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LOWER BOUNDS ON THE LARGEST

INHOMOGENEOUS APPROXIMATION CONSTANT
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ABSTRACT. For a given irrational number α and a real number γ in (0, 1) one

defines the two-sided inhomogeneous approximation constant

M(α, γ) := lim inf
|n|→∞

|n|||nα− γ||,
and the case of worst inhomogeneous approximation for α

ρ(α) := sup
γ �∈{m+lα : m,l∈Z}

M(α, γ).

We are interested in lower bounds on ρ(α) in terms of R := lim infi→∞ ai, where
the ai are the partial quotients in the negative (i.e., the ‘round-up’) continued
fraction expansion of α. We obtain bounds for any R ≥ 3 which are best possible
when R is even (and asymptotically precise when R is odd). In particular when

R ≥ 3
ρ(α) ≥ 1

6
√
3 + 8

=
1

18.3923 . . .
,

and when R ≥ 4, optimally,

ρ(α) ≥ 1

4
√
3 + 2

=
1

8.9282 . . .

Communicated by Florian Luca

1. Introduction

For an irrational number α and a real number γ, we define the two-sided
inhomogeneous approximation constant by

M (α, γ) := lim inf
|n|→∞

|n|||nα − γ||,
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where ||x|| denotes the distance from x to the nearest integer. Plainly this reduces
to the classical homogeneous problem γ = 0 if γ = m + lα for some m, l ∈ Z.
The homogeneous problem is well understood, with M (α, 0) readily determined
from the usual regular continued fraction expansion of α = [a0; a1, a2, . . .],

M (α, 0) =
1

lim supi→∞ (ai + [0; ai+1, ai+2, . . .] + [0; ai−1, ai−2, . . .])
≤ 1√

5
,

leading naturally to bounds in terms of the largest partial quotients

1√
r2 + 4r

≤ M (α, 0) ≤ 1√
r2 + 4

, r := lim sup
i→∞

ai,

with equality for α = [0; 1, r] = 1
2 (
√
r2 + 4r−r) and α = [0; r] = 1

2 (
√
r2 + 4−r).

For any α, we define the worst inhomogeneous approximation

ρ(α) := sup
γ �∈{m+lα : m,l∈Z}

M (α, γ).

By contrast with the homogeneous case, the inhomogeneous constant ρ(α) will
be affected by the smallest partial quotients

R := lim inf
i→∞

ai. (1)

In subsequent sections the ai in this definition will refer to the partial quotients
in the negative ‘round-up’ continued fraction expansion rather than the regular
expansion. From a well-known theorem of Minkowski we have

ρ(α) ≤ 1

4
, (2)

see, for example, [1, Chap. III] or [12, IV.9], Grace [5] giving examples with
R = ∞ and ρ(α) = 1

4 . We are interested here in the lower bound for ρ(α).
Absolute bounds

ρ(α) ≥ C (3)

have some history. Davenport [2] obtained (3) with C = 1
128 , Ennola [3]

C =
1

16 + 6
√
6
=

1

30.69 . . .
,

and in [9] the absolute lower bound was improved to

C =
(
√
10− 3)(7−√

13)

(31− 2
√
10− 3

√
13)

=
1

25.1592 . . .
(4)

See Rockett and Szüsz [12] for a simpler proof with C = 1
32 . The smallest known

value of ρ(α), and hence an upper bound on the optimal absolute lower bound C,
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is still an example of Pitman [11]

ρ

(√
3122285− 1097

1094

)
=

547

4
√
3122285

=
1

12.9213 . . .
.

More generally, [9] obtains bounds of the form ρ(α) ≥ C∗(R), where the ai in (1)
are the partial quotients in the nearest integer continued fraction of α and so
R ≥ 2 (giving (4) when R = 2 and an improvement when R ≥ 3). The bound
comes by constructing a γ∗ with M (α, γ∗) ≥ C∗(R). The values for small R
are given in (17) below and the asymptotic behavior in (21). The goal here
is to improve these R ≥ 3 bounds when the ai ≥ 2 in (1) are the partial
quotients in the negative continued fraction expansion of α rather than the
nearest integer expansion. Of course, when R ≥ 2 in the regular expansion or
R ≥ 3 in the negative expansion, the expansion eventually becomes the nearest
integer expansion (in the remaining cases, R = 1 for the regular expansion and
R = 2 for the negative expansion, the value of R can be much larger, even
infinite, if one uses the nearest integer expansion). From this point on the ai
in our definition of R will refer to the negative expansion and we will assume
that R ≥ 3.

2. Preliminaries

Different algorithms have been used for computing M (α, γ), see Komatsu [6].
In this paper we will follow the approach of [8], which showed how M (α, γ) can
be expressed in terms of the negative continued fraction expansion of α and a
corresponding α–expansion of γ �∈ {m + lα : m, l ∈ Z}. We start by recalling
some notations and results from [8]. Since ||m+x|| = ||x|| for any integer m, we
may assume that α, γ ∈ (0, 1). For an α ∈ (0, 1) we define the negative continued
fraction expansion

α =
1

a1 −
1

a2 −
1

a3 − · · ·

=: [0; a1, a2, a3, · · · ]−, (5)

where the integers ai ≥ 2 are generated by the algorithm

α0 := {α} = α, an+1 :=

⌈
1

αn

⌉
, αn+1 :=

⌈
1

αn

⌉
− 1

αn
,
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and the corresponding convergents
pn

qn
:= [0; a1, a2, . . . , an]

−. Here the pn and

qn are increasing sequences generated by

pn+1 := an+1pn − pn−1, p0 = 0, p−1 = −1,

qn+1 := an+1qn − qn−1, q0 = 1, q−1 = 0.

For the negative expansion the convergents pn/qn form an increasing sequence
converging to α. Notice, increasing the size of any partial quotient decreases
the size of α, that is, for any c ≥ 1

[0; a1, . . . , ai−1, ai + c, . . .]− < [0; a1, . . . , ai−1, ai, . . .]
−. (6)

We define

αn := [0; an+1, an+2, . . .]
−, ᾱn := [0; an, an−1, . . . , a1]

−, Dn := qnα−pn,

so that

Dn = α0α1 · · ·αn = anDn−1 −Dn−2, qn = (ᾱ1ᾱ2 · · · ᾱn)
−1.

We observe that

(a1 − 1)D0 +

∞∑
i=2

(ai − 2)Di−1 = 1, pn+1qn − pnqn+1 = 1. (7)

For any real number γ ∈ (0, 1), we generate the integers bi by the algorithm

γ0 := {γ} = γ, bi+1 :=

⌊
γi
αi

⌋
, γi+1 :=

{
γi
αi

}
,

so that

γ =

n∑
i=1

biDi−1 + γnDn−1 =

∞∑
i=1

biDi−1

gives the unique expansion of γ of the form
∑∞

i=1 biDi−1, called the α–expansion
of γ, with the following properties [8]:

(1) 0 ≤ bi ≤ ai − 1 for all i,

(2) the sequence {bi}i does not contain a block of the form bs = as−1 for some
s, with bj = aj − 2 for all j > s or with bk = ak − 1 for some k > s and
bj = aj − 2 for all k > j > s.

We define the sequence of integers tk by bk = 1
2 (ak − 2 + tk). Then

γ =

∞∑
i=1

1

2
(ai − 2 + ti)Di−1, (8)
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and

d−k :=

k∑
j=1

tj

(
qj−1

qk

)
= tkᾱk + tk−1ᾱkᾱk−1 + tk−2ᾱkᾱk−1ᾱk−2 + · · · ,

d+k :=

∞∑
j=k+1

tj

(
Dj−1

Dk−1

)
= tk+1αk + tk+2αkαk+1 + tk+3αkαk+1αk+2 + · · ·

Notice that tk and ak have the same parity, and −(ak − 2) ≤ tk ≤ ak. It was
observed in [8] that

−(1− ᾱk) ≤ d−k ≤ (1 + ᾱk), −(1− αk) ≤ d+k ≤ (1 + αk), (9)

with d+k ≥ 1 − αk (respectively d−k ≥ 1 − ᾱn) if and only if the sequence
tk+1, tk+2, . . . (respectively tk, tk−1, . . .) has the form tj = aj for some j > k
(respectively j ≤ k) with ti = ai − 2 for any k < i < j (respectively j < i ≤ k).
Note that ti = ai if and only if bi = ai − 1. When only finitely many of the
bi = ai − 1, it was shown in [8] that the sequence of best positive and negative
inhomogeneous approximations lies amongst the

Qk :=

k∑
i=1

biqi−1, Qk + qk−1, −(qk − qk−1 −Qk), −(qk −Qk).

We will work with the value of |n| ‖ nα−γ ‖ for these four values of n expressed
in the symmetrical form s1(k), . . . , s4(k) of [8, Theorem 1].

����� 2.1� If γ �∈ {m+ lα : m, l ∈ Z} and the α–expansion of γ has ti = ai
at most finitely many times, then

M (α, γ) = lim inf
k→∞

min{s1(k), s2(k), s3(k), s4(k)},
where

s1(k) :=
1

4
(1− ᾱk + d−k )(1− αk + d+k )/(1− ᾱkαk),

s2(k) :=
1

4
(1 + ᾱk + d−k )(1 + αk − d+k )/(1− ᾱkαk),

s3(k) :=
1

4
(1− ᾱk − d−k )(1− αk − d+k )/(1− ᾱkαk),

s4(k) :=
1

4
(1 + ᾱk − d−k )(1 + αk + d+k )/(1− ᾱkαk).

We set R := lim infi→∞ ai, where the ai are now the partial quotients in the
negative expansion (5).
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In [8, Corollary 1] and [7] we gave the upper bounds,

ρ(α) ≤ 1

4

(
1− 1

R

)
(10)

when R ≥ 4 is even, and

ρ(α) ≤ 1

4

(
1− 1

R

)(
1− 1

R2

)
=

1

4

(
1− 1

R
− 1

R2
+

1

R3

)
(11)

when R ≥ 3 is odd. These are both best possible upper bounds on ρ(α) in terms
of R, equalling

lim
N→∞

ρ
(
[0;R,RN ]−

)
.

When R = 2 the Minkowski bound (2) cannot be improved (the examples
of Grace have infinitely many two’s in their negative expansions).

Our goal here is to obtain a lower bound for ρ(α) when R ≥ 3. For this,
we first construct a γ∗∈(0, 1) and then we use Lemma 2.1 to compute M (α, γ∗),
which gives a lower bound ρ(α) ≥ M (α, γ∗).

3. Main results

Consider a real number γ∗ ∈ (0, 1) which has the unique α–expansion

γ∗ =

∞∑
i=1

biDi−1 =

∞∑
i=1

1

2
(ai − 2 + ti)Di−1, (12)

where the sequence {ti} is given by

ti =

{
0 if ai is even,

(−1)j+1 if ai is the j th odd partial quotient.

Notice that any two nonzero consecutive ti have opposite signs and hence

|d−k |≤ ᾱk, |d+k | ≤ αk, d−k d
+
k ≤ 0. (13)

We define two numbers β and δ

β := [0;R∗]− =
1

2

(
R∗ −

√
R2∗ − 4

)
, δ := [0;R∗∗, R∗]− =

1

R∗∗ − β
, (14)

where

R∗, R∗∗ :=

{
R, R + 1 if R is even,

R+ 1, R if R is odd.
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We set

C(R) :=
(1− 2δ)(1− β)

4(1− δβ)
, (15)

observing that if R is even

C(R) =
1

4

(
R− 2√

R2 − 4 + 1

)
,

and if R is odd

C(R) =
1

4

(
2R− 2−√(R+ 1)2 − 4√

(R+ 1)2 − 4− 1

)
.

The value of M (α, γ∗) gives us a lower bound for ρ(α).

����	�� 3.1� Suppose that (5) gives the negative continued fraction expansion
of α and R = lim infi→∞ ai ≥ 3. Then, with γ∗ as in (12) and C(R) as in (15)
we have

ρ(α) ≥ M (α, γ∗) ≥ C(R). (16)

In particular, when R = 3,

ρ(α) ≥ C(3) =
1

6
√
3 + 8

=
1

18.3923 . . .
,

and when R ≥ 4

ρ(α) ≥ C(4) =
1

4
√
3 + 2

=
1

8.9282 . . .
.

For R ≥ 3 the value of C(R) improves the lower bound C∗(R) of [9, Theorem 4]:

R C∗(R)−1 C(R)−1

2 25.1592 . . . −
3 20.4874 . . . 18.3923 . . .

4 9.3372 . . . 8.9282 . . .

5 8.2500 . . . 7.9497 . . .

6 6.8120 . . . 6.6568 . . .

7 6.4643 . . . 6.3431 . . .

8 5.9109 . . . 5.8306 . . .

(17)

Of course, if all the ai ≥ 3 in the negative expansion the negative and nearest
integer continued fraction expansions coincide. That is, the lower bound C∗(R),
R ≥ 3, actually applies to a much larger class of α than C(R) (and so is not
surprisingly smaller). Better bounds are also given in [9] when the nearest integer
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expansion coincides with the regular expansion. Notice that the bound C(R)
increases to 1/4 as R → ∞; in particular, from (10) or (11) and Theorem 3.1,
when R ≥ 3

ρ(α) =
1

4
if and only if R = ∞. (18)

Fukasawa [4] showed that (18) holds without the R ≥ 3 condition when using
the nearest integer continued fraction expansion (the restriction is needed here
since large partial quotients in the regular expansion will cause long strings
of 2’s in the negative expansion). We note the asymptotic behavior of C(R);
when R ≥ 4 is even

C(R) =
1

4

(
1− 3

R
+

5

R2
− E1(R)

R3

)
, 7.3268 < E1(R) < 11, (19)

and when R ≥ 3 is odd

C(R) =
1

4

(
1− 3

R
+

4

R2
− E2(R)

R3

)
, 6.1279 < E2(R) < 10. (20)

For comparison, we note the [9] bounds

C∗(R) =

{
1
4

(
1− 3

R + 4
R2 +O(R−3)

)
, if R is even,

1
4

(
1− 3

R + 3
R2 +O(R−3)

)
, if R is odd,

(21)

with this lower bound asymptotically optimal (and hence C∗(R) inevitably
smaller than C(R)) when R is even. When R is odd, it is not known whether
the 3 in the 3/R2 term in (21) is optimal.

Our lower bound C(R) for ρ(α) is optimal when R is even.

����	�� 3.2� If α has negative continued fraction expansion of period

R + 1, R, . . . , R︸ ︷︷ ︸
l times

, (22)

with R ≥ 4 even, then ρ(α) → C(R) as l → ∞.

When R ≥ 3 is odd, it will be clear from the proof of Theorem 3.1 that if α
has negative continued fraction expansion of period

R,R+ 1, . . . , R+ 1︸ ︷︷ ︸
l times

, (23)

then M (α, γ∗)→C(R) as l→∞. So the bound M (α, γ∗) ≥ C(R) in Theorem 3.1
is still best possible. However γ∗ is no longer the best choice of γ; as we observe

84



LOWER BOUNDS ON THE LARGEST INHOMOGENEOUS APPROXIMATION CONSTANT

at the end of the paper, for R ≥ 5 these α have

lim
l→∞

ρ(α) =

(
1− 2δ + 2δβ

1+β

)
(1− β)

4(1− δβ)
=

1

4

(
1− 3

R
+

6

R2
+O

(
R−3

))
. (24)

We need a more complicated example to show the asymptotic sharpness of our
lower bound when R is odd.

����	�� 3.3� If R is odd and α has negative continued fraction expansion

α = [0;R,R,R+ 1, R,R+ 1, R+ 1, R,R+ 1, R+ 1, R,R+ 1]−,
then

ρ(α) =
1

4

(
1− 3

R
+

4

R2
+O

(
R−3

))
.

For R = 3, 5 and 7 the period two examples

ρ
(
[0; 3, 5]−

)
=

13

11
√
165

=
1

10.8690 . . .
,

ρ
(
[0; 5, 6]−

)
=

589

312
√
195

=
1

7.3970 . . .
,

ρ
(
[0; 7, 8]−

)
=

3649

1664
√
182

=
1

6.1519 . . .
,

from [10] give upper bounds on the optimal C(R).

4. Proof of Theorem 3.1

We shall make frequent use of the following simple observation.

����� 4.1� If λ > μ > 0 then f(z) =
1− λz

1− μz
is decreasing for 0 ≤ λz < 1.

In particular, if λ1, λ2 ≥ 1 and 0 ≤ x ≤ α, 0 ≤ y ≤ β, with λ1α, λ2β < 1,
then

(1− λ1x)(1− λ2y)

1− xy
≥
(
1− λ1α

1− αy

)
(1− λ2y) ≥ (1− λ1α)(1− λ2β)

1− αβ
.

P r o o f. Plainly f ′(z) = −(λ− μ)/(1− zμ)2 < 0 for 0 ≤ z < μ−1. �
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P r o o f o f T h e o r e m 3.1. From (13) and (2) we have s2(k), s4(k) ≥ 1
4 ≥

M (α, γ∗), and Lemma 2.1 becomes

M (α, γ∗) = lim inf
k→∞

min{s1(k), s3(k)}. (25)

Since we are evaluating lim inf on k, from now on whenever we see the index
k, it will be understood that we are letting k → ∞. Also, we may assume that
ai ≥ R for all i.

Observe that changing the signs of ti only interchanges s1(i) with s3(i).
Hence, as long as we check both signs on the ti, it will be enough to show
that

s3(k) ≥ C(R).

We also observe that interchanging the pairs (ak−i, tk−i) with (ak+1+i, tk+1+i)
for all i ≥ 0 only interchanges ᾱk with αk and d−k with d+k .

The proof when R is even is straightforward.


��� � R �� ����� In this case we have R∗ = R, R∗∗ = R + 1, and (14)
becomes

β = [0;R]− and δ =
1

R+ 1− β
= [0;R+ 1, R]−,

with β = δ + δβ > δ.

If ak is odd and tk = 1, then d−k ≤ ᾱk, d
+
k ≤ 0, and

s3(k) ≥ (1− 2ᾱk)(1− αk)

4(1− ᾱkαk)
≥ (1− 2δ)(1− β)

4(1− δβ)
,

where the last inequality follows from the Lemma 4.1, since ᾱk ≤ δ, αk ≤ β by
property (6). As observed above this also covers the case ak+1 odd with tk+1 = 1.

If ak is odd and tk = −1 with ak+1 even (likewise ak+1 odd, tk+1 = −1 with
ak even) we have d−k ≤ 0, d+k ≤ αkαk+1 ≤ αkβ and Lemma 4.1 with αk, ᾱk ≤ β
gives

s3(k) ≥ (1− ᾱk)(1− (1 + β)αk)

4(1− ᾱkαk)
≥ (1− β)(1− β − β2)

4(1− β2)
≥ (1− β)(1− 2δ)

4(1− δβ)
,

(26)
since δ < β and β + β2 < 2δ (equivalently R ≥ 2 + 2β).

This just leaves the case that ak and ak+1 both are even. If d−k ≤ 0 and d+k ≥ 0

(likewise d−k ≥ 0 and d+k ≤ 0) then d+k ≤ αkαk+1 ≤ αkβ and again we have (26).


��� �� R �� ���� In this case we have δ = β + δβ > β, where

β = [0;R+ 1]− and δ =
1

R− β
= [0;R,R+ 1]−.
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We first establish some lemmas. Assume in both that R ≥ 3 is odd and
γ = γ∗.

����� 4.2� Suppose that θ < 1. If ak+1 is odd and tk+1 = 1, then

1− αk − d+k
1− θαk

≥ 1− 2δ

1− θδ
. (27)

Likewise, if ak is odd and tk = 1, then

1− ᾱk − d−k
1− θᾱk

≥ 1− 2δ

1− θδ
. (28)

P r o o f. Notice that it suffices to show the inequality (27) when k = 0. That is

A :=
1− α− d+0
1− θα

≥ 1− 2δ

1− θδ
,

where α0 = α = [0; a1, a2, · · · ]−, and d+0 = t1α+ t2αα1 + · · ·
If α ≤ δ (for example the case when the ai, i ≥ 2, are all even), then

A ≥ 1− 2α

1− θα
≥ 1− 2δ

1− θδ
, (29)

from (13) and Lemma 4.1.

So suppose that α > δ and let an+1, n ≥ 1, be the odd partial quotient such
that ai is even for all 1 < i < n + 1. Notice we must have a1 = an+1 = R and
ai = R+ 1 for 1 < i < n+ 1, else α < δ. Since t1 = 1 and tn+1 = −1,

d+0 ≤ α− αα1 · · ·αn + αα1 · · ·αnαn+1 ≤ α− 1

2
αα1 · · ·αn,

and

A ≥ 1− 2α+ 1
2αα1 · · ·αn

1− θα
>

1− 2α+ 1
2αα1 · · ·αn

1− θδ
. (30)

Setting ν := [0; a1, a2, . . . , an, an+1 + 2, an+2, . . .]
− we have ν < δ, and we just

need to show that

α− ν ≤ 1

4
αα1 · · ·αn, (31)

to obtain 1− 2α+ 1
2αα1 · · ·αn ≥ 1− 2ν ≥ 1− 2δ and (27).

Recall that

α =
pn+1 − pnαn+1

qn+1 − qnαn+1
=

pn − pn−1αn

qn − qn−1αn
. (32)
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Similarly,
ν =

pn+1 − pnαn+1 + 2pn
qn+1 − qnαn+1 + 2qn

,

and pn+1qn − pnqn+1 = 1 gives

α− ν =
2

(qn+1 − qnαn+1)(qn+1 − qnαn+1 + 2qn)
=

2αα1 · · ·αn

(qn+1 + (2− αn+1)qn)
,

and (31) just needs qn+1+(2−αn+1)qn ≥ 8. Plainly qn+1 ≥ q2 ≥ 3·3−1 = 8. �

����� 4.3� Suppose that θ < 1. If ak+1 is even and d+k ≤ 0, then

1− αk − d+k
1− θαk

≥ 1− β

1− θβ
.

P r o o f. We proceed as in the proof of Lemma 4.2. Suppose k=0. Then we show

A :=
1− α− d+0
1− θα

≥ 1− β

1− θβ
.

If α ≤ β then

A ≥ 1− α

1− θα
≥ 1− β

1− θβ
. (33)

Assume α > β, and let an+1, n ≥ 1, be the odd partial quotient such that ai is
even for all 1 ≤ i ≤ n. Then, since t1, t2, . . . , tn = 0 and tn+1 = −1, and trivially
αn+1 ≤ [0; 3]− < 1/2,

d+0 ≤ −αα1 · · ·αn + αα1 · · ·αnαn+1 ≤ −1

2
αα1 · · ·αn,

and

A ≥ 1− α+ 1
2αα1 · · ·αn

1− θβ
.

Set ν := [0; a1, a2, . . . , an, an+1 + 2, an+2, . . .]
− < β. This time we just need

to show α − ν ≤ 1
2αα1 · · ·αn, which reduces to qn+1 + (2 − αn+1)qn ≥ 4.

Plainly, qn+1 ≥ q2 ≥ 3 · 4− 1 = 11. �

P r o o f o f T h e o r e m 3.1 w h e n R i s o d d.
We set σ := [0;R]−. We need to show that s3(k) ≥ C(R). If ak and ak+1 both
are odd, then without loss of generality we can assume tk = −1 and tk+1 = 1.
Plainly d−k ≤ −ᾱk + ᾱkᾱk−1 ≤ −ᾱk + ᾱkσ, and by Lemma 4.2 and Lemma 4.1
(using σ > δ and ᾱk ≤ σ) and σ > β

s3(k) ≥ (1− 2δ)(1− ᾱkσ)

4(1− ᾱkδ)
≥ (1− 2δ)(1− σ2)

4(1− σδ)
>

(1− 2δ)(1− σ2)

4(1− βδ)
> C(R),

since σ2 < 1
2σ < β.
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Now it suffices to consider the following three cases: (i) ak and ak+1 both are
even, (ii) (ak, tk) = (odd,−1) and ak+1 is even, (iii) (ak, tk) = (odd, 1) and ak+1

is even. For (i) and (ii), it can be readily seen that

s3(k) ≥ 1

4
(1− σ)(1− σ − σ2) =

1

4
(1− 2σ + σ3) ≥ 1

4
(1− 2δ) ≥ C(R),

using that

σ − δ = (σ − β)σδ = (1− β + σ)σ2δβ <
3

2
βσ3 <

1

2
σ3.

For (iii), we apply Lemmas 4.2 and 4.3

s3(k) =
(1− ᾱk − d−k )(1− αk − d+k )

4(1− ᾱkαk)

≥ (1− 2δ)(1− αk − d+k )

4(1− δαk)
≥ (1− 2δ)(1− β)

4(1− δβ)
. �

It remains just to demonstrate the asymptotics (19) and (20). For R ≥ 4 even,
one can use Rβ = 1 + β2 to write

E1(R) =
11− 2β (6− 3β + β2)

1 + (1− 2β)/R
= 11 +O

(
1

R

)
,

with E1(4) = (524− 256
√
3)/11 = 7.3268 . . . , E1(R) ↗ 11, and (19) is clear.

For R ≥ 3 odd, one can use Rβ = 1− β + β2 to write

E2(R) =
10− 2β(11− 7β + 2β2)

1− 2β/R
= 10 +O

(
1

R

)
,

with E2(3) = (348−162
√
3)/11 = 6.1279 . . . , E2(R) ↗ 10, and (20) is clear. �

5. Proof of Theorem 3.2

We assume that α has expansion (5) of period (22) with R ≥ 4 even.

Suppose first that γ has an expansion (8) with ti = 0 when ai = R and
ti = ±1 when ai = R + 1, for all sufficiently large i. If ak = R + 1 and tk = 1
then

ᾱk → δ, αk → β, d−k → δ, d+k → 0, s3(k) → C(R), as k, l → ∞.

Likewise, if ak = R + 1 and tk = −1, then s1(k) → C(R) as k, l → ∞. Hence
these γ cannot contribute a value M (α, γ) strictly greater than C(R) to ρ(α)
as l → ∞. By Theorem 3.1 we have M (α, γ∗) ≥ C(R) and hence

lim
l→∞

M (α, γ∗) = C(R). (34)
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It remains to show that M (α, γ) ≤ C(R) as l → ∞ for the remaining γ �∈
{m + lα : m, l ∈ Z}; that is, those γ having an expansion (8) with |ti| ≥ 2
infinitely often.

Observe that changing the signs of ti only interchanges s1(i) with s3(i) and
s2(i) with s4(i). Thus, if we eliminate any block of ti from consideration, then
the same will be true for its negative. Also, interchanging ᾱk with αk and
d−k with d+k does not change s1(k) and s3(k) (and interchanges s2(k), s4(k)).
Hence, if we eliminate a block of ti from consideration, then the same will be
true for the reversed block of ti (on a reversed block of ai).

If tk = ak infinitely often, then from [8, Lemma 1]

M (α, γ) ≤ lim inf
k→∞
tk=ak

ᾱk

4(1− ᾱkαk)
, (35)

and hence

M (α, γ) ≤ β

4(1− β2)
≤ (β + β2 − δβ)

4(1− β2 + β2 − δβ)
< C(R),

on observing that (1 − 2δ)(1 − β) = 1 − 3β + 4δβ and 4β + β2 − 5δβ < 1
(equivalently R > 4− δ(3− 2β)).

Thus, we may assume that ti = ai at most finitely many times and the
|d−k | ≤ 1 − ᾱk and |d+k | ≤ 1 − αk for suitably large k. Hence the terms in the
si(k) are all positive, and we notice that

√
s3(k)s4(k) =

√
((1− d−k )2 − ᾱ2

k)(1− (αk + d+k )
2)

4(1− ᾱkαk)
,

giving

min{s3(k), s4(k)} ≤ 1− d−k
4(1− ᾱkαk)

, (36)

since plainly

0 ≤ (1− d−k )
2 − ᾱ2

k < (1− d−k )
2 and 0 ≤ 1− (αk + d+k )

2 < 1.

We establish the following lemmas. In each case we are assuming that ti = ai
at most finitely many times.

����� 5.1� If the sequence {ti}i in the expansion (8) of γ has infinitely many
blocks of the form tk, tk+j > 0, for some j > 0, with at least one of ak, ak+j

even, and ti = 0 for any k < i < k + j, then M (α, γ) < C(R) as l → ∞.
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P r o o f. Without loss of generality suppose that ak is even. Then ak = R, tk ≥ 2,
and with θ = [0;R+ 1]− we have

ᾱk ≥ 1

R − θ
=

θ

1− θ
, αk ≥ δ as l → ∞.

Plainly d+k ≥ 0, while d−k ≥ 2ᾱk + ᾱkd
−
k−1 > ᾱk by (9), and we get

s3(k) ≤ (1− 2ᾱk)(1− αk)

4(1− ᾱkαk)
≤ (1− 2θ

1−θ )(1− δ)

4(1− δβ)

≤ 1− 3θ

4(1− δβ)
< C(R),

the second inequality from Lemma 4.1 and θ/(1− θ) < β, the third from δ > θ,
and the last since 1−3θ = 1−3δ+3δθ(β−θ) while (1−2δ)(1−β) = 1−3δ+δβ.
The result follows from Lemma 2.1. �

We can now assume that the sequence {ti}i in the expansion (8) eventually
does not contain any block (or its negative) of the type excluded by Lemma 5.1.

����� 5.2� If γ has infinitely many tk ≥ 3, then M (α, γ) < C(R).

P r o o f. If ak = R and tk ≥ 4, then d−k ≥ 4ᾱk + ᾱkd
−
k−1 ≥ 3ᾱk and by (36)

M (α, γ) ≤ 1− 3ᾱk

4(1− ᾱkβ)
≤ 1− 3δ

4(1− δβ)

=
1− 2δ − β + δβ

4(1− δβ)
< C(R),

and hence we can assume that |ti| ≤ 2 if ai = R. Suppose ak = R+1 and tk ≥ 3.
Then, d−k ≥ 3ᾱk − 2ᾱkᾱk−1, d

+
k ≥ −2αk, and as l → ∞

s3(k) ≤ (1− 4ᾱk + 2ᾱkᾱk−1)(1 + αk)

4(1− ᾱkαk)
→ (1− 4δ + 2δβ)(1 + β)

4(1− δβ)

=
(1− 4δ + β − 2δβ + 2δβ2)

4(1− δβ)

=
(1− 2δ − β + 2δβ2)

4(1− δβ)
< C(R).

So M (α, γ) < C(R) from Lemma 2.1 if this happens for infinitely many k. �
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We now also assume that |ti| ≤ 2 for all sufficiently large i.

����� 5.3� If γ has infinitely many of the following blocks, then

M (α, γ) < C(R).

(i) tk = 1 and tk+1 = −2, or

(ii) tk = 0 and tk+1 = −2.

P r o o f.
(i) Plainly d−k ≤ ᾱk, d

+
k ≤ −2αk + 2αkαk+1, and as l → ∞

s1(k) ≤ (1− 3αk + 2αkαk+1)

4(1− ᾱkαk)
→ (1− 3β + 2β2)

4(1− δβ)

=
(1− 2δ − β + 2δβ2)

4(1− δβ)
< C(R).

(ii) With θ = [0;R+ 1]− we have αk ≥ 1

R − θ
=: λ. Since

d−k ≤ 2ᾱkᾱk−1 ≤ 2βᾱk, d+k ≤ −2αk + 2αkαk+1 and αk ≤ β

s1(k) ≤ (1− (1− 2β)ᾱk)(1− 3αk + 2β2)

4(1− ᾱkβ)

≤ (1− δ + 2βδ)(1− 3λ+ 2β2)

4(1− δβ)

≤ (1− 3λ+ 2β2)

4(1− δβ)
< C(R),

using Lemma 4.1 and ᾱk > δ for the second inequality. For the last inequality
observe that

β − λ = βλ(β − θ) < λβ2

so that

1−3λ+ 2β2< 1−3β+β2(2+3λ) while (1−2δ)(1−β) = 1−3β+β2(4−4δ).

Infinitely many such k would give M (α, γ) < C(R) by Lemma 2.1. �

From Lemmas 5.2 and 5.3 we see that a γ with infinitely many |ti| ≥ 2 has
M (α, γ) ≤ C0(R) < C(R) as l → ∞ (where C0(R) is made explicit in the proof).
Hence

lim
l→∞

ρ(α) = lim
l→∞

M (α, γ∗) = C(R).
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6. Proof of Theorem 3.3

Suppose that

α = [0;R,R,R+ 1, R,R+ 1, R+ 1, R,R+ 1, R+ 1, R,R+ 1]− with R odd.

By Theorem 3.1 and (20) we have

ρ(α) ≥ M (α, γ∗) ≥ C(R) =
1

4

(
1− 3

R
+

4

R2
+O(R−3)

)
,

so we just need to show that all γ have

M (α, γ) ≤ 1

4

(
1− 3

R
+

4

R2
+O(R−3)

)
. (37)

We observe the following

[0;R,R or R+ 1, · · · ]−=
1

R
+ O(R−3),

[0;R+ 1, R or R+ 1, · · · ]−=
1

R
− 1

R2
+O(R−3),

and so for α we have
1

1− ᾱkαk
= 1 + ᾱkαk + (ᾱkαk)

2 + · · · = 1 +
1

R2
+O(R−3). (38)

Now if γ has tk = ak infinitely often, then from (35)

M (α, γ) ≤ 1

4

(
1

R
+O(R−3)

)(
1 +

1

R2
+O(R−3)

)
=

1

4

(
1

R
+O(R−3)

)
,

so we can assume that γ has only finitely many ti = ai. In view of (38) we write

s̃j(k) = 4(1− ᾱkαk)sj(k), j = 1, . . . , 4,

and (37) amounts to showing that there are infinitely many k with an

s̃j(k) ≤ 1− 3

R
+

3

R2
+O(R−3). (39)

We proceed as in the proof of Theorem 3.2 successively eliminating blocks of ti,
recalling that when we eliminate a block we also eliminate its negative or reverse
(by interchanging sj(k)).

By (36) we will get (39) if γ has infinitely many k with

d−k ≥ 3

R
− 3

R2
+O(R−3). (40)

We use this to rule out large |ti|. If tk ≥ 5 then we have

d−k ≥ 5ᾱk + ᾱkd
−
k−1 > 4ᾱk ≥ 4

R
+O(R−2).
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If we have tk = 4 with |tk−1| ≤ 4 then d−k−1 = O(R−1) and again

d−k =
4

R
+O(R−2).

So we can assume that |ti| ≤ 3 for all but finitely many i. If we have infinitely
many blocks ak, ak−1 = R,R+ 1 (or their reverse) with tk = 3, then

d−k ≥ 3ᾱk − 2ᾱkᾱk−1 +O(R−3) =
3

R
− 2

R2
+ O(R−3).

Hence we can assume that (all but finitely many) ti = ±1 if ai = R and ti = 0,±2
if ai = R+ 1.

First we rule out infinitely many consecutive positive or consecutive nega-
tive ti. If tk, tk+1 > 0 then d−k ≥ ᾱk +O(R−2), d+k ≥ αk +O(R−2) and

s̃3(k) ≤
(
1− 2ᾱk + O(R−2)

)(
1− 2αk + O(R−2)

)
= 1− 4

R
+O(R−2).

Next we rule out infinitely many blocks tk−1, tk, tk+1, tk+2 = 0, 1, 0, 0 (or their
reverse 0, 0, 1, 0 or their negatives) since d−k = ᾱk +O(R−3), d+k = O(R−3) and

s̃3(k) =
(
1− 2ᾱk + O(R−3)

) (
1− αk +O(R−3)

)
=

(
1− 2

R
+O(R−3)

)(
1− 1

R
+

1

R2
+O(R−3)

)

= 1− 3

R
+

3

R2
+ O(R−3).

If tk, tk+1 = 2, 0, then d−k = 2ᾱk +O(R−2), d+k = O(R−2) and

s̃3(k) =
(
1− 3ᾱk + O(R−2)

) (
1− αk +O(R−2)

)
=

(
1− 3

R
+O(R−2)

)(
1− 1

R
+O(R−2)

)

= 1− 4

R
+O(R−2).
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Hence blocks R+1, R+1 must eventually have tk, tk+1 = 0, 0 or 2,−2 or −2, 2.
If tk−1, tk, tk+1 = −2, 1,−2, then d−k = ᾱk − 2ᾱkᾱk−1 +O(R−3), d+k ≤ −2αk +
2αkαk+1 + O(R−3) and

s̃1(k) ≤
(
1− 2ᾱkᾱk−1 +O(R−3)

) (
1− 3αk + 2αkαk+1 + O(R−3)

)
=

(
1− 2

R2
+O(R−3)

)(
1− 3

R
+

5

R3
+O(R−3)

)
= 1− 3

R
+

3

R2
+ O(R−3).

Hence if we have a block ak−2, ak−1, ak, ak+1, ak+2 = R + 1, R + 1, R, R+ 1,
R+1 with tk = ±1 then we must have tk+1, tk+2 = 0, 0 and tk−1, tk−2 = ∓2,±2
(or vice versa in which case we use the reverse). Consider then the block

ak+1, . . . , ak+6 = R+ 1, R+ 1, R,R+ 1, R, R, tk+1, tk+2 = 0, 0.

Assuming that tk+3 = 1 (or use the negative), then having ruled out 0, 0, 1, 0,
we must have tk+4, tk+5, tk+6 = −2, 1,−1 and finally

s̃1(k + 4) =
(
1− 3ᾱk+4 + ᾱk+4ᾱk+3 +O(R−3)

) (
1− αk+4αk+5 +O(R−3)

)
=

(
1− 3

R
+

4

R2
+O(R−3)

)(
1− 1

R2
+ O(R−3)

)

= 1− 3

R
+

3

R2
+O(R−3).

�

7. Proof of (24)

If in the previous proof we had taken α to have period (23) with R ≥ 5 odd,
then (37) would still hold, except for those γ whose ti eventually consist of zeros
one side of the ±1 and blocks of ∓2,±2 the other. For these γ, if tk = 1 inside
a block . . . , 0, 0, 1,−2, 2, . . . , then

d−k →δ, d+k →−2β/(1+β) and d−k−1→0, d+k−1→δ−2δβ/(1+β) as l→∞
and

s3(k − 1), s1(k) →
1− 3β + 2β2

1+β

4(1− δβ)
=

(
1− 2δ + 2δβ

1+β

)
(1− β)

4(1− δβ)
=: C1(R),

with

s1(k − 1) > s3(k − 1) and s3(k) > (1− 2δ)/4(1− αβ) > C1(R).

95



B. PAUDEL—C. PINNER

Likewise for the negatives and reverses. At all places

s2(k), s4(k) > (1− ᾱk)(1− αk)/4(1− βαk) > (1− δ)2/4(1− δβ) > C1(R).

If tk, tk+1 = 0, 0 and d−k → 0, ᾱk → β (likewise if d+k → 0, αk → β), then

s1(k), s3(k) ≥ (1− β)(1− αk(1 + δ))

4(1− βαk)

>
(1− β)(1− δ − δ2)

4(1− δβ)
> C1(R).

If tk, tk+1 = −2, 2, then dk−1 > β (either tk−1 = 2 or tk−1 = 1 with dk−1 → δ)
and

s1(k) ≥ (1− ᾱk(3− β)) (1 + β(1− 2δ))

4(1− ᾱkβ)

≥ (1− 3δ + δβ)(1 + β − 2βδ)

4(1− δβ)
> C1(R),

for R ≥ 9 using

(1− 3δ + δβ)(1 + β − 2βδ) = (1− 3β + 2β2) + β(1− 9β + 4δ2β),

replacing ᾱk by 1/(R+1− δ) instead of δ in the second inequality and checking
numerically for R = 5 and 7. Likewise for s3(k) and for 2,−2. Hence these γ
have M (α, γ) → C1(R) as l → ∞. The proof of Theorem 3.3 immediately
gives (24) for suitably large R. To see that it is true for all R ≥ 5 we show that
M (α, γ) < C1(R) for the other γ. Notice, if we let l → ∞, then (1− ᾱkαk)

−1 ≤
(1 − δβ)−1; so it will be enough to show that the remaining γ have infinitely
many

s̃j(k) ≤ 1− 3β +
2β2

1 + β
=

(
1− 2δ +

2δβ

1 + β

)
(1− β) =: C̃1(R).

We repeat the steps of the proof of Theorem 3.3; successive ruling out certain
blocks of ti (or their negatives and reverses) occurring infinitely often. We can

rule out tk = ak since δ<1−3β<C̃1(R). To eliminate large |tk| we replace (40)
by

d−k ≥ 3β − 2β2

1 + β
,

successively ruling out infinitely many tk ≥ 4 using d−k > 3β, then tk = 3 using

d−k ≥ 3δ − 2δβ

1− β
> 3β.
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Now if tk = 2 and tk+j > 0 for some j ≥ 1, with ti = 0 for any k < i < k+ j,
then

d−k = 2ᾱk + ᾱkd
−
k−1 ≥ ᾱk + ᾱkᾱk−1, d

+
k ≥ 0,

and

s̃3(k) ≤ (1− 2β − β2)(1− β) = (1− 2δ + 2δβ − β2)(1− β) < C̃1(R).

If tk, tk+1 = 2, 0, then

s̃3(k) ≤ (1− 3β + 2βδ) (1− β + 2βδ) = 1− 3β + 2β2 − 2β3 − λ < C̃1(R),

with
λ = β

(
1− 5β + 2β2(1− 2δ2)

)
> 0.

If tk−1, tk, tk+1 = 0, 1, 0, then as l → ∞,

s̃3(k) → (1− 2δ)(1− β) < C̃1(R).

Finally, if tk−1, tk, tk+1 = −2, 1,−2, then

s̃1(k) ≤
(
1− 2δβ

1 + β

)(
1− 3β +

2β2

1 + β

)
< C̃1(R).

�
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