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UNIFORM DISTRIBUTION OF αn MODULO ONE

FOR A FAMILY OF INTEGER SEQUENCES

Andreas Weingartner

Southern Utah University, Cedar City, USA

ABSTRACT. We show that the sequence (αn)n∈B is uniformly distributed mod-
ulo 1, for every irrational α, provided B belongs to a certain family of integer
sequences, which includes the prime, almost prime, squarefree, practical, densely
divisible and lexicographical numbers. We also give an estimate for the discrep-
ancy if α has finite irrationality measure.

Communicated by Friedrich Pillichshammer

1. Introduction

We say that a sequence (an)n∈N of real numbers is uniformly distributed
modulo 1 (u.d. mod1) if

lim
x→∞

|{n ≤ x : {an} ∈ [a, b]}|
x

= b− a

for all 0 ≤ a < b ≤ 1, where {u} denotes the fractional part of u. Weyl’s criterion
asserts that this is equivalent to

lim
x→∞

1

x

∑
n≤x

e(lan) = 0,

for every fixed non-zero integer l, where e(y) := e2πiy.
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A. WEINGARTNER

Let α be any irrational real number. Weyl’s criterion shows at once that the
sequence (αn)n∈N is u.d. mod1. Vinogradov [11, Ch. XI] proved that the same
holds for the sequence (αp)p∈P, where p runs through the prime numbers.

We consider the following family of integer sequences. For each natural num-
ber n, let I(n) be an arbitrary interval of real numbers, possibly empty, or the
union of a bounded number (uniformly in n) of such intervals. Let B = BI be
the set of positive integers containing n = 1 and all those n ≥ 2 with prime
factorization n = p1 · · · pk, p1 ≤ p2 ≤ . . . ≤ pk, which satisfy

pj ∈ I

⎛
⎝ ∏

1≤i<j

pi

⎞
⎠ (1 ≤ j ≤ k).

This setting is more general than in [12], where I was of the form I(n) =
[1, θ(n)] for some function θ(n). If I(1) = [1,∞) and I(n) = ∅ for n > 1,
then B \ {1} is the set of primes. If I(1) = I(p) = [1,∞) for primes p and
I(n) = ∅ for composite n, then B is the set of integers with at most two prime
factors, counted with multiplicity. Similarly, one can obtain more general almost-
primes. Squarefree numbers can be generated with I(n) = (P (n),∞), where
P (n) denotes the largest prime factor of n > 1 and P (1) = 1. Integers whose
divisors grow by factors of at most t, which are called t-densely divisible [7]
or t-dense [14], arise from I(n) = [1, nt], while the practical numbers result
from I(n) = [1, σ(n) + 1], where σ(n) is the sum of the positive divisors of n.
This family also includes the lexicographical numbers [9], where I(n) = {P (n)}∪
(n,∞). Define

B(x) := B ∩ [1, x], B(x) := |B(x)|,

Bd(x) := |{n ∈ B(x) : d|n}|.

������� 1.1� Let α be any irrational real number. Assume there exist constants
A ≥ 0 and δ > 0 such that

B(x) 	 x(log x)−A, Bd(x) 
 d−δB(x), (x, d ≥ 2). (1)

Then the sequence (αn)n∈B is u.d. mod1.

When α > 1, the integer sequence (�αn�)n∈N contains a proportion of 1
α

of the natural numbers. Corollary 1.2, which follows easily from Theorem 1.1
(see Sec. 3), shows that it contains the same proportion of members of B.
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UNIFORM DISTRIBUTION OF αn MODULO ONE

����		
�� 1.2� Suppose that the assumptions of Theorem 1.1 are satisfied and
α > 1. Then

|{n ∈ N : �αn� ∈ B(x)}| ∼ 1

α
B(x) (x → ∞). (2)

If I(n) = [1, θ(n)], the following assumption implies (1), by Lemma 4.1:
There exist constants C, J,K ≥ 1 and 0 ≤ η < 1, such that for all m,n ∈ N,

θ(n) ≤ θ(mn) ≤ CmJθ(n), max(2, n) ≤ θ(n) ≤ Kn exp((logn)η). (3)

����		
�� 1.3� Let α be irrational. Assume I(n) = [1, θ(n)] and (3) holds.
Then the sequence (αn)n∈B is u.d. mod1. If α > 1, then (2) holds.

Table 1. Examples of B with (αn)n∈B u.d. mod1. It’s easy to verify (1)

for the first two examples, and for the third with [9, Thm. 2]. For the others
it follows from Corollary 1.3.

Sequence B I(n) OEIS [6]

almost prime see above A037143

squarefree (P (n),∞) A005117

lexicographical {P (n)} ∪ (n,∞) A361232

t-dense (t ≥ 2) [1, nt] A174973 (t = 2)

practical [1, σ(n) + 1] A005153

practical & ϕ-practical [1, n+ 1] A359420

inverse prime numbers [1,max(2, n)] A047836

����		
�� 1.4� Let α be irrational. If B is one of the sequences in Table 1,
then the sequence (αn)n∈B is u.d. mod1. If α > 1, then (2) holds.

The proof of Theorem 1.1 is divided into two cases. If α is very close to a
rational number a/q with a small denominator q (relative to x), we say α belongs
to the major arcs. If not, we say α belongs to the minor arcs.

������� 1.5 (Major Arcs)� Let g(x) = log x log log x. There exists a constant
c > 0 such that the following holds. Let U > 0 be fixed. For q ≤ (log x)U ,

α = a/q + β, where (a, q) = 1 and |β| ≤ exp
(
c 3
√

g(x)
)
/x, we have∑

n∈B(x)

e(αn) =
∑

n∈B(x)

μ(q/(n, q))

ϕ(q/(n, q))
e(βn) +O

(
x exp

(−2c 3
√
g(x)

))
, (4)

where (n, q) = gcd(n, q), μ is the Möbius function and ϕ is Euler’s totient
function.
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A. WEINGARTNER

If, in addition,

B(x) 	 x exp
(−c 3

√
g(x)

)
and Bd(x) 
 d−δB(x)

for x, d ≥ 2 and some constants 0 < ε < δ ≤ 1, then∑
n∈B(x)

e(αn) 
 B(x)

qδ−ε
.

������� 1.6 (Minor Arcs)� Let κ < 1/
√
6 be a constant. Let L = log x and

1 ≤ R ≤ exp(κ
√

log x log log x).

Then, for

h, a, q ∈ N, h ≤ R, R12L26 < q ≤ x

R11L26

and

|α− a/q| ≤ 1/q2, where (a, q) = 1,

we have ∑
n∈B(x)

e(αhn) 
 x

R
.

Theorem 1.6 leads to an estimate for the discrepancy of the sequence ({αn})n∈B,
assuming the denominators of the continued fraction convergents aj/qj of α do
not grow too quickly. The irrationality measure of an irrational number α can

be defined as μ(α) = 1 + lim supj≥1
log qj+1

log qj
. Every algebraic irrational number

α satisfies μ(α) = 2, as well as μ(e) = 2, while the constants π, π2, log 2, log 3
and ζ(3) are all known to have finite irrationality measure [15]. For 0 ≤ y ≤ 1,
define

B(x, y, α) := |{n ∈ B(x) : {αn} ≤ y}|.

The following estimate for the discrepancy follows from Theorem 1.6 and the
Erdős-Turán inequality (see Lemma 9.1).

������� 1.7� Let κ < 1√
6
and assume α is irrational with finite irrationality

measure. Then, for all x ≥ x0(α),

sup
0≤y≤1

|B(x, y, α)− yB(x)| 
 x

exp(κ
√
log x log log x)

.

In particular, the sequence (αn)n∈B is u.d. mod 1 providedB(x) satisfies B(x)	
x exp(−κ

√
log x log log x) for some κ < 1√

6
.
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2. Derivation of Theorem 1.1 from Theorems 1.5 and 1.6

By Weyl’s criterion, we need to show that

T :=
1

B(x)

∑
n∈B(x)

e(lαn) → 0 (x → ∞)

for every fixed non-zero integer l. It suffices to consider l = 1, since the following
is equally valid if α is replaced by lα. Let (aj/qj)j≥1 be the sequence of continued
fraction convergents of α. Then q1 < q2 < . . . and

|α− aj/qj | ≤ 1

qjqj+1
(j ≥ 1).

Let x be sufficiently large and let R = (log x)A+1 and h = 1 in Theorem 1.6.
Define

Q = R12L26 = L12A+38, where L = log x.

If there is at least one j such that Q < qj ≤ x/Q, Theorem 1.6 (with q = qj)
shows that we have

T 
 x(log x)−A−1/B(x) 
 1/ logx.

If there does not exist a j such that Q < qj ≤ x/Q, let i be such that qi ≤ Q
and qi+1 > x/Q. We have

|α− ai/qi| ≤ 1/(qiqi+1) ≤ 1/qi+1 < Q/x.

Theorem 1.5, with U = 12A+38 and q = qi, shows that T 
 q
−δ/2
i . As x → ∞,

i → ∞ and qi → ∞. Thus T → 0 as x → ∞.

3. Derivation of Corollary 1.2 from Theorem 1.1

Let λ = 1
α < 1. Since (λm)m∈B is u.d. mod1, we have

1

α
B(x) = λB(x) ∼ |{m ∈ B(x) : 1− λ < {λm} < 1}|

= |{m ∈ B(x) : ∃n ∈ N, λm < n < λm+ λ}|
= |{m ∈ B(x) : ∃n ∈ N,m = �αn�}|
= |{n ∈ N : �αn� ∈ B(x)}|.
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4. Derivation of Corollary 1.3 from Theorem 1.1

����
 4.1� Assume θ satisfies (3) and I(n) = [1, θ(n)]. For x, d ≥ 2, we have

B(x) =
cθx

log x

(
1 +O

(
1

(log x)1−η

))
, Bd(x) 
 B(x)

log 2d

d
,

where cθ > 0.

P r o o f. The first claim follows from [14, Thm. 4]. Lemma 8 of [13] shows that
{m : md ∈ Bθ} ⊂ Bθd where θd(n) ≤ θ(dn) for all n ≥ 1. Since θ(dn) ≤ CdJθ(n)
for some constants C, J , by (3),

{m ≤ x/d : md ∈ Bθ} ⊂ {m ≤ x/d : m ∈ BCdJθ}.
The result now follows from [8, Prop. 1]. �

5. Lemmas for the major arcs

Let P (n) denote the largest prime factor of n ≥ 2 and put P (1) = 1.
The following estimate follows from [1, Eqs. (1.3), (1.4), (1.5)].

����
 5.1 (de Bruijn)� For y ≥ (log x)2 and u = log x
log y ≥ 1, we have

Ψ(x, y) :=
∑
n≤x

P (n)≤y

1 
 x exp(−u logu).

A key ingredient for the major arcs is the Siegel-Walfisz theorem (see [5,
Thm. 6.9 and Cor. 11.21]).

����
 5.2 (Siegel-Walfisz)� There exists a constant c1 > 0 such that the fol-
lowing holds. Let A > 0. For q ≤ (log x)A and (a, q) = 1,

π(x, a, q) :=
∑
p≤x

p≡a mod q

1 =
π(x)

ϕ(q)
+OA(xe

−c1
√
log x),

where π(x) := π(x, 0, 1) and ϕ is Euler’s totient function.

����
 5.3 (Ramanujan’s Sum)� Let a, q, d ∈ N with (a, q) = 1 and d|q. Then
q∑

n=1
(n,q)=d

e(na/q) = μ(q/d),

where μ is the Möbius function.
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P r o o f. Writing n′ = n/d and q′ = q/d we have (a, q′) = 1 and
q∑

n=1
(n,q)=d

e(na/q) =

q′∑
n′=1

(n′,q′)=1

e(n′a/q′) = μ(q′) = μ(q/d).

The last sum is called Ramanujan’s sum and is evaluated in [5, Thm. 4.1]. �

6. Proof of Theorem 1.5

If n ∈ B, n > 1, we write n = mp where p = P (n) and m ∈ B. We have

f(α) :=
∑

n∈B(x)

e(αn) = e(α) +
∑

m∈B(x)

∑
p∈J(x,m)

e(αpm)

where J(x,m) is the (possibly empty) union of a bounded number of intervals

J(x,m) := {y ∈ R : P (m) ≤ y ≤ x/m} ∩ I(m).

Define g(x) := log x log log x. If E0 denotes the contribution to f(α) from primes
p ≤ exp

(
g(x)2/3

)
, then

|E0| ≤ Ψ
(
x, exp

(
g(x)2/3

))
 x exp
(−g(x)1/3/4

)
,

by Lemma 5.1. Thus we may replace J(x,m) by

J̃(x,m) := J(x,m) ∩
(
exp
(
g(x)2/3

)
,∞
)
.

Note that if mp ≡ b mod q where (b, q) = d and the prime p satisfies p > q, then
(m, q) = d. In this case we write q′ = q/d, b′ = b/d and m′ = m/d. For r with
(r, q) = 1, let r̄ be such that r̄r ≡ 1 mod q.

We have

f(a/q + β) = E0 +
∑
d|q

q∑
b=1

(b,q)=d

∑
m∈B(x)
(m,q)=d

∑
p∈J̃(x,m)

mp≡b mod q

e
((

a
q + β

)
pm
)

= E0 +
∑
d|q

q∑
b=1

(b,q)=d

e(aq b)
∑

m∈B(x)
(m,q)=d

∑
p∈J̃(x,m)

p≡b′m′ mod q′

e(βpm).

Since p≥exp
(
g(x)2/3

)
, we have q≤ (logx)U 
(log p)3U/2. By the Siegel-Walfisz

theorem, in the form of Lemma 5.2, the sum over p is∫
ρ∈J̃(x,m)

e(βρm)d
(
π(ρ, b′m′, q′)

)
=

∫
ρ∈J̃(x,m)

e(βρm)d
(
π(ρ)/ϕ(q′) +E1

)
,
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A. WEINGARTNER

where E1 
 ρe−c1
√
log ρ. Let 0 < c < c1/3. Integration by parts applied to the

error term shows that∑
p∈J̃(x,m)

p≡b′m′ mod q′

e(βpm) =
1

ϕ(q′)

∑
p∈J̃(x,m)

e(βpm) +E2,

where

E2 
 x

m
e−c1

√
log x/m + |β|x

∫
J̃(x,m)

e−c1
√
log ρdρ =: E3 + E4,

say. Since m ≤ x exp(−g(x)2/3) if J̃(x,m) is non-empty, E3 contributes


 q
∑
m≤x

x

m
exp
(−c1

3
√
g(x)

)
 x exp
(−2c 3

√
g(x)

)
=: E5.

The contribution from E4 is


 q|β|x
∑
m≤x

∫
J̃(x,m)

e−c1
√
log ρdρ ≤ q|β|x

∑
m≤x

x

m
exp
(−c1

3
√
g(x)

) 
 E5,

since |β|x ≤ exp
(
c 3
√
g(x)

)
and c < c1/3. Thus

f(a/q + β) =
∑
d|q

q∑
b=1

(b,q)=d

e(aq b)
∑

m∈B(x)
(m,q)=d

1

ϕ(q/d)

∑
p∈J̃(x,m)

e(βpm) +O(E5).

The two inner sums are now independent of b. Thus we can evaluate the sum
over b with Lemma 5.3. We combine the two inner sums, writing n = mp, and
put back the contribution from P (n) ≤ exp

(
g(x)2/3

)
, with an error 
 E5. Thus

f(a/q + β) =
∑
d|q

μ(q/d)

ϕ(q/d)

∑
n∈B(x)
(n,q)=d

e(βn) +O(E5),

which is (4). Since |μ(q/d)| ≤ 1 and |e(βn)| ≤ 1, the modulus of the main term is

≤
∑
d|q

1

ϕ(q/d)

∑
n∈B(x)
(n,q)=d

1 ≤ 1

ϕ(q)

∑
d|q

dBd(x).

With the assumption Bd(x) 
 d−δB(x), where 0 < ε < δ ≤ 1, this is


 B(x)

ϕ(q)

∑
d|q

d1−δ 
 B(x)

ϕ(q)
q1−δ

∑
d|q

1 
 B(x)

qδ−ε
.

26



UNIFORM DISTRIBUTION OF αn MODULO ONE

7. Lemmas for the minor arcs

����
 7.1� Assume |an|, |bn| ≤ 1 for n ≥ 1 and h, a, q ∈ N. For |α−a/q| ≤ 1/q2

with (a, q) = 1, we have∑
n>N

∑
m>M

mn≤x

anbme(αhnm) 

(
hx

M
+

x

N
+

hx

q
+ q

)1
2

(hx)
1
2 (log 2hx)2.

P r o o f. If h = 1, this is [3, Lemma 13.8]. The general case follows from this
case with n′ = hn, x′ = hx, N ′ = hN , a′n′ = an′/h if h|n′, and a′n′ = 0
otherwise. �

����
 7.2� Let h,m, a, q ∈ N. For |α− a/q| ≤ 1/q2 with (a, q) = 1, we have∑
p≤x/m

e(αhmp) 
 (log 2hx)7
(
hxq−

1
2 + (h2mx)

4
5 + (hxq)

1
2

)
.

P r o o f. This follows from [10, Thm. 1], with the substitutions

H = hm, N = x/m, D ≤ H = hm.

The factor log p in that result can be removed with partial summation. �

8. Proof of Theorem 1.6

If n ∈ B, n > 1, we write n = mp where p = P (n) and m ∈ B. We have∑
n∈B(x)

e(αhn) = e(αh) +
∑

m∈B(x)

∑
P(m)≤p≤x/m

p∈I(m)

e(αhmp).

We write L := log x. Lemma 5.1 shows that when

R = exp(κ
√

log x log log x), κ < 1/
√
6,

then

Ψ(x,R3L6) 
 x/R.

This upper bound must also hold for any smaller value of R. Thus the contribu-
tion from p ≤ R3L6 is 
 x/R.
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By Lemma 7.2, the contribution from m ≤ R4L6 is

≤
∑

m≤R4L6

∣∣∣∣∣∣∣
∑

P(m)≤p≤x/m
p∈I(m)

e(αhmp)

∣∣∣∣∣∣∣

 R4L6L7

(
hxq−

1
2 + x

4
5+ε + (hxq)

1
2

)

 x

R
,

provided

h ≤ R and R12L26 < q ≤ x

R11L26
.

Let M = R4L6, N = R3L6, and am (resp. bn) be the characteristic functions
of B (resp. of the primes). It remains to estimate

S :=
∑

m>M

∑
n>N, n∈Ĩ(m)

mn≤x

ambne(αhmn),

where Ĩ(m) = I(m) ∩ [P (m),∞). Applying a strategy called cosmetic surgery

in [2, Sec. 3.2], we can remove the condition n ∈ Ĩ(m) at the expense of a factor

 log x. This leads to

S 
 (log x)

∣∣∣∣∣∣∣∣
∑

m>M

∑
n>N

mn≤x

ãmb̃ne(αhmn)

∣∣∣∣∣∣∣∣
+ O(1),

for suitable ãn, b̃n with |ãm|, |b̃n| ≤ 1. An application of Lemma 7.1 with R4L6 <
q ≤ x

R3L6 and h ≤ R yields S 
 x/R.

9. Proof of Theorem 1.7

For the following upper bound see [4, Thm. 2.5 of Ch. 2].

����
 9.1 (Erdős-Turán)� With the notation of Theorem 1.7 and m ∈ N

we have

sup
0≤y≤1

|B(x, y, α)− yB(x)| ≤ 6B(x)

m+ 1
+

4

π

m∑
h=1

(
1

h
− 1

m+ 1

) ∣∣∣∣∣∣
∑

n∈B(x)

e(αhn)

∣∣∣∣∣∣ .
P r o o f o f T h e o r e m 1.7. Let κ < 1/

√
6 and pick η > 0 such that

κ+ η < 1/
√
6. Let R = exp

(
(κ+η)

√
log x log log x

)
. Since α has finite irrational-

ity measure μ, the continued fraction convergents aj/qj of α satisfy qj+1 
α qμj .
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It follows that for all x ≥ x0(α), there is a qj satisfying the condition

Q < qj ≤ x

Q
where Q := R12(log x)26.

Theorem 1.6 shows that for h ≤ R and |α− aj/qj| ≤ 1/q2j ,∑
n∈B(x)

e(αhn) 
 x/R.

The result now follows from Lemma 9.1 with m = �R�. �
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