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ABSTRACT. For each integer n ≥ 2, let p1 ≤ p2 ≤ · · · ≤ pk be the complete list
of the prime factors of a(n) := n(n+1). Consider the function sn : {p1, . . . , pk} →
{0, 1} defined by sn(pj) = 0 if pj | n and 1 if pj | n + 1. Then consider the
binary number h(n) := sn(p1) . . . sn(pk). In an earlier paper, we proved that

the number 0.h(2)h(3)h(4) . . . is a binary normal number and in fact we proved
the more general statement when, for a fixed integer t ≥ 2, we set a(n) :=
n(n + 1) · · · (n + t − 1), thus allowing for the construction of a normal number
in base t. Here, we give a much shorter and simpler proof of this result and then
we consider a more general result when a(n) is the product of linear functions.

Communicated by Georges Grekos

1. Introduction

Given an integer t ≥ 2, a t-normal number, or for short a normal number,
is a real number whose t-ary expansion is such that any preassigned sequence,
of length k ≥ 1, of base t digits in this expansion, occurs at the expected fre-
quency, namely 1/tk. Given an integer r ≥ 1, we say that an expression of the
form i1i2 . . . ir, where each ij ∈ {0, 1, . . . , t−1}, is a word of length r. The symbol
Λ will denote the empty word.
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In a series of papers (see [2] through [16]), we produced several methods
for creating large families of normal numbers using the multiplicative structure
of integers. In one of these [3], we proved the following result.

������� �� Let t ≥ 2 be a fixed integer and set E(n) := n(n+1) · · · (n+t−1).
Moreover, for each positive integer n, set

e(n) :=
∏

qβ‖E(n)
q≤t−1

qβ .

Define the sequence hn on the prime powers qa of E(n) as follows:

hn(q
a) = hn(q) =

{
Λ if q|e(n)
� if q|n+ �, GCD

(
q, e(n)

)
= 1.

If E(n) = qa1
1 qa2

2 · · · qar
r , where q1 < q2 < · · · < qr are primes and each ai ∈ N,

then set
S
(
E(n)

)
= hn(q1)hn(q2) · · ·hn(qr).

Then, the number 0.S
(
E(1)

)
S
(
E(2)

)
. . . S

(
E(n)

)
. . . is a t-normal number.

The proof of Theorem A that we gave in [3] is lengthly and somewhat compli-
cated. Here, we provide a shorter and simpler proof of Theorem A and thereafter,
we show the more general result when E(n) is the product of linear functions.

2. Main results

We start by a simple reformulation of Theorem A for the binary case.

������� 2.1� For each integer n ≥ 2, let p1 ≤ p2 ≤ · · · ≤ pk be the complete
list of the prime factors of n(n+ 1). Consider the function

sn : {p1, . . . , pk} → {0, 1}
defined by

sn(pj) =

{
0 if pj | n,
1 if pj | n+ 1

and the corresponding binary number

h(n) := sn(p1) . . . sn(pk).

Then, the number ξ = 0.h(2) h(3) h(4) . . . is a binary normal number.

Then comes a (simpler) formulation of Theorem A for the case of an arbitrary
base t ≥ 2.
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������� 2.2� Let t ≥ 2 be a fixed integer, set a(n) := n(n+1) · · · (n+t−1) and
write its factorisation as a(n) = p1p2 · · · pk, where p1 ≤ p2 ≤ · · · ≤ pk are all the
primes dividing a(n). Consider the function sn : {p1, . . . , pk} → {0, 1, . . . , t− 1}
defined by

sn(p) =

{
j if p ≥ t and p | n+ j,

Λ if p < t,

and set h(n) := sn(p1)sn(p2) . . . sn(pk). Then, the number 0.h(2) h(3) h(4) . . . is
a t-normal number.

Finally, we have the more general result when a(n) is the product of linear
functions.

������� 2.3� Fix an integer t ≥ 2. Consider the t linear functions Lj(x) =
ajx+ bj , j = 0, 1, . . . , t− 1, where

aibj − ajbi �= 0 for all 0 ≤ i < j ≤ t− 1,

aj , bj > 0 for j = 0, 1, . . . , t− 1.

Set a(n) :=
∏t−1

j=0 Lj(n) = p1p2 · · · pk, where p1 ≤ p2 ≤ · · · ≤ pk are all the

primes dividing a(n). Moreover, let N0 > 0 be a constant which is such that if
p > N0, then if 1 ≤ i < j ≤ t − 1, GCD

(
Li(n), Lj(n)

)
is not a multiple of p.

Then, let sn be defined on the prime divisors of a(n) by

sn(p) =

{
j if p ≥ N0 and p | Lj(n),

Λ if p < N0.

Moreover, let

h(n) := sn(p1)sn(p2) . . . sn(pk).

Then the number 0.h(2) h(3) h(4) . . . is a base t normal number.

3. Basic techniques on normal numbers

In the first section, we introduced the notion of “word”. In the present section,
we focus on words in base 2, namely binary words. A binary word is a finite
sequence of 0’s and 1’s, that is a sequence of digits in base 2. Let E be the set
of binary words. Given β = b1b2 . . . bk ∈ E, we denote by λ(β) the length of the
word β, that is k, the number of binary digits that it contains. In particular,
λ(Λ) = 0. Given κ, β ∈ E, we say that κ is a subword of β if there exist u, v ∈ E
such that β = uκv. Given β, κ ∈ E, we let ρ(β | κ) stand for the number of ways
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of writing β as β = uκv for some u, v ∈ E. In particular, it is clear that if
β = β1β2, then

ρ(β1 | κ) + ρ(β2 | κ) ≤ ρ(β1β2 | κ) ≤ ρ(β1 | κ) + ρ(β2 | κ) + λ(κ)− 1.

With this set up, we introduce the following proposition.

	��
���
��� 3.1� Let ε1, ε2, . . . be an infinite binary sequence and consider the
(finite) words

AM := ε1ε2 . . . εM (M = 1, 2, . . .)

and further consider the real number α := 0.ε1ε2 . . . . If for every κ ∈ E,
there exists an increasing sequence of integers M1,M2, . . . such that

lim
r→∞

Mr+1 −Mr

Mr
= 0 and lim

r→∞
ρ(AMr

| κ)
Mr

=
1

2λ(κ)
, (1)

then,

lim
N→∞

ρ(AN | κ)
N

=
1

2λ(κ)
, (2)

implying that α is a binary normal number.

P r o o f. Fix an arbitrary κ ∈ E and let (Mr)r∈N be the corresponding sequence
of integers satisfying (1). Let N > 0 be a large integer and let r be such that
Mr < N ≤ Mr+1. Then, define DN implicitly by AN = AMr

DN . It follows that

λ(DN ) ≤ N −Mr ≤ Mr+1 −Mr

and therefore,
ρ(AMr

| κ) ≤ ρ(AN | κ) ≤ ρ(AMr
| κ) + λ(DN ),

which in turn implies that

ρ(AMr
| κ)

N
≤ ρ(AN | κ)

N
≤ ρ(AMr

| κ)
N

+
λ(DN )

N
. (3)

Since, as N becomes large and therefore r as well, we have

ρ(AMr
| κ)

Mr+1
≤ ρ(AMr

| κ)
N

and
ρ(AMr

| κ)
N

+
λ(DN )

N
≤ ρ(AMr

| κ)
Mr

+ o(1),

it follows that (3) can be replaced by

ρ(AMr
| κ)

Mr
· Mr

Mr+1
≤ ρ(AN | κ)

N
≤ ρ(AMr

| κ)
Mr

+ o(1). (4)

Since
Mr

Mr+1
= 1 + o(1) as r → ∞ (due to the first relation in (1)) and because

of the second relation in (1), we may replace (4) by

1

2λ(κ)
(
1 + o(1)

) ≤ ρ(AN | κ)
N

≤ 1

2λ(κ)
(
1 + o(1)

)
(r → ∞),

which clearly implies (2). �
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4. Additional notation and preliminary results

From here on, the letters p and q with or without subscripts will always denote
prime numbers.

We now state some classical results from prime number theory. We start with
Mertens’ theorem, which in fact can be formulated in three equivalent forms.

������� � (Mertens)� For large x, we have

(i)
∑
p≤x

log p

p
= log x+O(1),

(ii)
∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
for some constant B,

(iii)
∏
p≤x

(
1− 1

p

)
=

eD

log x

(
1 +O

(
1

log x

))
for some constant D.

P r o o f. The above is Theorem 10.1 in the book of De Koninck and Doyon [1],
where a detailed proof is given. �

����� 4.1� Given real numbers y > x ≥ e, we have

(a)
∑

x<p≤y

log p

p
= log y − log x+ O

(
1

log x

)
,

(b)
∑

x<p≤y

1

p
= log

(
log y

log x

)
+O

(
1

log x

)
.

P r o o f. To prove part (a), one will not succeed by simply using part (i) of
Theorem B. A stronger estimate is required. In 1962, Rosser and Schoenfeld [19]
proved that there exist constants E < 0 and a > 0 such that∑

p≤x

log p

p
= log x+E +O

(
1

ea
√
log x

)
. (5)

It is then clear that part (a) is an easy consequence of (5).

Part (b) is an immediate consequence of Theorem B (ii). �

����� 4.2� Given x ≥ ee
e

, let ε(x) be a function which tends to 0 as x → ∞
but at the same time satisfies ε(x) ≥ 1/ log log log x. Further set

z1 = z1(x) = exp
{
(log x)ε(x)

}
and z2 = z2(x) = exp

{
(log x)1−ε(x)

}
.
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Then, for j = 1, 2, there exists an absolute constant c > 0 for which, for all

x ≥ ee
e

,

Wj(x; z1, z2) :=
∑
n≤x

⎛⎜⎝∑
p|n

p<z1

1

⎞⎟⎠
j

+
∑
n≤x

⎛⎜⎝ ∑
p|n

z2<p≤x

1

⎞⎟⎠
j

≤ c ε(x) x (log log x)j. (6)

P r o o f. First consider the case j = 1. Using Theorem B(ii), we have

W1(x; z1, z2) =
∑
p<z1

⌊
x

p

⌋
+

∑
z2<p≤x

⌊
x

p

⌋
≤ x

∑
p<z1

1

p
+ x

∑
z2<p≤x

1

p

= x

(
log

(
(log x)ε(x)

))
+O(x)

+x

(
log log x− log

(
(log x)1−ε(x)

))
+O(x)

= ε(x) x log log x+O(x),

thus proving (6) in the case j = 1.

For the case j = 2, we follow the method of proof of Theorem 7.2 in the book
of De Koninck and Luca [17] by first writing that

∑
n≤x

⎛⎜⎜⎝∑
p|n
p<z1

1

⎞⎟⎟⎠
2

=
∑
n≤x

⎛⎜⎜⎝∑
p|n
p<z1

1 + 2
∑
pq|n

p<q<z1

1

⎞⎟⎟⎠ = S1(x) + 2S2(x),

say, and similarly

∑
n≤x

⎛⎜⎜⎝ ∑
p|n

z2<p≤x

1

⎞⎟⎟⎠
2

=
∑
n≤x

⎛⎜⎜⎝ ∑
p|n

z2<p≤x

1 + 2
∑
pq|n

z2<p<q≤x

1

⎞⎟⎟⎠ = T1(x) + 2T2(x),

say.

Clearly,

S1(x) ≤
∑
n≤x

∑
p|n

1 =
∑
n≤x

ω(n) = O(x log log x), (7)

where ω(n) stands for the number of distinct prime factors of n.
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On the other hand,

S2(x) =
∑

p<q<z1
pq≤x

⌊
x

pq

⌋
≤ x

∑
p<q<z1

1

pq

= x
∑
q<z1

1

q

∑
p<q

1

p
� x

∑
q<z1

log log q

q

= x

∫ z1

2

log log t

t
dπ(t) � x

∫ z1

2

log log t

t log t
dt

=
x

2
(log log t)2

∣∣∣z1
2

� x(log log z1)
2

= x(ε(x) log log x)2 < xε(x)(log log x)2. (8)

Similarly as we did to obtain (7), one easily obtains that

T1(x) = O(x log log x). (9)

On the other hand,

T2(x) ≤ x
∑

z2<p≤x

1

p

∑
p<q≤x

1

q
� x

∑
z2<p≤x

1

p
log log x

� x log log x (log log x− log log z2)

= x log log x
(
log log x− (

1− ε(x)
)
log log x

)
= x log log x

(
ε(x) log log x

)
= xε(x)(log log x)2. (10)

Gathering estimates (7), (8), (9) and (10) completes the proof of (6) in the
case j = 2 and thereby the proof of Lemma 4.2. �

����� 4.3� Let H be a large number. Then,∑
p<q

log q
log p

<eH

log2 p

p
=

∑
qe−H<p<q

log2 p

p
=

(
1− e−2H

) log2 q
2

+O(log q). (11)

P r o o f. Writing the sum Σq in (11) as a Stieltjes integral and then using the
prime number theorem in the form

π(x) :=
∑
p≤x

1 =
x

log x
+O

(
x

log2 x

)
,

7
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we obtain that

Σq =

∫ q

qe−H

log2 t

t
dπ(t) = π(t)

log2 t

t

∣∣∣∣q
qe−H

+

∫ q

qe
−H

π(t)
log2 t

t2

(
1 +O

(
1

log t

))
dt

= O(log q) +

∫ q

qe−H

log t

t

(
1 +O

(
1

log t

))
dt

=
1

2

(
1− e−2H

)
log2 q +O(log q),

as claimed. �

����� 4.4� Let H > 0 be a fixed positive number. Let τH(n) be the number
of prime divisors p of n(n+1) for which there exist no prime divisors of n(n+ 1)

located in the interval
(
p, pe

H)
. Then, for j = 1, 2, there exists an absolute

constant c > 0 such that ∑
n≤x

τH(n)j ≤ c

H
x (log log x)j. (12)

P r o o f. In the case of j = 1, using standard sieve techniques as well as Theo-
rem B (iii), we have that∑

n≤x

τH(n) �
∑
p≤x

x

p

∏
p<q<peH

(
1− 1

q

)
� x

∑
p≤x

1

p
· 1

eH
� x

eH
log log x,

which clearly implies (12) in the case j = 1. The case j = 2 can be handled
in a similar manner. �

5. The sketch of the proof of Theorem 2.1

Given an integer n ≥ 2 with n(n+ 1) = p1p2 · · · pk, it is clear that
k = Ω(n) + Ω(n+ 1),

where Ω(n) stands for the number of prime factors of n counting their multiplic-
ities.

Now, given a word δ1 . . . δ� ∈ {0, 1}� with � ≤ k, we let K(n | δ1 . . . δ�) stand
for the number of occurrences of the word δ1 . . . δ� in h(n), that is,

K(n | δ1 . . . δ�) := #
{
j ∈ {1, . . . , k − r} : sn(pj+r) = δr with r = 1, . . . , �

}
.

8
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In particular, it is easy to see that∑
δ1...δ�∈{0,1}�

K(n | δ1 . . . δ�) = Ω(n) + Ω(n+ 1)− (�− 1)

= k − (�− 1).

It is known (see for instance Elliott [18]) that, given any fixed numbers δ > 0
and ε > 0,

lim
x→∞

1

x
#

{
n ≤ x :

|Ω(n)− log logn|
(log logn)

1
2+δ

> ε

}
= 0. (13)

Our goal is to show that, for every word δ1 . . . δ� ∈ {0, 1}�, we have

K(n | δ1 . . . δ�) =
(
1 + o(1)

)Ω(n) + Ω(n+ 1)

2�

for almost all n ≤ x as x → ∞, which amounts, in light of (13), to show that

K(n | δ1 . . . δ�) =
(
1 + o(1)

) log log x
2�−1

(14)

for almost all n ≤ x as x → ∞.

For each word δ1 . . . δ� ∈ {0, 1}�, we set

T (x | δ1 . . . δ�) :=
∑
n≤x

K(n | δ1 . . . δ�).

It then follows from (14) that

T (x | δ1 . . . δ�) =
(
1 + o(1)

)
x
log log x

2�−1
(x → ∞) (15)

and actually more is true as we will prove that∑
n≤x

(
K(n | δ1 . . . δ�)− log log x

2�−1

)2
= o

(
x(log log x)2

)
. (16)

Clearly, as a consequence of (16), we have that∑
n≤x

∣∣∣∣K(n | δ1 . . . δ�)− log log x

2�−1

∣∣∣∣ = o(x log log x) (x → ∞), (17)

which means that for any fixed number ε > 0, we have

lim
x→∞

1

x
#

{
n ≤ x : max

δ1...δ�∈{0,1}�

∣∣∣∣K(n | δ1 . . . δ�)
2 log log x

− 1

2�

∣∣∣∣ > ε

}
= 0,

from which, as we will now see, it will follow that the number ξ of Theorem 2.1
is indeed a binary normal number.

9
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To see this, we proceed as follows. Recall that

ξ = 0.h(2) h(3) . . . = 0.ε1ε2ε3 . . . ,

where each εi ∈ {0, 1}, and also set

AN := ε1ε2 . . . εN .

Further set

Cr := h(2) h(3) . . . h(r) (r = 2, 3, . . .).

We know that

λ(Cr) =

r∑
j=2

λ
(
h(j)

)
= 2

r∑
i=2

Ω(i) +O(log r)

= 2r log log r +O(r). (18)

Consequently, if for the sequence (Mr)r∈N appearing in Proposition 3.1,

we choose

Mr := λ(Cr),

it will follow from (18) that

lim
r→∞

Mr+1

Mr
= 1.

On the other hand, it is clear that for an arbitrary word κ, we have

r∑
j=2

ρ
(
h(j) | κ) ≤ ρ(Cr | κ) ≤

r∑
j=2

ρ(h(j) | κ) + rλ(κ). (19)

Using inequalities (17) and (19), we have that

ρ(Cr | κ)
Mr

→ 1

2λ(κ)
(r → ∞). (20)

Applying Proposition 3.1, we may conclude that

lim
N→∞

ρ(AN | κ)
N

= lim
r→∞

ρ(Cr | κ)
r

=
1

2λ(κ)
,

thus establishing that ξ is indeed a binary normal number.

10
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6. The proofs of the various steps

Given positive integers m < n, we set

Q(m,n) :=
∏

m<p<n

p.

In order to prove (15), we start with the case of K(n | 01). First observe that
setting T (x | 01) := ∑

n≤x K(n | 01), we have

T (x | 01) =
∑

p<q≤x

#
{
n ≤ x : p |n, q |n+ 1 and GCD

(
n(n+ 1), Q(p, q)

)
= 1

}
=:

∑
p<q≤x

S(x; p, q),

say. We separate the above sum in two parts, as follows

T1(x | 01) :=
∑

z1<p<q<z2
log q
log p

<eH

S(x; p, q) and T2(x | 01) := T (x | 01)− T1(x | 01), (21)

where z1 and z2 were defined in Lemma 4.2. It follows from Lemmas 4.2 and 4.4
that there exist absolute constants c2 > 0 and c3 > 0 for which we have

T2(x | 01) ≤
(
c2ε(x) +

c3
H

)
x log log x. (22)

Using sieve theory techniques and Lemma 4.1, one can prove that, as x → ∞,

S(x; p, q) =
(
1 + o(1)

) x

pq

∏
p<π<q

(
1− 2

π

)

=
(
1 + o(1)

) x

pq
exp

{
−2

∑
p<π<q

1

π
+ O

( ∑
p<π<q

1

π2

)}

=
(
1 + o(1)

) x

pq
exp

{
−2 log

(
log q

log p

)
+O

(
1

log p

)}
=

(
1 + o(1)

) x

pq

log2 p

log2 q
. (23)

Using (23) in the representation of T1(x | 01) given in (21), we get that

T1(x | 01) = (
1 + o(1)

)
x
∑
q<z2

1

q log2 q

∑
z1<p<q<peH

log2 p

p
(x → ∞). (24)

11
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Using Lemma 4.3 in (24), we obtain that, as x → ∞,

T1(x | 01) = (
1 + o(1)

) (
1− e−2H

) x
2

∑
q<z2

1

q
=
(
1 + o(1)

) (
1− e−2H

) x
2
log log x,

which, combined with estimate (22) and since H can be taken arbitrarily large,
proves that

T1(x | 01) = (
1 + o(1)

)x
2
log log x (x → ∞),

thus establishing (15) in the case of � = 2.

Let us now estimate the expression

E(x | 01) :=
∑
n≤x

⎛⎜⎜⎜⎜⎜⎜⎝
∑

z1<p<q<z2
p|n, q|n+1

(n(n+1),Q(p,q))=1
log q
log p

<eH

1

⎞⎟⎟⎟⎟⎟⎟⎠

2

. (25)

Recalling the definition of T1(x | 01) given above, we may write that

E(x | 01) = T1(x | 01) + 2
∑
n≤x

∑
z1<p1<q1<p2<q2<z2

p1p2|n, q1q2|n+1
(n(n+1),Q(p,q))=1
log qj
log pj

<eH, j=1,2

1

= T1(x | 01) + 2
∑

z1<p1<q1<p2<q2<z2
log qj
log pj

<eH, j=1,2

R(x; p1, p2, q1, q2), (26)

say. Recalling the definition of S(x; p, q) given above, we obtain that

R(x; p1, p2, q1, q2)

x
=
(
1 + o(1)

)S(x; p1, q1)
x

· S(x; p2, q2)
x

(x → ∞),

which substituted in (26) implies that

E(x | 01)
x

=
(
1 + o(1)

)⎛⎜⎜⎝ ∑
z1<p<q<z2
log q
log p

<eH

S(x; p, q)

x

⎞⎟⎟⎠
2

+ o
(
(log log x)2

)
(x → ∞).

12



CREATING NEW FAMILIES OF NORMAL NUMBERS

Using the above and applying Lemmas 4.2 and 4.4, we then obtain that

1

x

∑
n≤x

⎛⎜⎜⎝ ∑
p|n, q|n+1

p<q
(n(n+1),Q(p,q))=1

1− 1

2
log log x

⎞⎟⎟⎠
2

= O

(
1

H
(log log x)2

)
. (27)

Since H can be chosen arbitrarily large, it follows from (27) that

1

x

∑
n≤x

⎛⎜⎜⎝ ∑
p|n, q|n+1

p<q
(n(n+1),Q(p,q))=1

1− 1

2
log log x

⎞⎟⎟⎠
2

= o
(
(log log x)2

)
(x → ∞), (28)

which proves (16) in the case δ1δ2 = 01 and therefore (17) as well.

So far, we have only considered the particular case δ1δ2 = 01. Clearly the
same holds when δ1δ2 = 00 or 10 or 11.

For the general case, we proceed as follows. Given δ1 . . . δ� ∈ {0, 1}�, we set

ν(n | δ1 . . . δ�)

:=
∑

p1<···<p�

#

{
pj | n+ δj, j = 1, . . . , �, with

(
n(n+ 1)

p1 · · · p� , Q(p1, p�)

)
= 1

}
ν1(n | δ1 . . . δ�)

:=
∑

z1<p1<···<p�<z2
log pj+1
log pj

<eH, j=1,...,�−1

#

{
pj | n+ δj, with

(
n(n+ 1)

p1 · · · p� , Q(p1, p�)

)
= 1

}

ν2(n | δ1 . . . δ�)
:= ν(n | δ1 . . . δ�)− ν1(n | δ1 . . . δ�)

and we also set

T (x | δ1 . . . δ�) :=
∑
n≤x

ν(n | δ1 . . . δ�)

Tj(x | δ1 . . . δ�) :=
∑
n≤x

νj(n | δ1 . . . δ�) (j = 1, 2).

It follows from Lemmas 4.2 and 4.4 that, for some absolute constant c > 0,

1

x

∑
n≤x

ν2(n | δ1 . . . δ�)j ≤ c

H
(log log x)j (j = 1, 2). (29)

13
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Similarly, proceeding as we did for estimating T (x | 01), we first write that

T (x | δ1 . . . δ�) = T1(x | δ1 . . . δ�) + T2(x | δ1 . . . δ�) = T1(x) + T2(x),

say, where, as x → ∞,

T1(x)

x
=

(
1 + o(1)

) ∑
z1<p1<···<p�<z2

log pj+1
log pj

<eH, j=1,...,�−1

1

p1 · · · p�
∏

p1<π<p�

(
1− 2

π

)

=
(
1 + o(1)

) ∑
z1<p1<···<p�<z2

log pj+1
log pj

<eH, j=1,...,�−1

1

p1 · · · p�
log2 p1

log2 p�
. (30)

Making repetitive use of Lemma 4.3 in evaluating the sum in (30), we obtain
that

T1(x)

x
=

(
1 + o(1)

)1− e−2H

2
·

∑
z1<p2<···<p�<z2

log pj+1
log pj

<eH, j=2,...,�−1

1

p2 · · · p�
log2 p2

log2 p�

...

=
(
1 + o(1)

)(1− e−2H

2

)�−1 ∑
z1<q<z2

1

q

=
(
1 + o(1)

)(1− e−2H

2

)�−1

log log x. (31)

On the other hand, as in the case of � = 2, in light of (29), it is clear that

T2(x) = O

(
log log x

H

)
. (32)

Combining (31) and (32), and observing that H can be chosen arbitrarily large,
we may conclude that

T (x)

x
=
(
1 + o(1)

) log log x
2�−1

. (33)

It remains to prove that

1

x

∑
n≤x

(
ν(n | δ1 . . . δ�)− log log x

2�−1

)2
= o

(
(log log x)2

)
(x → ∞). (34)

14
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First observe that, in light of Lemmas 4.2 and 4.4, it will be sufficient to prove
that

1

x

∑
n≤x

(
ν1(n | δ1 . . . δ�)− log log x

2�−1

)2
= O

(
(log log x)2

H

)
. (35)

To do so, we start by observing that the left hand side of (35) is equal to

1

x

∑
n≤x

ν1(n | δ1 . . . δ�)2

− 2
log log x

2�−1

1

x

∑
n≤x

ν1(n | δ1 . . . δ�) + 	x

x

(
log log x

2�−1

)2

=
1

x
Σ1 − 2

log log x

2�−1
· 1
x
T1(x) +

	x

x

(
log log x

2�−1

)2
,

say. We already know from (31) that

T1(x)

x
=
(
1 + o(1)

)(
1 +O

(
1

H

))
log log x

2�−1
(x → ∞). (36)

Therefore, in order to prove (35), it will be enough to show that

1

x
Σ1 =

(
1 + o(1)

) · ( log log x

2�−1

)2
·
(
1 +O

(
1

H

))
(x → ∞). (37)

By definition, we have that

ν1(n | δ1 . . . δ�)2 =
∑

pj |n+δj, qj |n+δj ,j=1,...,�

z1<p1<···<p�<z2, z1<q1<···<q�<z2
log pj+1
log pj

<eH,
log qj+1
log qj

<eH, j=1,...,�−1

1.

Notice that the above sum runs over two �-tuples of increasing primes, namely

p1 < · · · < p� and q1 < · · · < q�.

For each such pair of �-tuples, let us consider their intersection

I := {p1, . . . , p�} ∩ {q1, . . . , q�}.
The contribution to Σ1 of those pairs for which I �= ∅ can be neglected. To see
this, let us assume, for simplicity, that δ1 = 0, in which case we have that p1 | n.
This means that q1 must be equal to one of the primes p2, . . . , p�, allowing
for only �−1 possibilities. Hence, the number of those pairs of �-tuples for which

15
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the corresponding set I is non empty does not exceed (� − 1)Ω
(
n(n + 1)

)
, and

therefore their contribution to Σ1 does not exceed

1

x

∑
n≤x

c
(
Ω(n) + Ω(n+ 1)

) � log log x

for some constant cwhichmaydepend on �.

We can therefore assume that I = ∅ and without loss of generality that
p� < q1, in which case we have

1

x
Σ1 =

1

x

∑
z1<p1<···<p�<q1<···<q�<z2

log pj+1
log pj

<eH,
log qj+1
log qj

<eH, j=1,...,�−1

∑
n≤x

pj |n+δj, qj |n+δj
j=1,...,�

1 +O(log log x).

Then, following the same pattern that lead to estimate (33), we finally obtain
that

1

x
Σ1 =

(
1 +O

(
1

H

))
(log log x)2

22(�−1)
,

which allows us to conclude that (37) holds, and therefore (35) and (34) as well,
thus proving our claim.

7. The proof of Theorem 2.2

The proof of Theorem 2.2 runs along the same lines as that of Theorem 2.1.
The only difference is that we need to treat separately the prime divisors
of a(n) = n(n + 1) · · · (n + t − 1) which are smaller than t, and in fact ignore
them altogether in listing the digits that form the number 0.h(2) h(3) h(4) . . .

8. The proof of Theorem 2.3

In order to avoid repeating the same arguments as in the proof of Theorem 2.1,
we only provide a sketch of the proof.

Given an integer n ≥ 2 and a word δ1 . . . δ� ∈ {0, 1, . . . , t− 1}�, we set

K̃(n | δ1 . . . δ�) = #{j ∈ {0, 1, . . . , k − r} : sn(pj+r) = δr for r = 1, . . . , �}.
Proceeding as we did in the proof of Theorem 2.1, one can easily establish that,
as x → ∞,

16
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1

x

∑
n≤x

(
K̃(n | δ1 . . . δ�)− log log x

t�−1

)2
= o

(
(log log x)2

)
.

It follows from this that the number 0.h(2)h(3)h(4) . . . is a normal number in
base t, thus proving Theorem 2.3.
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[8] DE KONINCK, J.-M.—KÁTAI, I.: Construction of normal numbers using the distribu-

tion of the k-th largest prime factor, J. Australian Math. Soc. 88 (2013), 158–168.
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[16] DE KONINCK, J.-M.—KÁTAI, I.: Prime factorization and normal numbers, Researches
in Mathematics and Mechanics 20 (2015), no. 2, 69–80.

[17] DE KONINCK, J.-M.—LUCA, F.: Analytic Number Theory: Exploring the Anatomy

of Integers. Graduate Studies in Math. Vol. 134, American Mathematical Society,
Providence, RI, 2012.

[18] ELLIOTT, P. D. T. A.: Probabilistic Number Theory II. Central Limit Theorems. Funda-
mental Principles of Mathematical Sciences, Vol. 240. Springer-Verlag, Berlin-New York,
(1980).

[19] ROSSER, J.B.—SCHOENFELD, L.: Approximate formulas for some functions of prime

numbers, Illinois J. Math. 6 (1962), 64–94.

Received November 21, 2022
Accepted June 26, 2023

Jean-Marie De Koninck
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