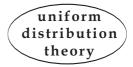
💲 sciendo



DOI: 10.2478/UDT-2022-0016 Unif. Distrib. Theory **17** (2022), no.2, 161–164

DISTRIBUTION OF LEADING DIGITS OF IMAGINARY PARTS OF RIEMANN ZETA ZEROS

Yukio Ohkubo¹ — Oto $Strauch^2$

¹Department of Business Administration, The International University of Kagoshima, Sakanoue, Kagoshima-shi, JAPAN

²Mathematical Institute, Slovak Academy of Sciences, Bratislava, SLOVAKIA

ABSTRACT. In this paper we study the distribution of leading digits of imaginary parts of Riemann zeta zeros in the *b*-adic expansion.

Communicated by Vladimír Baláž

Introduction

Throughout this paper, for $x \in \mathbb{R}$, let $[x] = \max\{n \in \mathbb{Z} : n \leq x\}, \{x\} = x - [x] = x \mod 1$. For fixed sequence of real numbers $x_1, x_2, \ldots, x_n, \ldots$ and arbitrary integer sequence $N_1 < N_2 < \cdots < N_i < \cdots$ denote

$$F_{N_i}(x) = \frac{\#\{n \le N_i; x_n \bmod 1 \in [0, x)\}}{N_i}.$$

The set of all possible limits $g(x) = \lim_{N_i \to \infty} F_{N_i}(x)$ for continuity points x of g(x) is called $G(x_n \mod 1)$ —the set of all distribution functions g(x) of the real sequence $x_n \mod 1$.

Let $b \ge 2$ be an integer considered to be the base of the numeral system used for the representation of a positive real number x > 0 and $M_b(x)$ be a mantissa of x defined by $x = M_b(x) \times b^{n(x)}$ such that $1 \le M_b(x) < b$ holds, where n(x) is a uniquely determined integer. Let $K = k_1 k_2 \dots k_r$ be a positive integer expressed

^{© 2022} BOKU-University of Natural Resources and Life Sciences and Mathematical Institute, Slovak Academy of Sciences.

²⁰²⁰ Mathematics Subject Classification: 11K06, 11K31, 11K38.

 $[\]operatorname{Keyw} \operatorname{ord} s:$ Benford's law, distribution function, zeros of Riemann zeta function.

Supported by Grant VEGA no. 2/0119/23.

COSE Licensed under the Creative Commons BY-NC-ND 4.0 International Public License.

in the base b, that is

$$K = k_1 \times b^{r-1} + k_2 \times b^{r-2} + \dots + k_{r-1} \times b + k_r,$$

where $k_1 \neq 0$ and at the same time $K = k_1 k_2 \dots k_r$ is considered to be an r-consecutive block of integers in the base b.

Qualitative result

It is clear that the following basic equivalences hold.

$$K \leq M_{b}(x) \times b^{r-1} < K+1$$

$$\iff \frac{K}{b^{r-1}} \leq M_{b}(x) < \frac{K+1}{b^{r-1}}$$

$$\iff \log_{b}\left(\frac{K}{b^{r-1}}\right) \leq \log_{b}\left(M_{b}(x)\right) < \log_{b}\left(\frac{K+1}{b^{r-1}}\right)$$

$$\iff \log_{b}\left(\frac{K}{b^{r-1}}\right) \leq \log_{b}x \mod 1 < \log_{b}\left(\frac{K+1}{b^{r-1}}\right).$$
(1)
(2)

Note that for x of the type $x = 0.00 \dots 0k_1k_2 \dots k_r \dots$, we shall omit the first zero digits and $M_b(x) = k_1 \dots k_r \dots$ Let

$$x_n > 0, n = 1, 2, \dots, g(x) \in G(\log_b(x_n) \mod 1)$$
 and $g(x) = \lim_{i \to \infty} F_{N_i}(x),$

where

$$F_{N_i}(x) = \frac{\#\{n \le N_i; \log_b x_n \mod 1 \in [0, x)\}}{N_i}$$

Using equivalent inequalities (1) and (2), then for fixed N_i we have

$$\frac{\#\{n \le N_i; \text{ first } r \text{ digits of } M_b(x_n) \text{ are equal to } K\}}{N_i}$$

$$= \frac{\#\{n \le N_i; \log_b\left(\frac{K}{b^{r-1}}\right) \le \log_b x_n \mod 1 < \log_b\left(\frac{K+1}{b^{r-1}}\right)\}}{N_i}$$

$$= F_{N_i}\left(\frac{K+1}{b^{r-1}}\right) - F_{N_i}\left(\frac{K}{b^{r-1}}\right).$$

For the following Benford's law we use Theorem 47, page 78, in [3].

THEOREM 1. Let $g(x) \in G(\log_b x_n \mod 1)$ and $\lim_{i\to\infty} F_{N_i}(x) = g(x)$. Then $\lim_{N_i\to\infty} \frac{\#\{n \le N_i; \text{ first } r \text{ digits (starting with a non-zero digit) of } x_n = K\}}{N_i} = g\left(\log_b\left(\frac{K+1}{b^{r-1}}\right)\right) - g\left(\log_b\left(\frac{K}{b^{r-1}}\right)\right).$

162

Let γ_n , $n = 1, 2, \ldots$, be the sequence of all positive imaginary parts of nontrivial zeros of the Riemann zeta function $\zeta(s)$ in ascending order. For a positive integer N let

$$F_N(x) = \frac{1}{N} \# \{ 1 \le n \le N; \log_b \gamma_n \mod 1 \in [0, x) \} \text{ for } 0 \le x \le 1.$$

We need find the set $G(\log_b \gamma_n \mod 1)$ of all distribution functions of $\log_b \gamma_n \mod 1$. To do this we use Kemperman's theorem [2].

THEOREM 2. Assume that

$$\lim_{n \to \infty} \left(f(n+1) - f(n) \right) = 0,$$

$$\lim_{n \to \infty} n \left(f(n+1) - f(n) \right) = t.$$

Then the set of all distribution functions $G(f(n) \mod 1)$ has the form

$$g_u(x) = \begin{cases} \frac{e^{(1+x-u)/t} - e^{(1-u)/t}}{e^{1/t} - 1} & \text{if } 0 \le x \le u, \\ 1 - \frac{e^{(1-u)/t} - e^{(x-u)/t}}{e^{1/t} - 1} & \text{if } u \le x \le 1. \end{cases}$$

Furthermore, $F_{N_i}(x) \to g_u(x)$ if and only if $f(N_i \mod 1) \to u$. In this case

$$F_{N_i}(x) = \frac{\#\{n \le N_i; f(x_n) \bmod 1 \in [0, x)\}}{N_i}$$

For the sequence $\gamma_n, n = 1, 2, \dots$ (see M. Hassani [1]) we have

$$\frac{2\pi n}{\log n} \left(1 + \frac{11}{12} \cdot \frac{\log \log n}{\log n} \right) \le \gamma_n \le \frac{2\pi n}{\log n} \left(1 + \frac{23}{12} \cdot \frac{\log \log n}{\log n} \right).$$
(3)

Using Theorem 11 page 25 in [3] we have

THEOREM 3. Let x_n and y_n be two real sequences. Assume that all distribution functions in $G(x_n \mod 1)$ are continuous at 0 and 1. Then the zero limit

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} |x_n - y_n| = 0 \quad implies \quad G(x_n \bmod 1) = G(y_n \bmod 1).$$

From Theorem 3 and formula (3) it follows that

$$G\left(\log_b \frac{2\pi n}{\log n} \mod 1\right) = G(\log_b \gamma_n \mod 1).$$

For Benford's law we need find distribution functions of the sequence $\log_b \gamma_n \mod 1$. To do this we find distribution functions $f(n) = \log_b \frac{2\pi n}{\log n} \mod 1$ using Kemperman's theorem 2. Here

$$\lim_{n \to \infty} \left(\log_b \left(\frac{2\pi (n+1)}{\log(n+1)} \right) - \log_b \left(\frac{2\pi n}{\log n} \right) \right) = 0,$$

$$\lim_{n \to \infty} n \left(\log_b \left(\frac{2\pi (n+1)}{\log(n+1)} \right) - \log_b \left(\frac{2\pi n}{\log n} \right) \right) = \frac{1}{\log b},$$

163

Thus from Theorem 2 we have

$$g_u(x) = \begin{cases} \frac{b^{(1+x-u)} - b^{1-u}}{b-1} & \text{if } 0 \le x \le u, \\ 1 - \frac{b^{(1-u)} - b^{x-u}}{b-1} & \text{if } u \le x \le 1. \end{cases}$$
(4)

THEOREM 4.

$$\begin{split} \lim_{N_i \to \infty} & \frac{\# \left\{ n \le N_i; \text{first } r \text{ digits (starting with a non-zero \ digit) } of \gamma_n = K \right\}}{N_i} = \\ & g_u \left(\log_b \left(\frac{K+1}{b^{r-1}} \right) \right) - g_u \left(\log_b \left(\frac{K}{b^{r-1}} \right) \right), \end{split}$$

where

$$u = \lim_{N_i \to \infty} \log_b \frac{2\pi N_i}{\log N_i} \mod 1.$$

Note that the equation (4) is equivalent to

$$g_u(x) = \frac{1}{b^u} \frac{b^x - 1}{b - 1} + \frac{b^{\min(x,u)} - 1}{b^u}.$$

REFERENCES

- HASSANI, M.: On the imaginary part of the nontrivial zeros of the Riemann zeta function, (Pardalos, Panos M. ed. et al.) In:Contributions in Mathematics and Engineering. In honor of Constantin Carathéodory. With a foreword by R. Tyrrell Rockafellar. Springer, [Cham] Switzerland, 2017, pp. 313-321.
- KEMPERMAN, J. H. B.: Distribution modulo 1 of slowly changing sequences, Nieuw. Arch. Wisk. 21 (1973), no. 3 138-163.
- [3] STRAUCH, O.: Distribution of Sequences: A Theory. VEDA, Bratislava, 2019, Prague, 2019,

Received June 17, 2022 Accepted October 12, 2022

Yukio Ohkubo

Department of Business Administration The International University of Kagoshima 8-34-1 Sakanoue Kagoshima-shi, 891-0197 JAPAN E-mail: ohkubo@eco.iuk.ac.jp

Oto Strauch

Mathematical Institute Slovak Academy of Sciences Štefánikova 49 SK-814 73 Bratislava SLOVAKIA E-mail: strauch@mat.savba.sk