This is a possible
cause for discrepancies between state counting and thermodynamical entropy,
because they are computed in different regions of the parameter space. In
their original work [1] therefore conjectured that the microscopical entropy
entering into the OSV conjecture is an ‘index’, i.e. a weighted sum over states
which remains invariant when crossing lines of marginal stability. The detailed
study of [57, 58] showed that it is very hard in practice to discriminate be-
tween absolute versus weighted state counting. While one example appeared
to support absolute state counting, it was pointed out later that there are
several candidates for the weighted counting [71]. One intriguing proposal is
that the correct absolute state counting is in fact captured by an index, once
it is taken into account that states which are stable in the free limit become
unstable once interactions are taken into account [71].

In conclusion, the OSV conjecture appears to work well in the semi-
classical approximation, if supplemented by a mearsure factor. The concrete
proposal discussed in these lectures works correctly in this limit. It is less
clear what is the status of the original, more ambitious goal of finding an
exact relation [1], which would have various ramifications, such as helping to
find a non-perturbative definition of the topolocial string [1], formulating a
mini-superspace approximation of stringy quantum cosmology [72], studying
N = 1 compactifications via ‘topological M-theory’ [42, 50], and approach-
ing the vacuum selection problem of string theory by invoking an ‘entropic
principle’ [73, 74, 75].
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5.4 Partition functions for small black holes

The counting of 1
2 -BPS states gave rise to the following microscopic entropy:

Smicro ≈ log Î13

(

4π

√

1

2
|q2|
)

≈ 4π

√

1

2
|q2| − 27

4
log |q2| + · · · (119)

This is to be compared with the macroscopic entropy. Including the classical
part of the R2-coupling and the non-holomorphic corrections, but neglecting
instantons, this is:

Smacro = 4π

√

1

2
|q2| − 6 log |q2| + · · · (120)

While the leading terms agree, the first subleading term comes with a slightly
different coefficient. However, we have seen that both entropies belong to
different ensembles, so that we can only expect that they agree in the ther-
modynamical limit. Since we have a conjecture about the exact (or at least
assymptotically exact) relation between both entropies, we can check whether
the shift in the coefficient of the subleading term is predicted correctly. Our
conjecture about the relation between the canonical free energy and the canon-
ical partition function predicts the following relation (see section 3.6):

Smicro = Smacro + log

√

∆−

∆+
.

This shows that both entropy are indeed different if the measure factor ∆−

and the fluctuation determinant ∆+ are different. For dyonic black holes we
found that both were equal, up to subleading contribution. Unfortunately our
relation is not useful for small black holes, because

∆− = 0 , up to non-holomorphic terms and instantons,

∆+ = 0 , up to instantons .

Since the measure factor and the fluctuation determinant are degenerate (up
to subleading contributions) the saddle point approximation is not well de-
fined. This reflect that small black hole live on the boundary of moduli space.

We can still test our conjecture about the relation between the mixed
partation and the mixed free energy, in particular the presence of a measure
factor and the role of non-holomorphic contributions. This requires to evaluate

exp(Smicro) = d(p1, q) ≈
∫

dφ
√

∆−(p1, φ)eπ[Fmix(p
1,φ)−qIφI ] ,

where a non-vanishing ∆− is obtained by including the non-holomorphic cor-
restions.34 We still neglect the contributions of the instantons.

34 Remember that p1 is an electric charge for the heterotic string. We take q1 = 0,
because this is a magnetic charge.
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The integral can be evaluated, with the result:

d(p1, q) ≈
∫

dSdS

(S + S)14

√

S + S − 12

2π
exp

[

− πq2

S + S
+ 2π(S + S)

]

. (121)

Here the integrals over φa = φ2, φ3, . . . , φ27 have been performed and the
remaining integrals over φ0 and φ1 have been expressed in terms of the dilaton
S. If we approximate

√

S + S − 12

2π
≈
√

S + S ,

this becomes the integral representation of a modified Bessel function.
Then our conjecture predicts

S
(predicted)
micro ≈ log Î13− 1

2

(4π

√

1

2
|q2|) ≈ 4π

√

1

2
|q2| − 13

2
log |q2| + · · · , (122)

while the entropy obtained from state counting is:

Smicro ≈ log Î13(4π

√

1

2
|q2|) ≈ 4π

√

1

2
|q2| − 27

4
log |q2| + · · · (123)

Thus there is a systematic mismatch in the index of the Bessel function, and
while the leading terms agree, the coefficients of the log-terms and all the
following inverse-power terms mismatch.

This result can be compared with the original OSV-conjecture, where one
does not have a measure factor, and where only holomorphic contributions to
the free energy are taken into account:

d(p1, q) ≈
∫

dφeπ[FOSV (p1,φ)−qIφI ] ≈ (p1)2Î15(4π

√

1

2
|q2|)

S
(predicted)
micro = 4π

√

1

2
|q2| − 31

4
log |q2| + log(p1)2 + · · · (124)

In this case the index of the Bessel function deviates even more, and in addi-
tion there is an explicit factor (p1)2 which spoils T-duality. This clearly shows
that the OSV conjecture needs to be modified by a measure factor.

When deriving (124), we have integrated over 28 potentials φI , as we have
done in our discussion of large black holes, and in (121). There is one subtlety
to be discussed here. The full N = 4 theory has 28 gauge fields, but we have
used the N = 2 formalism. Since we disregard the gravitini multiplets (and
the hypermultiplets), we work with a truncation to a subsector consisting
of the N = 2 gravity multiplet and 23 vector multiplets. This theory only
has 24 gauge fields, and therefore it only has 24 electrostatic potentials φI .
However, at the end we should reconstruct the missing 4 gauge potentials,
and as we have seen when recovering the N = 4 entropy formula using the
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N = 2 formalism, this extension is uniquely determined by T-duality. As we
have seen this prescription works for large black holes, but for small black
holes we do not quite obtain the right index for the Bessel function.

However, the correct index for the Bessel function is obtained when using
the unmodified OSV conjecture, but integrating only over 24 instead of 28
electrostatic potentials:

d(p1, q) ≈
∫

dφeπ[FOSV (p1,φ)−qIφI ] ≈ (p1)2Î13(4π

√

1

2
|q2|) , (125)

S
(predicted)
micro = 4π

√

1

2
|q2| − 27

4
log |q2| + log(p1)2 + · · · (126)

Note that this does not cure the problem with the prefactor (p1)2, which is
incompatible with T-duality. It is intriguing, but at the same time puzzling
that the correct value for the index is obtained by reducing the number of
integrations. However, it is not clear how to interprete this restriction. More-
over, it is unavoidable to include a measure factor to implement T-duality,
and this is very likely to have an effect of the index.

Further reading and references

In this section, we followed [35], and compared the result with the calcu-
lation based on the original OSV conjecture [57, 58]. Both approaches find
agreement for the leading term, but disagreement for the subleading terms.
Moreover, when sticking to the original OSV conjecture, the result is not
compatible with T-duality. Further problems and subtleties with the OSV
conjecture for 1

2 -BPS black holes have been discussed in detail in [57, 58].
One obvious explanation for these difficulties is that in the ‘would-be lead-
ing’ order approximation small black holes are singular: they have a vanishing
horizon area and the moduli take values at the boundary of the moduli space.
While the higher curvature smooth the null singularity, leading to agreement
between macroscopic and microscopic entropy to leading order in the charges,
the semi-classical expansion is still ill defined, since one attempts to expand
around a singular configuration. Apparently one needs to find a different way
of organising the expansion, if some version of the OSV conjecture is to hold
at the semi-classical level. A more drastic alternative is that the OSV conjec-
ture simply does not apply to small black holes. But since the mismatch of the
subleading corrections appears to follow some systematics, there is room for
hope. The situation is less encouraging for the non-perturbative corrections
coming form instantons. As observed both in [57, 58] and in [35] the analytical
structure of the terms observed in microscopic state counting is different from
the one expected on the basis of the OSV conjecture.

5.5 Problems

Problem 3 Counting states of the open bosonic string.
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In the light cone gauge, a basis for the Hilbert space of the open bosonic string
(neglecting the center of mass momentum) is given by

αi1
−m1

αi2
−m2

· · · |0〉 , (127)

where ik = 1, . . . , 24 and mk = 1, 2, 3, . . .. States with the same (total) excita-
tion number n = m1+m2+ . . . have the same mass. Incidentially, the problem
of counting states of the open bosonic string with given mass, is the same as
counting the number of 1

2 -BPS states for the heterotic string, compactified on
T 6, with given charges q ∈ ΓNarain.

The number of states with given excitation number n is encoded in the
partition function

Z(q) = Tr qN , (128)

where the trace is over the Hilbert space of physical string states (light
cone gauge), q ∈ C, and N is the number operator with eigenvalues n =
0, 1, 2, 3, . . .. Evaluation of the trace gives

Z(q) =

( ∞
∏

l=1

(1 − ql)

)−c

, |q| < 1 , (129)

where c = D − 2 = 24 is the number of space-time dimensions transverse
to the string world sheet (the physical excitations). The number dn of string
states at level n is encoded in the Taylor expansion

Z(q) =

∞
∑

n=0

dnq
n . (130)

Verify that dn counts string states, for small n = 0, 1, 2, . . . Do this either
for the critical open bosonic string, c = 24, or for just one string coordinate,
c = 1. The latter is the classical problem of counting partitions of an integer.
It is instructive to evaluate dn both directly, by reorganising the product
representation (129) into a Taylor series, and by the integral representation
of dn obtained by inverting (130).

Hints: Note that
Z(q) = q∆−1(q) , (131)

where ∆(q) = η24(q) is the cusp form (η is the Dedekind eta-function). ∆(q)
is a modular form of weight 12 and has the following expansion around the
cusp q = 0:

∆(q) = q − 24q2 + 252q3 − 1472q4 + 4830q5 + O(q6) . (132)

∆(q) has no zeros for 0 < |q| < 1.
dn can be computed by a contour integral in the unit disc |q| < 1.
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Problem 4 The asymptotic state density of the open bosonic string.

Given the information provided in Problem 3, compute the asymptotic number
of open bosonic string states dn for n→ ∞. (You may restrict yourself to the
case c = 24, which corresponds to the critical dimension.)

Instructions:

1. The unit disc |q| < 1 can be mapped to the semi-infinite strip − 1
2 < τ1 <

1
2 , τ2 > 0 in the complex τ -plane, τ = τ1 + iτ2 by

q = e2πiτ . (133)

(Like other modular forms, ∆ extends to a holomorphic function on the
whole upper half plane by periodicity in τ1.)
Rewrite the contour integral for dn as a contour integral over τ .

2. Use the modular properties of ∆(τ) to find the behaviour of the integrand
close to τ = 0 from the known behaviour of ∆(τ) at τ = i∞ ⇔ q = 0.
Show that for n → ∞ the integrand has a sharp saddle point. Use this
to evaluate the contour integral in saddle point approximation. (Expand
the integrand to second order around the saddle point and perform the
resulting Gaussian integral.)

3. The correct result is

dn ≈ Const. e4π
√

nn− 27

4 . (134)
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A Kähler manifolds and special Kähler manifolds

In this appendix we review Kähler manifolds and special Kähler manifolds
from the mathematical perspective. The first part is devoted to the basic
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definitions and properties of complex, hermitean and Kähler manifolds. For
a more extensive review we recommend the book by Nakahara [76], and, for
readers with a stronger mathematical inclination, the concise lecture notes
by Ballmann [77]. The characterisation of complex and Kähler manifolds in
terms of holonomy groups can be found in [78]. The second part reviews
special Kähler manifolds and is mostly based on [22, 23] with supplements
from [79, 80, 81]. A review of special geometry from a modern perspective can
also be found in [82].

A para-complex variant of special geometry, which applies to the tar-
get manifolds of Euclidean N = 2 theories has been developed in [79, 80].
The framework of ǫ-Kähler manifolds, which will be employed in [81], is
particularly suitable for treating Euclidean supersymmetry and standard
(Lorentzian) supersymmetry in parallel.

A.1 Complex and almost complex manifolds

Let M be a differentiable manifold of dimension 2n.

Definition 1 An almost complex structure I on M is tensor field of type
(1, 1) with the property that (pointwise)

I2 = −Id .

In components, using real coordinates {xm|m = 1, . . . , 2n}, this condition
reads:

Im
p I

p
n = −δm

n . (135)

Definition 2 An almost complex structure is called integrable if the associ-
ated Nijenhuis tensor NI vanishes for all vector fields X,Y on M :

NI(X,Y ) := [IX, IY ] + [X,Y ] − I[X, IY ] − I[IX, Y ] = 0 .

The expression for NI in terms of local coordinates {xm} can be found by
substituting the coordinate expressions X = Xm∂m, Y = Y m∂m for the
vector fields.35 We will not need this explicitly.

Remark: The integrability of an almost complex structure is equivalent to
the existence of local complex coordinates {zi|i = 1, . . . , n}. An integrable
almost complex structure is therefore also simply called a complex structure.

Definition 3 A manifold which is equipped with an (almost) complex struc-
ture is called an (almost) complex manifold.

Remark: The existence of an (almost) complex structure can be rephrased
in terms of holonomy. An almost complex structure is a GL(n,C) structure,
and a complex structure is a torsion-free GL(n,C) structure.

35 In fact, it is sufficient to substitute a basis of coordinate vector fields {∂m} to
obtain the components Nmn = N(∂m, ∂n).
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A.2 Hermitean manifolds

Let (M, I) be a complex manifold and let g be a (pseudo-)Riemannian metric
on M .

Definition 4 (M, g, I) is called a hermitean manifold, if I generates isome-
tries of g:

I∗g = g . (136)

Remark: Condition (136) is equivalent to saying that

g(IX, IY ) = g(X,Y ) ,

for all vector fields X,Y on M . In local coordinates the condition reads:

gpqI
p
mI

q
n = gmn . (137)

Remark: If the metric is indefinite, (M, g, I) is called pseudo-hermitean, but
we will usually drop the prefix ‘pseudo-’.

On a hermitean manifold one can define the so-called fundamental two-form:

ω(X,Y ) := g(IX, Y ) ,

or, in coordinates,
ωmn = −gmpI

p
n . (138)

Note that ωmn = −ωnm, because gmn is symmetric, while I satisfies (135)
and (137). Moreover the two-form ω is non-degenerate, because g is.

Equation (138) can be solved for the metric g or for the complex structure
I:

gmn = ωmkI
k
n ,

Im
n = −gmkωkn . (139)

Thus, if any two of the three data g (metric), I (complex structure) or ω (fun-
damental two-form) are given on a hermitean manifold, the third is already
determined.

When we use complex coordinates {zi}, the complex structure only has
‘pure’ components:

Ii
j = iδi

j , Ii
j

= −iδi
j
.

For a hermitean metric the pure components vanish, gij = 0 and gij = 0. Only
the ‘mixed’ components gij and gij = gij remain. Note that the matrix gij is
hermitean. The fundamental two-form also only has mixed components, and
ωij = igij . Thus in complex coordinates the matrices representing the metric
and the fundamental two-form are hermitean and anti-hermitean, respectively,
while in real coordinates they are symmetric and antisymmetric, respectively.
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On a hermitean manifold the metric

g = gij(dz
i ⊗ zj + dzj ⊗ dzi)

and the fundamental two-form

ω = igijdz
i ∧ dzj = igij(dz

i ⊗ dzj − dzj ⊗ dzi)

can be combined into the hermitean form

τ = gijdz
i ⊗ dzj =

1

2
(g − iω) .

The hermitean form defines a hermitean metric on the complexified tangent
bundle TMC of M . All statements and formulae in this section apply irre-
spective of g being positive definit or indefinit (but non-degenerate).

A.3 Kähler manifolds

Definition 5 A Kähler manifold (M, g, I) is a hermitean manifold where the
fundamental form is closed:

dω = 0 .

Remark: Equivalently, one can impose that the complex structure is parallel
with respect to the Levi-Civita connection,

∇(g)I = 0 .

Comment: Hermitean manifolds are characterised by ‘pointwise’ compatibil-
ity conditions between metric, complex structure and fundamental form. For
Kähler manifolds one imposes a stronger compatibility condition: the complex
structure I must be parallel (covariantly constant) with respect to the Levi-
Civita connection ∇(g). Since the metric g itself is parallel by definition of
∇(g), parallelity of I is equivalent to the parallelity of the fundamental form
ω. Moreover, it can be shown that if ω is closed, it is automatically parallel
with respect to ∇(g).

The fundamental form of a Kähler manifold is called its Kähler form. It can
be shown that a Kähler metric can be expressed in terms of a real-analytic
function, the Kähler potential, by36

gij =
∂2K(z, z)

∂zi∂zj
.

The Kähler form can also be expressed as the second derivative of the Kähler
potential:

36 In fact, this might serve as yet another equivalent definition of a Kähler manifold.
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ω = i∂∂K = igijdz
i ∧ dzj , where ∂ = dzi∂i , ∂ = dzj∂j

are the Dolbeault operators (holomorphic exterior derivatives).

Remark: If the metric g is positive definit, a Kähler manifold can be defined
equivalently as a 2n-dimensional manifold with a torsion-free U(n) structure.
Note that U(n) ≃ GL(n,C) ∩ SO(2n) ⊂ GL(2n,R), which shows that U(n)
holonomy implies that there is a connection such that both the metric and
the complex structure are parallel.

Remark: If the metric is not positive definit, U(n) is replaced by a suitable
non-compact form. Pseudo-hermitean manifolds with closed fundamental form
are called pseudo-Kähler manifolds. We have seen in the main text that the
(conical affine special) Kähler manifolds occuring in the construction of su-
pergravity theories within the superconformal calculus always have indefinite
signature, because the compensator of complex dilatations has a kinetic term
with an inverted sign. We usually omit the prefix ‘pseudo-’ in the following
and in the main text.

A.4 Affine special Kähler manifolds

Special Kähler manifolds are distinguished by the fact that the Kähler po-
tential K(z, z) can itself be expressed in terms of a holomorphic prepotential
F (z). The intrinsic definition of such manifolds is as follows [22].

Definition 6 An affine special Kähler manifold (M, g, I,∇) is a Kähler man-
ifold (M, g, I) equipped with a flat, torsion-free connection ∇, which has the
following properties:

1. The connection is symplectic, i.e., the Kähler form is parallel

∇ω = 0 .

2. The complex structure satisfies:

d∇I = 0 ,

which means, in local coordinates, that

∇[mI
p

n] = 0 .

Remark: The complex structure is not parallel with respect to the special
connection ∇, but only ‘closed’ (regarding I as a vector-valued one-form).
This, together with the fact that ∇ is flat shows that the connections ∇ and
∇(g) are different, except for the trivial case of a flat Levi-Civita connection.

It can be shown that the existence of a special connection ∇ is equivalent to
the existence of a Kählerian Lagrangian immersion of M into a model vector
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space, namely the standard complex vector space of doubled dimension [23].
Let us review this construction in some detail.

The standard complex symplectic vector space of complex dimension 2n
is V = T ∗Cn. As a vector space, this is isomorphic to C2n. Let zi be linear
coordinates on Cn and wi be coordinates on TzCn. Then we can take (zi, wi)
as coordinates on T ∗Cn, and the symplectic form is

ΩV = dzi ∧ dwi .

If we interpret V as a phase space, then the zi are the coordinates and the
wi are the associated momenta. Symplectic rotations of (zi, wi) give rise to
different ‘polarisations’ (choices of coordinates vs momenta) of V .

The vector space V can be made a Kähler manifold in the following way:
starting form the antisymmetric complex bilinear form ΩV one can define
an hermitean sesquilinear form γV by applying complex conjugation in the
second argument of Ω, plus multiplication by i:

γV = i
(

dzi ⊗ dwi − dwi ⊗ dzi
)

.

The real part of γV is a flat Kähler metric of signature (2n, 2n):

gV = Re(γV ) = i
(

dzi ⊗sym dwi − dwi ⊗sym dzi
)

,

while the imaginary part is the associated Kähler form:

ωV = Im(γV ) = dzi ∧ dwi − dwi ∧ dzi .

Now consider the immersion of a manifold M into V . An immersion is a
map with invertible differential. An immersion need not be an invertible map,
but it can be made invertible by restriction. Invertible immersion are called
embeddings. (Intuitively, the difference between immersions and embeddings
is that embeddings are not allowed to have self-intersections, or points where
two image points come arbitrarily close.)

Definition 7 An immersion Φ of a complex manifold M into a Kähler man-
ifold is called Kählerian, if it is holomorphic and if the pullback g = Φ∗gV of
the Kähler metric is nondegenerate.

Remark: Equivalently, one can require that the pullback of the hermitean
form or of the Kähler form is non-degenerate.

Definition 8 An immersion Φ of a complex manifold M into a complex sym-
plectic manifold is called Lagrangian if the pullback of the complex symplectic
form vanishes, Φ∗ΩV = 0.

Remark: For generic choices of coordinates, a Lagrangian immersion Φ is
generated by a holomorphic function F on M , i.e. Φ = dF .
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It has been shown that for any affine special Kähler manifold of complex di-
mensions n there exists37 a Kählerian Lagrangian immersion into V = T ∗Cn.
Moreover every Kählerian Langrangian immersion of an n-dimensional com-
plex manifold M into V induces on it the structure of an affine special Kähler
manifold.

By the immersion Φ, the special Kähler manifold M is mapped into V as
the graph38 of a map zi → wi = ∂F

∂zi , where F is the prepotential of the special
Kähler metric, which is the generating function of the immersion: Φ = dF .
Using the immersion, one obtains ‘special’ coordinates on M by picking half
of the coordinates (zi, wi) of V (say, the zi). Along the graph, the other half of
the coordinates of V are dependent quantities, and can be expressed through
the prepotential: wi = wi(z) = ∂F

∂zi . The special Kähler metric g, the Kähler
form ω and the hermitean form γ on M are the pullbacks of the corresponding
data gV , ωV , τV of V under the immersion.

Remark: For non-generic choices of Φ the immersed M may be not a graph.
Then the zi do not provide local coordinates, the wi are not the components
of a gradient, and Φ does not have a generating function, i.e., ‘there is no
prepotential’.39 This is not a problem, since one can work perfectly well by
using only the symplectic vector (zi, wi). Moreover, by a symplectic trans-
formation one can always make the situation generic and go to a symplectic
basis (polarisation of V ) which admits a prepotential.

Remark: In the main text we denoted the component expression for the affine
special Kähler metric on M by NIJ instead of gij . The scalar fields XI corre-

spond to the special coordinates zi. More prescisely, the scalar fields can be
interpreted as compositions of maps from space-time into M with coordinate
maps M ⊃ U → Cn. The key formulae which express the Kähler potential
and the metric in terms of the prepotential are (34) and (37).

Special affine coordinates and the Hesse potential

Kähler manifolds are in particular symplectic manifolds, because the funda-
mental form is both non-degenerate and closed. The additional structure on
affine special Kähler manifolds is the special connection ∇, which is both flat
and symplectic (i.e. the symplectic form ω is parallel with respect to ∇.)40 As
a consequence, there exist ∇-affine (real) coordinates xi, yi, i = 1, . . . , n on
M ,

37 locally, and if the manifold is simply connected even globally,
38 More precisely, the image is generically the graph of map. We comment on non-

generic immersions below.
39 In the physics literature, this phenomenon and its consequences have been dis-

cussed in detail in [83, 84].
40 It is of course also parallel with respect to the Levi-Civita connection ∇(g), but

the Levi-Civita connection is not flat (except in trivial cases).
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∇dxi = 0 , ∇dyi = 0 ,

which are adapted to the symplectic structure,

ω = 2dxi ∧ dyi .

The relation between these special affine coordinates and the special coor-
dinates zi can be elucidated by using the immersion of M into V . We can
decompose zi, wi into their real and imaginary parts:

zi = xi + iui , wi = yi + ivi .

Then the Kähler form ωV takes the form

ωV = dxi ∧ dyi + dui ∧ dvi .

Using that the pullback of the complex symplectic form ΩV vanishes, one
finds that the pullback of ωV is41

ω = Φ∗ωV = 2dxi ∧ dyi .

Thus the special real coordinates form the real part of the symplectic vector
(zi, wi). The real and imaginary parts of zi = xi + ui also form a system of
real coordinates on M , which is induced by the complex coordinate system
zi, but not adapted to the symplectic structure (since xi, ui do not form a
symplectic vector). The change of coordinates

(xi, ui) → (xi, yi)

can be viewed as a Legendre transform, because

yi = Re

(

∂F

∂zi

)

=
∂ImF

∂Imzi
=
∂ImF

∂ui
. (140)

The Legendre transform maps the imaginary part of the prepotential to the
Hesse potential

H(x, y) = 2
(

ImF (x+ iu(x, y)) − uiy
i
)

.

A Hesse potential is a real Kähler potential, i.e., a potential for the metric,
but based on real rather than complex coordinates. Denoting the affine special
coordinates by {qa|a = 1, . . . , 2n} = {xi, yi|i = 1, . . . , n}, the special Kähler
metric on M is given by

g =
∂2H

∂qa∂qb
dqa ⊗sym dqb .

41 For notational simplicity, we denote the pulled back coordinates Φ∗xi, Φ∗yi by
xi, yi.
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The special connection present on an affine special Kähler manifold is not
unique. The U(1) action generated by the complex structure generates a one-
parameter family of such connections. Each of these comes with its correspond-
ing special affine coordinates. The imaginary part (ui, vi) of the symplectic
vector (zi, wi) provides one of these special affine coordinate systmes. The co-
ordinate systems (xi, yi) and (ui, vi) both occur naturally in the construction
of BPS black hole solutions.

A.5 Conical affine special Kähler manifolds and projective special

Kähler manifolds

Definition 9 A conical affine special Kähler manifold (M, g, I,∇, ξ) is an
affine special Kähler manifold endowed with a vector field ξ such that

∇(g)ξ = ∇ξ = Id . (141)

The condition ∇(g)ξ = Id implies that ξ is a homothetic Killing vector field,
and that it is hypersurface orthogonal. Then one can introduce adapted co-
ordinates {r, va} such that

ξ = r
∂

∂r
and

g = dr2 + r2gab(v)dv
advb .

Thus M is a real cone. However, in our case M carries additional structures,
and ξ satisfies the additional condition ∇ξ = Id. It can be shown that this
implies that M has a freely acting U(1) isometry, with Killing vector field
Iξ. The level surfaces r = const. of the cone coincide with the level surfaces
of the moment map of the isometry. Therefore the isometry preserves the
level surfaces, and M ⊂ T ∗Cn+1 has the structure of a complex cone, withC∗-action generated by {ξ, Iξ}.

One can choose special affine coordinates such that ξ has the form42

ξ = qa ∂

∂qa
= xi ∂

∂xi
+ yi

∂

∂yi
. (142)

Moreover, it can be shown that that the existence of a vector field ξ which
satisfies (141) is equivalent to the condition that the prepotential is homoge-
nous of degree 2:

F (λzi) = λ2F (zi) ,

where zi → λzi is the action of C∗ on the (conical) special coordinates {zi}
associated with the (conical) special affine coordinates {xi, yi}. In special co-
ordinates, ξ takes the form43

42 These are called conical special affine coordinates, but we will usually drop ‘con-
ical’.

43 Note that this is equivalent to (142) if and only if the prepotential is homogenous
of degree 2.
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ξ = zi ∂

∂zi
.

The quotient M = M/C∗ is a Kähler manifold which inherits its metric from
M . Manifolds which are obtained from conical affine special Kähler mani-
folds in this way are called projective special Kähler manifolds. These are the
scalar manifolds of vector multiplets in N = 2 Poincaré supergravity. The
corresponding conical affine special Kähler manifold is the target space of a
gauge equivalent theory of superconformal vector multiplets. As we have seen
from the physical perspective one can go back and forth between M and M .
Geometrically, M can be regarded as a C∗-bundle over M . In turn M itself
is embedded into V = T ∗Cn+1, where n+ 1 is the complex dimensions of M .
In the main text the D-gauge is fixed by imposing

−i(XIF I − FIX
I
) = 1

on the symplectic vector (XI , FI). Geometrically, this means that (XI , FI)
is required to be a unitary section of the so-called universal line bundle over
M . Instead of using unitary sections, one can also reformulate the theory in
terms of holomorphic sections of the universal bundle. This is frequently done
when working with general (in contrast to special) coordinates, see [21]. For
a more detailed account on the universal bundle, see [81].

In the main text we gave explicit formulae for various quantities defined on
projective special Kähler manifolds in the notation used in the supergravity
literature. In particular, (61) and (62) are the expressions for the metric and
Kähler potential in terms of special coordinates onM . There we also discussed
the relation between the signatures of the special Kähler metrics on M and M
The ‘horizontal’ metric gIJ (60) vanishes along the vertical directions (those
orthogonal to M under the natural projection, with respect to the special
Kähler metric of M), but it is non-degenerate (and positive definit, if the
signature of the metric of M is complex Lorentzian) along the horizontal
directions, which are those which project orthogonally onto M . This defines a
projective special Kähler metric on M , for which an explicit formula is given
in (61), (62) in special coordinates.

B Modular forms

Here we summarize some standard results on modular forms. See [85] for a
more detailed account. As we mentioned in the main text, the theory of Siegel
modular forms is a generalisation of the theory of ‘standard’ modular forms
reviewed here. Some facts are stated in the main text. For a detailed account
on Siegel modular forms see for example [86].

The action of the modular group PSL(2,Z) ≃ SL(2,Z)/Z2 on the upper
half plane H = {τ ∈ C|Imτ > 0} is:
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τ → τ ′ =
aτ + b

cτ + d
, where

(

a b
c d

)

∈ SL(2,Z) .

The modular group is generated by the two transformations44

T : τ → τ + 1 , S : τ → −1

τ
.

The interior of the standard fundamental domain for this group action is

F = {τ ∈ H| − 1

2
< Reτ <

1

2
, |τ | > 1} .

The full domain is obtained by adding a point at infinity, denoted i∞, and
identifying points on the boundary which are related by the group action. The
point i∞ is called the cusp point.

A function on H is said to transform with (modular) weight k:

φ(τ ′) = (cτ + d)kφ(τ)

A function on H is called a modular function, a modular form, a cusp form,
if it is meromorphic, holomorphic, vanishing at the cusp, respectively.

The ring of modular forms is generated by the Eisenstein series G4, G6,
which have weights 4 and 6 respectively. The (normalized45) Eisenstein series
of weigth k is defined by

Gk(τ) =
(k − 1)!

2(2πi)k

′
∑

m,n

1

(mτ + n)k
,

where the sum is over all pairs of integers (m,n) except (0, 0). The sum con-
verges absolutely for k > 2 and vanishes identically for odd k. For k = 2 the
sum is only conditionally convergent, and one can define two functions with
interesting properties. The holomorphic second Eisenstein series is defined by

Gk(τ) =
(k − 1)!

(2πi)k

∞
∑

n=1

1

nk
+

∞
∑

m=1

(

(k − 1)!

(2πi)k

∑

n∈Z 1

(mτ + n)k

)

,

with k = 2 (the same organisation of the sum can be used for k > 2). The
non-holomorphic second Eisenstein series is defined by

G2(τ, τ ) = − 1

8π2
lim

ǫ→0+

( ′
∑

m,n

1

(mτ + n)|mτ + n|ǫ

)

.

44 The notation T and S is standard in the mathematical literature, and does not
refer to T- or S-duality. However, there are several examples where either T-
duality or S-duality acts by PSL(2,Z) transformations on complex fields.

45 With these prefactors, the coefficients of an expansion in q = e2πiτ are rational
numbers. In fact, they are related to the Bernoulli numbers.
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Both are related by

G2(τ, τ ) = G2(τ) +
1

8πτ2
.

While the non-holomorphic G2(τ, τ ) transforms with weight two, the holo-
morphic function G2(τ) transforms with an extra term:

G2

(

aτ + b

cτ + d

)

= (cτ + d)2G2(τ) −
c(cτ + d)

4πi
.

There is no modular form of weight two: G2(τ) is holomorphic but does not
strictly transform with weight two, while G2(τ, τ ) transforms with weight two
but is not holomorphic.

There is a unique cusp form ∆12 of weigth 12, which can be expressed in
terms of the Dedekind η-function by

∆(τ) = η24(τ) ,

where

∆(τ) = η24(τ) = q

∞
∏

l=1

(1 − ql)−24 ,

η(τ) = q
1

24

∞
∏

l=1

(1 − ql)−1 . (143)

The Dedekind η-function is a modular form of weight 1
2 with multiplier system,

i.e. a ‘modular form up to phase’:

η(τ + 1) = e
2πi

24 η(τ) , η

(

−1

τ

)

=
√
−iτη(τ) .

Modular forms are periodic under τ → τ + 1 and therefore they have a
Fourier expansion in τ1 = Reτ . It is convenient to introduce the variable

q = e2iπτ .

In the main text we avoid using the variable q, because it might be confused
with the electric charge vector q ∈ Γ . The transformation τ → q maps the
the semi-infinite strip {τ ∈ C| |τ1| ≤ 1, τ2 > 0} ⊂ H onto the unit disc
{q ∈ C| |q| < 1} ⊂ C. In particular, the cusp τ = i∞ is mapped to the origin
q = 0. The Fourier expansion in τ1 maps to a Laurent expansion in q, known
as the q-expansion.

The q-expansion of the cusp form ∆12 = η24 is

η24(q) = q − 24q2 + 252q3 + · · ·

In the main text we express modular forms in terms of variables which live in
right half plane rather than in the upper half plane, e.g., the heterotic dilaton
S, where τ = iS. For notational simplicity we then write η(S) instead of η(iS).
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