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ABSTRACT. We investigate the distribution of αp modulo one in quadratic
number fields K with class number one, where p is restricted to prime elements
in the ring of integers of K. Here we improve the relevant exponent 1/4 obtained
by the first- and third-named authors for imaginary quadratic number fields [On

the distribution of αp modulo one in imaginary quadratic number fields with class
number one, J. Théor. Nombres Bordx. 32 (2020), no. 3, 719–760]) and by the
first- and second-named authors for real quadratic number fields [Diophantine
approximation with prime restriction in real quadratic number fields, Math. Z.
(2021)] to 7/22. This generalizes a result of Harman [Diophantine approximation
with Gaussian primes, Q. J. Math. 70 (2019), no. 4, 1505–1519] who obtained the

same exponent 7/22 for Q(i) by extending his method which gave this exponent
for Q [On the distribution of αp modulo one. II, Proc. London Math. Soc. 72,
(1996), no. 3, 241–260]. Our proof is based on an extension of Harman’s sieve
method to arbitrary number fields. Moreover, we need an asymptotic evaluation
of certain smooth sums over prime ideals appearing in the above-mentioned work
by the first- and second-named authors, for which we use analytic properties

of Hecke L-functions with Größencharacters.
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1. Introduction

The distribution of αp modulo one, where p runs over the rational primes
and α is a fixed irrational real, has received a lot of attention. Throughout this
article, for x a real number, we denote by ‖x‖ the distance of x to the nearest
integer. It is natural to ask for which exponents ν > 0 one can establish the
infinitude of primes p satisfying ‖αp‖ ≤ p−ν. The latest record in this regard is
Kaisa Matomäki’s landmark result ν = 1/3−ε (see [14]) which presents the limit
of currently known technology. An earlier result in this direction was obtained
by Harman (see [6]) who proved that ν = 7/22 is an admissible exponent using
his sieve method which has become a standard tool in analytic number theory.
Recently, Harman extended his method to Gaussian integers [8]. The first and
third-named authors investigated this problem more generally in the context
of imaginary quadratic fields of class number one [1], establishing an exponent
which corresponds to ν = 1/4. An analogue of this result was proved by the
first and second-named authors for real quadratic fields in [2]. In this article,
we improve the exponent 1/4 in the two last-mentioned results to Harman’s
exponent 7/22. In fact, this exponent appears halfed in the relevant results below,
Theorem 2.1, Corollary 2.2 and Theorem 2.4, because here we deal with two-
dimensional approximation problems. To this end, and with other applications
in mind, we shall prove weighted versions of Harman’s asymptotic and lower
bound sieves for general number fields, where integers are replaced by ideals
of the relevant rings of algebraic integers. The lower bound sieve will give rise
to our improvement. In fact, versions of Harman’s sieve for quadratic number
fields would suffice for our application, but it is not much of an extra effort
to make them work for general number fields.

2. New results on restricted Diophantine approximation
for quadratic number fields

Before we work out said versions of Harman’s sieve, we formulate our afore-
mentioned improvements on Diophantine approximation with primes in the con-
text of quadratic number fields. These results will be proved in Section 7 by ap-
plying our number field version of Harman’s lower bound sieve. Throughout this
article, we use the following notations.

• By K, we denote a number field.

• By O, we denote the ring of algebraic integers in K.
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• By N (a), we denote the norm over Q of a ∈ O and by N (a) the norm
of an ideal a in O.

• We use the Landau notation O(. . . ) and Vinogradov’s notation � in the
usual way. All implied constants may depend on the number field K.

2.1. Imaginary quadratic number fields

In this subsection, assume that K is an imaginary quadratic number field.
Then O is a free Z-module of rank 2 and there is some ω ∈ O such that {1, ω} is a
Z-basis of O. Since, by assumption, K �⊆ R, it follows that �ω �= 0. In particular,
{1, ω} turns out to be an R-basis of C and, given some � ∈ C, we write 	ω(�)
and �ω(�) for the unique real numbers satisfying

� = 	ω(�) + �ω(�)ω.

With this notation, we put

‖�‖ω = max{‖	ω(�)‖, ‖�ω(�)‖}.
We shall prove the following.

������� 2.1� Let K ⊂ C be an imaginary quadratic number field of class
number one and let O be its ring of integers. Suppose that α is a complex number
such that α /∈ K. Then, for any ε > 0, there exists an infinite sequence of prime
elements p ∈ O such that

‖pα‖ω ≤ N (p)−7/44+ε. (1)

This improves [1, Theorem 2.1] in which the above result with the exponent1/8
in place of 7/44 was established. As already pointed out in Remark (1) after [1,
Theorem 2.2], instead of considering the homogeneous condition ‖pα‖ω < δ in
the above theorem, one can also consider an inhomogeneous version, namely
‖pα + β‖ω < δ, where β is an arbitrary complex number. Our methods should
be capable of handling such shifts β but we chose not to implement this for the
sake of readability of this article.

In the next subsection, we formulate a version of this theorem for real-
quadratic fields which improves the main result in [2]. Again, there are no fun-
damental constraints in working out an inhomogeneous version, but we do not
deal with this in the present article. To see the connection to Theorem 2.1 above
clearly, we formulate this theorem in a slightly different form below.

����		
�� 2.2� Under the conditions of Theorem 2.1, there exist infinitely
many non-zero prime ideals p in O such that∣∣∣∣α− a

p

∣∣∣∣ ≤ N (p)−1/2−7/44+ε for some generator p of p and a ∈ O.
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P r o o f. For any complex number z, we now denote by ‖z‖ the Euclidean dis-
tance of z to the nearest algebraic integer a ∈ O. This extends our definition
of ‖x‖ for real x from the beginning of this paper. Then

‖z‖ �ω ‖z‖ω
for any complex z. Hence, using Theorem 2.1, we have

‖pα‖ ≤ N (p)−7/44+2ε

for infinitely many prime elements p in O. Therefore,

|pα− a| ≤ N (p)−7/44+2ε

for infinitely pairs (p, a) ∈ O ×O with p prime, which is equivalent to∣∣∣∣α− a

p

∣∣∣∣ ≤ N (p)−1/2−7/44+2ε.

The result now follows upon redefining ε and noting that O has a finite group
of units. �

2.2. Real quadratic number fields

In this subsection, we assume, as in [2], that K = Q(
√
d) ⊂ R is a real

quadratic number field of class number one, where d > 0 is square-free and
d ≡ 3 mod 4. Moreover, we use the following notations.

• We denote the two embeddings of K, given by the identity and conjugation,
by

σ1(α+ β
√
d) := α+ β

√
d

and
σ2(α+ β

√
d) := α− β

√
d.

• We write σ(K) :=
{(

σ1(γ), σ2(γ)
)
: γ ∈ K

}
.

• (x1, x2) is a pair of real numbers which does belong to σ(K).

To formulate our result in real quadratic fields, we need to introduce a notion
of “good” and “bad” pairs (x1, x2). It was proved in [2] that almost all elements
of R2 \ σ(K) are good. By a version of Dirichlet’s approximation theorem for K
(see [2, Corollary 3]), there are infinitely many natural numbers W such that∣∣∣∣∣xi − σi(u+ v

√
d)

σi(f + g
√
d)

∣∣∣∣∣ ≤ 1

|N (f + g
√
d)| for i = 1, 2 (2)

for suitable u, v, f, g ∈ Z with u + v
√
d and f + g

√
d coprime in O and

|N (f + g
√
d)| = W . In the following, we define what we understand as η-good,

good and bad pairs (x1, x2).
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��
������� 2.3� For η > 0, we call (x1, x2) η-good if there is an infinite sequence

of natural numbers W such that (2) holds with u+ v
√
d and f + g

√
d coprime

in O,
|N (f + g

√
d)| = W and gcd(f, g) = O (W η) ,

where gcd(f, g) is meant to be the largest natural number dividing both f and g.
We call (x1, x2) good if it is η-good for all η > 0. We call (x1, x2) bad if it is not
good.

To avoid confusions, we note that in [2], we have used the notation N (q)
for the modulus of the norm of q. Now we are ready to formulate our main result
on the real quadratic case.

������� 2.4� Assume that K = Q(
√
d) has class number one, where d is a

positive square-free integer satisfying d ≡ 3 mod 4. Let ε be any positive real
number. Suppose further that (x1, x2) ∈ R2 \ σ(K) is η-good in the above sense.
Set

ν :=
7/44− η

1 + 2η
. (3)

Then there exist infinitely many non-zero prime ideals p in the ring O of integers
of K such that ∣∣∣∣x− σi(a)

σi(p)

∣∣∣∣ ≤ N (p)−1/2−ν+ε for i = 1, 2

for some generator p of p and a ∈ O. If (x1, x2) is good, then the above holds
with ν = 7/44.

This result provides an analog of Corollary 2.2 for good (x1, x2) in real-
quadratic fields and improves [2, Theorem 5], in which Theorem 2.4 with

ν =
1/8− η

1 + 2η

in place of (3) for η-good pairs (x1, x2) and ν = 1/8 in place of ν = 7/44 for good
pairs (x1, x2) was established.

���
�� 1� As remarked in [2], the condition d ≡ 3 mod 4 in Theorem 2.4 is
for convenience of proof but should not be essential. (Note that if d ≡ 3 mod 4,

then the ring of integers equals Q[
√
d], which is particularly convenient. More-

over, d is odd which helps at some place in [2].) It should not be difficult to
remove this condition but we have not worked out the details. In [2], we also de-
scribed how to remove the “class number 1” condition in the real quadratic case.
Similar arguments apply in the imaginary quadratic case. If the class number is
not equal to 1, then one needs to assume in addition that the prime ideals p are
principal.
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���
�� 2� It may be conjectured that all pairs (x1, x2) ∈ R2 \ σ(K) are good.
Indeed, the first and second named authors have observed that this would fol-
low from a version of Chowla’s conjecture on the least prime in an arithmetic
progression for K. We will address this in upcoming work.

���
�� 3� We would like to point out a small oversight in [2, subsection 9.2]
which can be easily fixed and does not affect the results in [2]. After equation (82)

in the said article, we deduced that t|2√d. However, in what follows, there are

more cases to be considered than just t ≈ 1 and t ≈ √
d. In fact, all possible

cases of divisors t of 2
√
d in OK such that t is not divisible by 2 can occur. Recall

that we assumed the class number to be 1. If t is of the said form, then we have

t ≈ P1 · · ·Pg,

where P1, . . . , Pg are distinct prime elements of OK with P 2
i associated to a

rational prime pi dividing 2d (note that all primes dividing 2d ramify since the
discriminant of K equals 4d if d ≡ 3 mod 4). Now let d′ := p1 · · · pg, d1 :=
gcd(d, d′) and d2 = d/d1. In a similar way as in [2, subsection 9.2 after (84)],
we deduce that gcd(2a′,W ′) = d′. Now, in addition to the case (54) in [2,
subsection 7.4] (which corresponds to t ≈ 1), we get the more general case

a = Za′, b = Zb′, W = Z2W ′, gcd(2a′,W ′) = d′

in place of (55). Similarly as in [2, subsection 7.4], we now write a′′ = a′/d1 and
W ′′ = W ′/d′ and reduce the congruence (56) to

(a′′)2d1 ≡ (b′)2d2 mod W ′′.

(Here we divide the said congruence by d1 and the resulting modulus W ′/d1
further by d′/d1 = 1 or 2). Multiplying the above with d2, we get

(a′′)2d ≡ (b′d2)2 mod W ′′.

Moreover, from (58), we deduce that

b′d2B ≡ a′′Ad mod W ′′.

Noting gcd(a′′,W ′′) = 1, we transform this into

Ad ≡ b′d2a′′B mod W ′′.

Now the treatment of this case finishes exactly as in [2, subsection 7.4]
with b′d2 in place of b′, i.e. we make the replacements

W ′ → W ′′, a′ → b′d2, b′ → a′′, A → B, B → Ad.
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3. Harman’s asymptotic sieve for number fields

3.1. Notations

In this and the next section, we take K to be a general number field. No extra
assumptions on K are required to formulate and prove our sieve results. We shall
use the following notations.

• I denotes the set of non-zero ideals of O.

• P denotes the set of all non-zero prime ideals of O.

• We fix some total order≺ on P such that p2 ≺ p1 wheneverN (p2) < N (p1).
Many such orderings exist, but we are not concerned about the precise
order.

• If z > 0, we denote by Q(z) the smallest prime ideal q with respect to the
ordering ≺ such that N (q) ≥ z.

• For z > 0 and q ∈ P, we set

P(z) := {p ∈ P : N (p) < z}, P(q) := {p ∈ P : p ≺ q},
Π(z) :=

∏
p∈P(z) p and Π(q) :=

∏
p∈P(q) p.

By convention, Π(z) = 1 if P(z) is empty and Π(q) = 1 if P(q) is empty
(i.e., q is the smallest prime ideal with respect to the ordering ≺).

• For any two a, b ∈ I, we write (a, b) = 1 if a and b are coprime.

• For any function w : I → C, r ∈ I, z > 0 and q ∈ P, we set

Sr(w, z) :=
∑
a∈I

(a,Π(z))=1

w(ar) and Φr(w, q) :=
∑
a∈I

(a,Π(q))=1

w(ar). (4)

• dk(a) denotes the number of ways to write the ideal a ∈ I as a product
of k (not necessarily distinct) ideals.

• If (C) is a statement which is either true or false, then we write

1(C) :=

{
1 if the (C)is true,

0, otherwise.

If M is a set, then we write

1M (x) := 1(x∈M) =

{
1 if x ∈ M,

0, otherwise.

• We write r ∼ R to indicate that R ≤ r < R1 for some R1 ∈ (R, 2R].
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3.2. The sieve result

In [1, Theorem 3.1], Harman’s asymptotic sieve [6, Lemma 2] was extended
to imaginary quadratic fields of class number one by the first- and third-named
authors, with an additional weight function included. In [2, Theorem 12], this
weighted sieve was further generalized by the first- and second-named authors
into a version with ideals in arbitrary quadratic number fields. Now we establish
a weighted version of Harman’s asymptotic sieve with ideals in general number
fields (without restriction on the class number). As in [2, section 13], we follow
closely the lines of [1, section 7]. There is only one small technical issue which
makes things slightly more complicated: Different prime ideals may have equal
norms. This is handled by a certain decomposition in (26) and (27) below.

First, we state a basic lemma—sometimes dubbed ‘cosmetic surgery’ [6]-
-which will be used to separate summations over variables whose sizes are linked.

����
 3.1� For any two distinct real numbers ρ, γ > 0 and T ≥ 1 one has∣∣∣∣1γ<ρ − 1

π

∫ T

−T

eiγt
sin(ρt)

t
dt

∣∣∣∣� 1

T |γ − ρ| ,

where the implied constant is absolute.

P r o o f. See, for instance, [7, Lemma 2.2]. �

Our main result in this section is the following.

������� 3.2 (Harman’s asymptotic sieve for I)� Let x ≥ 3 be real and
let ω, ω̃ : I ⇒ R≥0 be two functions such that, for both w = ω and w = ω̃,∑

n∈I
d5(n)w(n) ≤ X (5)

for X ≥ 1. Suppose further one has Y > 1, 0 ≤ ι ≤ μ < 1, 0 < κ ≤ 1/2 and
M ∈ [xμ, x) such that for any sequences (aa)a∈I ,(bb)b∈I of complex numbers
with |aa| ≤ d3(a) and |bb| ≤ d3(b), the inequalities∣∣∣∣∣∣∣∣

∑∑
a,b∈I

N (a)≤M

aa
(
ω(ab)− ω̃(ab)

)
∣∣∣∣∣∣∣∣
≤ Y (6)

and ∣∣∣∣∣∣∣∣
∑∑
a,b∈I

xμ−ι≤N (a)≤xμ+κ

aabb
(
ω(ab)− ω̃(ab)

)
∣∣∣∣∣∣∣∣
≤ Y (7)

hold. Also suppose that |cr| ≤ 1 and R > 1/2. If R > xμ+κ/2, then, in addition,

8



ON THE DISTRIBUTION OF αp MODULO ONE IN QUADRATIC NUMBER FIELDS

suppose that 2R ≤ x1−μ ≤ M and∑
a∈I

N (a)�∈[x1−ι,x]

d5(a)w(a) ≤ Y. (8)

Then ∣∣∣∣∣∣
∑

N (r)∼R

crΦr(ω, q) −
∑

N (r)∼R

crΦr(ω̃, q)

∣∣∣∣∣∣ � Y log3(xX) (9)

for any prime ideal q ∈ P such that N (p) < xκ whenever p ≺ q and∣∣∣∣∣∣
∑

N (r)∼R

crSr(ω, x
κ) −

∑
N (r)∼R

crSr(ω̃, x
κ)

∣∣∣∣∣∣� Y log3(xX), (10)

where the implied constants may depend on the field K.

In applications, an asymptotic is already known for one of the sums∑
N (r)∼R

crSr(ω, x
κ),

∑
N (r)∼R

crSr(ω̃, x
κ)

and so an asymptotic formula can be deduced from (10) for the other sum.
Theorem 3.2 reduces the problem to establishing suitable estimates for bilin-
ear sums. The special bilinear sums in (6) are commonly known as Type I
sums. Here the summation over one of the variables is smooth (in our case,
over the variable b). The general bilinear sums in (7) are usually referred to as
Type II sums. Here we have general complex coefficients aa and bb for both
variables. The situation is similar in applications of Vaughan’s identity, where
one is also led to estimating Type I and Type II sums. We proceed to the proof
of Theorem 3.2.

P r o o f. Estimate (10) follows immediately from estimate (9) since

Sr(w, x
κ) = Φr

(
w,Q(xκ)

)
for w = ω, ω̃. (Recall that Q (xκ) is the smallest prime ideal q with respect
to the ordering ≺ with norm greater or equal xκ.) It remains to prove (9).

We first assume that R ≤ xμ/2. We define the Möbius μ function for non-zero
ideals by

μ(a) :=

{
(−1)k if a = p1 · · · pk, where p1, . . . , pk are distinct prime ideals,

0, otherwise.
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Then

Φr(w, q) =
∑
a∈I

w(ar)
∑

d|Π(q)
d|a

μ(d) =
∑

d|Π(q)

μ(d)
∑
b∈I

w(bdr). (11)

Let

Δ(c) =
∑
b∈I

(ω(bc)− ω̃(bc)). (12)

Applying (11) for w = ω and w = ω̃ yields

Φr(ω, q)− Φr(ω̃, q) =

⎧⎪⎪⎨
⎪⎪⎩

∑
d|Π(q)

N (dr)<M

+
∑

d|Π(q)
N (dr)≥M

⎫⎪⎪⎬
⎪⎪⎭μ(d)Δ(dr) =: Φ	

r +Φ

r. (13)

Set

Φ	 :=
∑

N (r)∼R

crΦ
	
r

and

Φ
 :=
∑

N (r)∼R

crΦ


r.

Using (6) with

aa =
∑
r|a

N (r)∼R

crμ
(a
r

)
1(a/r)|Π(q),

we deduce that

|Φ	| ≤ Y.

Therefore, to prove the theorem, we need to show that

|Φ
| � Y log3(xX). (14)

The next step is to arrange Φ
 into subsums according to the sizes of the prime
factors in d (where d is the summation variable from (13)). Take g : I ⇒ C to be
any function. We may group the terms of the sum

Φr =
∑

d|Π(q)

μ(d)g(dr)

according to the largest factor p1 of d (w.r.t. ≺), getting the identity

Φr = g(r) −
∑

p1∈P(q)

∑
d|Π(p1)

μ(d)g(p1dr). (15)

10
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Again for the part
∑

d|Π(p1)
μ(d)g(p1dr), we have∑

d|Π(p1)

μ(d)g(p1dr) = g(p1r) −
∑

p2≺p1

∑
d|Π(p2)

μ(d)g(p1p2dr). (16)

Minding the innermost sum on the right-hand side above, it is obvious that
the above identity can be iterated if so desired. To describe for which sub-sums
the iteration is beneficial, we let

P(q) = {p1 ∈ P(q) : N (p1r) ≥ xμ} ∪̇ {p1 ∈ P(q) : N (p1r) < xμ}
= Pr(1) ∪̇ Qr(1), say,

and inductively for s = 2, 3, . . . ,

Q′
r(s) = {(p1, . . . , ps−1, ps) ∈ P(q)

s
: ps ≺ ps−1, (p1, . . . , ps−1) ∈ Qr(s− 1)}

= Pr(s) ∪̇ Qr(s),

where Pr(s) = {(p1, . . . , ps−1, ps) ∈Q′
r(s) :N (p1p2 · · · psr) ≥ xμ},

Qr(s) = {(p1, . . . , ps−1, ps) ∈Q′
r(s) : N (p1p2 · · · psr) <xμ}.

Assuming that g vanishes on arguments a with N (a) < xμ, and on applying (15)
and (16) we have

Φr = −
⎛
⎝ ∑

p1∈Pr(1)

+
∑

p1∈Qr(1)

⎞
⎠ ∑

d|Π(p1)

μ(d)g(p1dr)

= −
∑

p1∈Pr(1)

∑
d|Π(p1)

μ(d)g(p1dr) +
∑

(p1,p2)∈Pr(2)

∑
d|Π(p2)

μ(d)g(p1p2dr)

+
∑

(p1,p2)∈Qr(2)

∑
d|Π(p2)

μ(d)g(p1p2dr),

where we note that g(r) = 0 in (15) because of our assumption N (r) < 2R ≤ xμ.

On iterating this process, always applying (16) to the Q-part, it transpires
that

Φr =
∑
s≤t

(−1)s
∑

(p1,...,ps)∈Pr(s)

∑
d|Π(ps)

μ(d)g(p1p2 · · · psdr)

+ (−1)t
∑

(p1,...,pt)∈Qr(t)

∑
d|Π(pt)

μ(d)g(p1p2 · · · ptdr)

for any t ∈ N. Since the product of t prime ideals has norm greater than or equal
to 2t, we have

Qr(t) = ∅ for t >
μ

log 2
log x.

11
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Hence,

Φr =
∑
s≤t

(−1)s
∑

(p1,...,ps)∈Pr(s)

∑
d|Π(ps)

μ(d)g(p1p2 · · · psdr)

for

t =

⌊
log x

log 2

⌋
+ 1 � log x. (17)

We apply this to Φ

r with

g(a) = Δ(a)1{N (a)≥M}. (18)

Note that since M ≥ xμ, we have g(a) = 0 for all N (a) < xμ, as was assumed
in the above arguments. Thus,

Φ

r =

∑
s≤t

(−1)sΦ

r(s), (19)

where
Φ


r(s) =
∑

(p1,...,ps)∈Pr(s)
a=p1···ps

∑
d|Π(ps)

N (adr)≥M

μ(d)Δ(adr).

Another application of (16) gives

Φ

r(s) =

∑
(p1,...,ps)∈Pr(s)

a=p1···ps

N (ar)≥M

Δ(ar) −
∑

(p1,...,ps)∈Pr(s)
a=p1···ps

∑
p≺ps

∑
d|Π(p)

N (apdr)≥M

μ(d)Δ(apdr)

=: Φ

r,1(s)− Φ


r,2(s). (20)

Given a = p1 · · · ps−1ps with

(p1, . . . , ps−1, ps) ∈ Pr(s) and (p1, . . . , ps−1) ∈ Qr(s− 1) if s ≥ 2,

and noting that N (ps) ≤ N (p1) < xκ (recall that N (p) < xκ for all prime ideals
p ≺ q), we have

xμ ≤ M ≤ N (ar) = N (p1 · · · ps−1r)N (ps) < xμ+κ. (21)

This works also in the case when s = 1 since in this case the product p1 · · · ps−1

is empty and we have assumed that N (r) < 2R ≤ xμ. Using this, we find that
Φ


r,1(s) can be expressed as

Φ

r,1(s) =

∑∑
a,b∈I

ar,a
(
ω(abr)− ω̃(abr)

)
(22)

with coefficients
ar,a = 1{N (ar)≥M}1{p1···ps:(p1,...,ps)∈Pr(s)}(a)

12
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only supported on (r, a) with xμ ≤ N (ar) < xμ+κ. Hence setting A = ar and
using (7), we have

∣∣∣∣∣∣
∑

N (r)∼R

crΦ


r,1(s)

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

∑
A,b

xμ≤N (A)<xμ+κ

aa
(
ω(Ab)− ω̃(Ab)

)
∣∣∣∣∣∣∣∣
≤ Y, (23)

where

aA =
∑

N (r)∼R
r|A

crar,A/r.

Moving on to Φ

r,2(s), we expand the definition (12) of Δ, getting

Φ

r,2(s) = Φ


r,2(s, ω)− Φ

r,2(s, ω̃),

where

Φ

r,2(s, w) :=

∑
(p1,...,ps)∈Pr(s)

a=p1···ps

∑
p≺ps

∑
d|Π(p)

N (apdr)≥M

μ(d)
∑
n∈I

w(anpdr)

=
∑

(p1,...,ps)∈Pr(s)
a=p1···ps

∑
b∈I

∑
p≺ps

∑∑
d|Π(p)
npd=b

N (apdr)≥M

μ(d)w(abr). (24)

In order to apply (7), we must disentangle the variables a and n in the above
summation. To this end, we split∑

p≺ps

=
∑
p≺ps

N (p)=N (ps)

+
∑
p≺ps

N (p)<N (ps)

to obtain a decomposition

Φ

r,2(s, w) = Φ=

r,2(s, w) + Φ<
r,2(s, w), say. (25)

For Φ<
r,2(s, w) we have

Φ<
r,2(s, w) =

∑
(p1,...,ps)∈Pr(s)

a=p1···ps

∑
b∈I

∑
p≺ps

∑∑
d|Π(p)
npd=b

μ(d)χr(a, d, p, ps)w(abr),

where
χr(a, d, p, ps) = 1{N (apdr)≥M}1{N (p)<N (ps)},

and the sum Φ=
r,2(s, w) can be expressed similarly, but needs a little more care.

13
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First note that, by ramification theory, for any fixed number, there are at most
[K : Q] distinct prime ideals p ⊆ O whose norm coincides with that number.
We use this fact to split the set Pr(s) into disjoint sets in the form

Pr(s) = P0
r (s)∪̇P1

r (s)∪̇ · · · ∪̇P [K:Q]−1
r (s), (26)

where (p1, . . . , ps) ∈ Pr(s) belongs to Pu
r (s) if and only if there are exactly u

distinct prime ideals, all smaller than ps with respect to ≺, and having norm
equal to N (ps). Furthermore, let

Pu
r,s(q) = P0

r (s)∪̇P1
r (s)∪̇ · · · ∪̇Pu−1

r (s). (27)

Then

Φ=
r,2(s, w) =∑

0≤u<[K:Q]

∑
( p1,...,ps)∈Pu

r (s)
a=p1···ps

∑
b∈I

∑
p∈Pu

r,s(q)

∑∑
d|Π(p)
npd=b

μ(d)χ̃r(a, d, p, ps)w(abr), (28)

where we have put

χ̃r(a, d, p, ps) = 1{N (apdr)≥M}1{N (p)=N (ps)}

= 1{N (apdr)≥M}1{N (p)≤N (ps)} − χr(a, d, p, ps). (29)

To separate summations, we now use Lemma 3.1. We choose some real number
ρ with |ρ| ≤ 1/2 such that {M+ρ} = 1/2 and hence the condition N (apdr) ≥ M
implies

| logN (apdr)− log(M + ρ)| ≥ log
x+ 1

x+ 1/2
≥ 1

3x
.

Therefore, Lemma 3.1 shows that

1{N (apdr)≥M} = 1− 1

π

∫ T

−T

N (apdr)iτ sin
(
τ log(M + ρ)

) dτ
τ

+O
( x
T

)

for every T ≥ 1. Similarly,

1{N (p)<N (ps)} =
1

π

∫ T

−T

eit/2eitN (p) sin
(
tN (ps)

) dt
t

+O

(
1

T

)
,

1{N (p)≤N (ps)} =
1

π

∫ T

−T

e−it/2eitN (p) sin
(
tN (ps)

) dt
t

+O

(
1

T

)
.

14
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Thus,

Φ<
r,2(s, w) =

1

π

∫ T

−T

∑∑
a,b∈I

aa(t)bb(t)w(abr)
dt

t

− 1

π2

∫ T

−T

∫ T

−T

∑∑
a,b∈I

N (r)itaa(t, τ)bb(t, τ)w(abr)
dτ

τ

dt

t

+O

⎛
⎜⎜⎝
(
x

T
+

1

T

∫ T

−T

∣∣sin(τ log(M + ρ)
)∣∣ dτ

τ

)
×

⎛
⎜⎜⎝ ∑

(p1,...,ps)∈Pr(s)
a=p1···ps

∑
b∈I

∑
p≺ps

∑∑
d|Π(p)
npd=b

w(abr)

⎞
⎟⎟⎠
⎞
⎟⎟⎠ , (30)

with coefficients

aa(t) =

{
sin (tN (ps)) if ∃(p1, . . . , ps) ∈ Pr(s) such that a = p1 · · · ps,
0, otherwise,

bb(t) =
∑

p∈P(q)

∑∑
d|Π(p)
npd=b

eit/2eitN (p)μ(d),

aa(t, τ) = aa(t)N (a)iτ sin
(
τ log(M + ρ)

)
,

bn(t, τ) =
∑

p∈P(q)

∑∑
d|Π(p)
npd=b

e
it
2 eitN (p)μ(d)N (pd)iτ . (31)

We proceed by gathering some intermediate information before applying (7):
Clearly, |bb(t)|, |bb(t, τ)| ≤ d2(b).

For the other coefficients we always have

|aa(t)|, |aa(t, τ)| ≤ 1,

yet if t and τ are small, we can do better: If |t| ≤ x−1/2 and |τ | ≤ 1/ log(x+1/2),
then

|aa(t)| ≤
√
x|t|, |aa(t, τ)| ≤

√
x|tτ | log(x+ 1/2). (32)

15
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In view of this, we must deal with functions f : R× (1,∞) → R of the shape

f(t, δ) =

{
δ|t| if |t| ≤ δ−1,

1, otherwise

and their integrals∫ T

−T

f(t, δ)
dt

|t| � δ

∫ δ−1

0

dt+

∣∣∣∣∣
∫ T

δ−1

dt

t

∣∣∣∣∣� 1 + | log (Tδ)|. (33)

Lastly, we note that by (5), we have∣∣∣∣∣∣∣∣
∑

N (r)∼R

∑
(p1,...,ps)∈Pr(s)

a=p1···ps

∑
b∈I

∑
p≺ps

∑∑
d|Π(p)
npd=b

w(abr)

∣∣∣∣∣∣∣∣
≤
∑
a∈I

d5(a)w(a) ≤ X. (34)

Gathering all information we got so far, we may derive a bound for

E< :=

∣∣∣∣∣∣
∑

N (r)∼R

crΦ
<
r,2(s, ω) −

∑
N (r)∼R

crΦ
<
r,2(s, ω̃)

∣∣∣∣∣∣
as follows: after applying (30) with w = ω and w = ω̃, the O-terms are treated
directly with (34) and (33), whereas for the rest we apply (7) after summing over
r and merging a and r into A = ar. Here it is important to use (32) for small
|t| and |τ | first - prior to applying (7) - and (33), then bounds the integrals.
Therefore, after some computations, we infer

E< � Y log(Tx)
(
1 + log

(
T log(x+ 1/2)

))
+

XT−1
(
x+ log

(
T log(x+ 1/2)

))
. (35)

Of course, the same arguments also apply to

E= :=

∣∣∣∣∣∣
∑

N (r)∼R

crΦ
=
r,2(s, ω) −

∑
N (r)∼R

crΦ
=
r,2(s, ω̃)

∣∣∣∣∣∣ .
In view of (29) we have to apply them twice, but in both cases the coefficients
corresponding to (31) obey the same bounds we used to derive (35), with the
only difference that the implied constant may now depend on [K : Q]. (Note the
decomposition into [K : Q] subsums in (28).) Consequently, (35) also holds with

E= in place of E<.

16
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In total, recalling (20), (23) and (25), we have∣∣∣∣∣∣
∑

N (r)∼R

crΦ


r(s)

∣∣∣∣∣∣� Y + the bound from (35)

and it transpires that choosing T = xX suffices to yield a bound of

� Y log2(xX).

On plugging this into (19) and recalling (17), we infer (14). This completes the
proof for the case when R ≤ xμ/2.

If R > xμ/2, then the iteration process described above terminates at s = 1
since the set Qr(1) is necessarily empty. In this case, the argument in (21)
does not work anymore (for s = 1). However, if xμ/2 < R ≤ xμ+κ/2, then
xμ/2 ≤ N (r) < xμ+κ, and so (7) can be applied directly with a = r.

It remains to consider the case when xμ+κ/2 < R ≤ x1−μ/2 ≤ M/2. Here we
start with the same procedure leading to (22) and (24). We note that our choice
of g in (18) ensures that again g(r) = 0 in (15) because N (r) < 2R ≤ M . Now
we look at the norm of ab occurring in the said sums. If x1−ι ≤ N (abr) ≤ x, then
N (ab) lies in the range xμ−ι ≤ N (ab) ≤ xμ+κ and hence we may apply (7) with
a replaced by ab and b by r. Indeed, in this case have N (ab) < xμ+κ because
N (a) = N (p1) < xκ (recall that the above iteration process terminates at s = 1)
and N (b) ≤ x/N (ar) ≤ x/M ≤ xμ, and we have N (ab) ≥ x1−ι/N (r) > xμ−ι.
Hence, similar arguments as above apply, where a is now grouped together with
b in place of r. We handle the remaining contributions of N (abr) > x and
N (abr) < x1−ι by means of (8). This completes the proof. �

4. Asymptotic estimates for Φr(W, p)

For the derivation of a number field version of Harman’s lower bound sieve,
we need asymptotic estimates for Φr(W, p), where W : I → R≥0 is a function
satisfying suitable conditions. This is the content of this section. The basic lemma
here is Buchstab’s identity which in this context takes the following form.

����
 4.1� For any p, q ∈ P with p ≺ q and r ∈ I \ {0}, we have

Φr(W, p) = Φr(W, q) +
∑

p	s≺q

Φrs(W, s).

17
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P r o o f. By definition of Φr(W, p), we may write

Φr(W, p) =
∑
a∈I

p	P−(a)

W (ar),

where P−(a) is the smallest prime ideal divisor of a with respect to the above
order. It follows that

Φr(W, p) = Φr(W, q) +
∑

p	s≺q

∑
a∈I

P−(a)=s

W (ar)

= Φr(W, q) +
∑

p	s≺q

∑
b∈I

s	P−(b)

W (bsr)

= Φr(W, q) +
∑

p	s≺q

Φrs(W, s), (36)

as claimed. �

Now we proceed in two stages. To have a clear picture of how the arguments
work, we first handle weights which are characteristic functions of the form

W (a) = 11≤N (a)≤N

along classical lines using Landau’s prime ideal theorem. In the second stage,
we extend our results to more general, possibly smooth weight functions whose
averages over prime ideals satisfy suitable asymptotics which replace the prime
number theorem.

4.1. Characteristic functions

The following is Landau’s prime ideal theorem.

����
 4.2� We have

�P(z) =

∫ z

2

dt

log t
+O

(
z exp(−C

√
log z)

)
=

z

log z
+O

(
z

log2 z

)
as z → ∞,

where C is a positive constant which may depend on the field K.

P r o o f. See, for instance, [15, Theorem 8.9]. �

Using Lemmas 4.1 and 4.2, we shall derive the following asymptotic estimate
for the number of ideals without prime ideal divisors of small norm.

18
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����������� 4.3� Let N ≥ 2. For a ∈ I set

W (a) = 11≤N (a)≤N . (37)

Let β > 2 > α > 1, p ∈ P and r ∈ I \ {0} and set

y :=
N

N (r)
and u :=

log y

logN (p)
.

Assume that

N (r) ≤ N/2 and α ≤ u ≤ β.

Then,

Φr(W, p) = B(u) · y

logN (p)
·
(
1 +Oα,β

(
1

log y

))
, (38)

where B(u) is the Buchstab function, the unique continuous solution of the sys-
tem

B(u) = 1
u for 1 ≤ u ≤ 2,

d
du

(
uB(u)) = B(u− 1) for u > 2.

P r o o f. This can be established along similar lines as in the basic case K = Q, as
described in [16, section 6.2]. We start with establishing an asymptotic formula
for Φr (W, p) in the range 1 < u ≤ 2 and then iteratively extend this range
by deriving an asymptotic formula for k + 1 < u ≤ k + 2 from an asymptotic
formula for k < u ≤ k + 1, where k is any positive integer.

The condition 1<u≤2 is equivalent to y1/2≤N (p)<y, in which case we have

Φr(W, p) =
∑

1≤N (a)≤y
(a,Π(p))=1

1

= �P(y)− �P(p) + 1

= �P(y)− �P
(N (p)

)
+O(1)

=
y

log y
+O

(
y

log2 y
+

N (p)

logN (p)

)
(39)

using Lemma 4.2. Hence, if 1 < α ≤ u ≤ 2, then

Φr(W, p) =
y

log y
+Oα

(
y

log2 y

)
,

and therefore (38) holds in this range.
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Next we turn to the range 2 < u ≤ 3 which corresponds to y1/3≤N (p)<y1/2.
If z>0, recall that Q(z) denotes the smallest prime ideal q with respect to the
ordering ≺ such that N (q)≥z. In this case, Lemma 4.1 with q=Q

(
y1/2

)
gives

Φr(W, p) = Φr

(
W,Q

(
y1/2

))
+

∑
p	s≺Q(y1/2)

Φrs(W, s). (40)

Using (39), we have

Φr

(
W,Q

(
y1/2

))
= ylog y +O

(
y

log2 y

)
. (41)

Further, we set

y′ :=
N

N (rs)
=

y

N (s)
and u′ :=

log y′

logN (s)
=

log y

logN (s)
− 1 (42)

and observe that
1 < u′ ≤ 2

if Q
(
y1/3

) � p � s ≺ Q
(
y1/2

)
. Hence, applying (39) with y′ in place of y and s

in place of p, we obtain

Φrs(W, s) =
y′

log y′
+O

(
y′

log2 y′
+

N (s)

logN (s)

)

=
y/N (s)

log(y/N (s))
+O

(
y/N (s)

log2(y/N (s))
+

N (s)

logN (s)

)
(43)

under this condition. Plugging (41) and (43) into (40) gives

Φr(W, p) =
y

log y
+

∑
p	s≺Q

(
y1/2
) y/N (s)

log(y/N (s))
+O

(
y

log2 y

)

+ O

⎛
⎜⎝ ∑

p	s≺Q
(
y1/2
)
(

y/N (s)

log2(y/N (s))
+

N (s)

logN (s)

)⎞⎟⎠ .

Using Lemma 4.2, it is easily seen that the second O-term can be absorbed into
the first one. Moreover, a standard application of partial summation together
with Lemma 4.2 gives (cf. [16, page 399])

∑
p	s≺Q(y1/2)

y/N (s)

log(y/N (s))
=

log(u− 1)

u
· y

logN (p)
+O

(
y

log2 y

)
. (44)
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Altogether, we thus obtain

Φr(W, p) =
y

log y
+

log(u− 1)

u
· y

logN (p)
+O

(
y

log2 y

)

=
1 + log(u− 1)

u
· y

logN (p)
+O

(
y

log2 y

)

= B(u) · y

logN (p)
+O

(
y

log2 y

)
, (45)

which implies (38) for 2 < u ≤ 3.

Next, we assume that 3 < u ≤ 4 and hence y1/4 ≤ N (p) < y1/3. Applying
Lemma 4.1 with q = Q

(
y1/3

)
then gives

Φr(W, p) = Φr

(
W,Q

(
y1/3

))
+

∑
p	s≺Q(y1/3)

Φrs(W, s). (46)

From (45), we deduce that

Φr

(
W,Q

(
y1/3

))
= B(3) · y

log y1/3
+O

(
y

log2 y

)
. (47)

Further, we define y′ and u′ as in (42) and observe that

2 < u′ ≤ 3

if Q
(
y1/4

) � p � s ≺ Q
(
y1/3

)
. Hence, applying (45) with y′ in place of y and s

in place of p, we obtain

Φrs(W, s) = B(u′) · y′

logN (s)
+O

(
y′

log2 y′

)

= B
(

log y

logN (s)
− 1

)
· y/N (s)

logN (s)
+O

(
y/N (s)

log2(y/N (s))

)
(48)

under this condition. Plugging (47) and (48) into (46) gives

Φr(W, p) = B(3) · y

log y1/3
+

∑
p	s≺Q

(
y1/3
)B
(

log y

logN (s)
− 1

)
· y/N (s)

logN (s)

+ O

(
y

log2 y

)
+O

⎛
⎜⎝ ∑

p	s≺Q
(
y1/3
) y/N (s)

log2(y/N (s))

⎞
⎟⎠ . (49)

Using Lemma 4.2, it is again easily seen that the second O-term can be ab-
sorbed into the first one. Moreover, a standard application of partial summation
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together with Lemma 4.2 gives (see [16, page 399] for details)

B(3) · y

log y1/3
+

∑
p	s≺Q(y1/3)

B
(

log y

logN (s)
− 1

)
· y/N (s)

logN (s)

=
1

u
·
(
1 +

∫ u−1

1

B(v) dv
)
· y

logN (p)
+O

(
y

log2 y

)

= B(u) · y

logN (p)
+O

(
y

log2 y

)
. (50)

Altogether, we thus obtain

Φr(W, p) = B(u) · y

logN (p)
+O

(
y

log2 y

)
, (51)

which implies (38) if 3 < u ≤ 4. Iterating this procedure, we establish (38) for
general u. The dependence of the O-term on β therein comes from the iterations.
If k < β ≤ k + 1 with k ∈ N, then we need k iterations to establish (38). �

4.2. General weight functions

Now we extend Proposition 4.3 to more general weight functions. Here we
need to replace the prime number theorem by a suitable condition on averages
of W (rs), where r ∈ O \ {0} is fixed and s runs over prime ideals. We shall
assume that W = WN : I → R+ is a weight function depending on a variable
N ≥ 10 which satisfies asymptotics of the form

∑
s∈P

W (rs) =
N/N (r)

log(N/N (r))
·
(
1 +O

(
log logN

log(N/N (r))

))
if N (r) ≤ N/2. (52)

We also assume that partial sums of the above series are bounded by

∑
s∈P
s≺p

W (rs) = Oε

( N (p)

logN (p)

)
if N (p) ≥ N ε and N (r) ≤ N/2 (53)

for any ε > 0. Moreover, we assume that “tails”∑
a∈O

N (ar)>Ñ

W (ar)
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with Ñ slightly larger than N are small. Our precise condition is

∑
a∈O

N (ar)>Ñ

W (ar) = Oξ

(
N/N (r)

log2(N/N (r))

)

if Ñ = N logξ N and N (r) ≤ N/2

(54)

for some ξ ∈ (0, 1). Generalizing Proposition 4.3, we establish the following.

������� 4.4� Fix ε, ξ ∈ (0, 1). Assume that W = WN : I ⇒ R≥0 is a func-
tion depending on a variable N ≥ 10 which satisfies the conditions (52), (53)
and (54). Let β > 2 > α > 1, p ∈ P and r ∈ O \ {0} and set

y :=
N

N (r)
and u :=

log y

logN (p)
.

Assume that

N (r) ≤ N1−ε and α ≤ u ≤ β.

Then,

Φr(W, p) = B(u) · y

logN (p)
·
(
1 +Oα,β,ε,ξ

(
logξ−1 y

))
, (55)

where B(u) is the Buchstab function.

P r o o f. We shall imitate the proof of Proposition 4.3. In this proof, all im-
plied O-constants will be allowed to depend on α, β, ε, ξ. We define two more
parameters ỹ and ũ by

ỹ :=
Ñ

N (r)
=

N logξ N

N (r)
and ũ :=

log ỹ

logN (p)

and establish that

Φr (W, p) = B(ũ) · y

logN (p)
·
(
1 +O

(
log−ξ y

))
. (56)

We observe that

|B(ũ)−B(u)| �β |ũ− u| = log(logN)ξ

logN (p)
�β,ε,ξ

log logN

log y
�β,ε,ξ

1

log1−ξ y
, (57)

where we take into account that y ≥ N ε by the assumptions in Theorem 4.4.
Hence, (56) implies (55). In the following we will stop indicating possible depen-
dencies of the implied constants on α, β, ε, ξ.
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Similarly as in the proof of Proposition (4.3), we begin with considering the
range 1 < ũ ≤ 2 which corresponds to ỹ1/2 ≤ N (p) < ỹ. We write

Φr(W, p) =
∑

N (a)≤ỹ
(a,Π(p))=1

W (ar) +
∑

N (a)>ỹ
(a,Π(p))=1

W (ar). (58)

Using condition (54), the second sum on the right-hand side is bounded by

∑
N (a)>ỹ

(a,Π(p))=1

W (ar) = O

(
y

log2 y

)
. (59)

The first sum on the right-hand side of (58) equals∑
N (a)≤ỹ

(a,Π(p))=1

W (ar) =
∑
s∈P

p	s≺Q(ỹ)

W (sr)

since ỹ1/2 ≤ N (p) < ỹ. Using all three conditions (52), (53) and (54), we deduce
that ∑

N (a)≤ỹ
(a,Π(p))=1

W (ar) =
y

log y
+O

(
y

log2−ξ y
+

N (p)

logN (p)

)
. (60)

A short calculation confirms that
y

log y
=

y

log ỹ
+O

(
y

log2−ξ y

)
. (61)

Combining (58), (59), (60) and (61), we obtain

Φr(W, p) =
y

log ỹ
+O

(
y

log2−ξ y
+

N (p)

logN (p)

)
(62)

if 1 < ũ ≤ 2. If, in addition, u ≥ α > 1, then making use of our bound for |ũ−u|
in (57), we see that the second O-term is majorized by the first term and hence,

Φr(W, p) =
y

log ỹ
+O

(
y

log2−ξ y

)
.

Now (56) follows under the above conditions 1 < ũ ≤ 2 and u ≥ α.

Next we turn to the range 2<ũ≤3 which corresponds to ỹ1/3≤N (p)<ỹ1/2.
In this case, Lemma 4.1 with q = Q(ỹ1/2) gives

Φr(W, p) = Φr

(
W,Q

(
ỹ1/2

))
+

∑
p	s≺Q(ỹ1/2)

Φrs(W, s). (63)
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Using (62), we have

Φr

(
W,Q

(
ỹ1/2

))
=

y

log ỹ
+O

(
y

log2−ξ y

)
. (64)

Further, we set

y′ :=
N

N (rs)
=

y

N (s)
, ỹ′ :=

Ñ

N (rs)
=

ỹ

N (s)

and

u′ :=
log ỹ′

logN (s)
=

log ỹ

logN (s)
−1 (65)

and observe that
1 < u′ ≤ 2

if Q(ỹ1/3) � p � s ≺ Q(ỹ1/2). Hence, applying (62) with y′ in place of y, ỹ′

in place of ỹ and s in place of p, we obtain

Φrs(W, s) =
y′

log ỹ′
+O

(
y′

log2−ξ y′
+

·N (s)

logN (s)

)

=
y/N (s)

log(ỹ/N (s))
+O

(
y/N (s)

log2−ξ(y/N (s))
+

N (s)

logN (s)

)
(66)

under this condition. Plugging (64) and (66) into (63) gives

Φr(W, p) =
y

log ỹ
+

∑
p	s≺Q(ỹ1/2)

y/N (s)

log(ỹ/N (s))
+O

(
y

log2−ξ y

)

+ O

⎛
⎝ ∑

p	s≺Q(ỹ1/2)

(
y/N (s)

log2−ξ(y/N (s))
+

N (s)

logN (s)

)⎞⎠ .

Using Lemma 4.2, the second O-term is of size

∑
p	s≺Q(ỹ1/2)

(
y/N (s)

log2−ξ(y/N (s))
+

N (s)

logN (s)

)
�

y

log2−ξ y
+

ỹ

log2 y
=

y

log2−ξ y
+

y logξ N

log2 y
� y

log2−ξ y
.

A standard application of partial summation together with Lemma 4.2 like in the
derivation of (44) gives∑

p	s≺Q(ỹ1/2)

y/N (s)

log(ỹ/N (s))
=

log(ũ− 1)

ũ
· y

logN (p)
+O

(
y

log2 y

)
.
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Altogether, we thus obtain

Φr(W, p) =
y

log ỹ
+

log(ũ− 1)

ũ
· y

logN (p)
+O

(
y

log2−ξ y

)

=
1 + log(ũ− 1)

ũ
· y

logN (p)
+O

(
y

log2−ξ y

)

= B(ũ) · y

logN (p)
+O

(
y

log2−ξ y

)
, (67)

which confirms (56) for 2 < ũ ≤ 3.

Next, we assume that 3 < ũ ≤ 4 and hence ỹ1/4 ≤ N (p) < ỹ1/3. Applying
Lemma 4.1 with q = Q(ỹ1/3) then gives

Φr(W, p) = Φr

(
W,Q

(
ỹ1/3

))
+
∑

p	s≺Q(ỹ1/3)

Φrs(W, s). (68)

From (67), we deduce that

Φr

(
W,Q

(
ỹ1/3

))
= B(3) · y

log ỹ1/3
+ O

(
y

log2−ξ y

)
. (69)

Further, we define y′, ỹ′ and u′ as in (4.2) and observe that

2 < u′ ≤ 3

if Q
(
ỹ1/4

) � p � s ≺ Q
(
ỹ1/3

)
. Hence, applying (67) with y′ in place of y, ỹ′ in

place of ỹ, u′ in place of ũ and s in place of p, we obtain

Φrs(W, s) = B(u′) · y′

logN (s)
+O

(
y′

(log y′)2−ξ

)

= B
(

log ỹ

logN (s)
− 1

)
· y/N (s)

logN (s)
+O

(
y/N (s)

log2−ξ(y/N (s))

)
(70)

under this condition. Plugging (69) and (70) into (68) gives

Φr(W, p) = B(3) · y

log ỹ1/3
+

∑
p	s≺Q(ỹ1/3)

B
(

log ỹ

logN (s)
− 1

)
· y/N (s)

logN (s)

+O

(
y

log2−ξ y

)
+ O

⎛
⎝ ∑

p	s≺Q(ỹ1/3)

y/N (s)

log2−ξ(y/N (s))

⎞
⎠ . (71)

Using Lemma 4.2, it is again easily seen that the second O-term can be ab-
sorbed into the first one. Moreover, a standard application of partial summation
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together with Lemma 4.2 like in the derivation of (50) gives

B(3) · y

log ỹ1/3
+

∑
p	s≺Q(ỹ1/3)

B
(

log ỹ

logN (s)
− 1

)
· y/N (s)

logN (s)

=
1

ũ
·
(
1 +

∫ ũ−1

1

B(v) dv
)

· y

logN (p)
+O

(
y

log2 y

)

= B(ũ) · y

logN (p)
+O

(
y

log2 y

)
.

Altogether, we thus obtain

Φr(W, p) = B(ũ) · y

logN (p)
+O

(
y

log2−ξ y

)
(72)

if 3 < ũ ≤ 4. Similarly as in the proof Proposition 4.3, we can now iterate
the above procedure to establish (56) for general ũ. This completes the proof. �

5. Harman’s lower bound sieve for number fields

In this section, we prove the following version of Harman’s lower bound sieve
for number fields, generalizing the lower bound part of [6, Theorem 2].

������� 5.1 (Harman’s lower bound sieve for I)� Fix θ ∈ [1/4, 1/3] and
ε, ξ ∈ (0, 1). Let λ > 0 and N ≥ 3 be two variables. Assume that W = WN :
I → R≥0 is a function depending on N and ω̃ = ω̃λ,N : I → R≥0 is a func-
tion depending on λ and N . Suppose that W satisfies the conditions (52), (53)
and (54). Set ω = λW and let x ≥ 3 be a real number such that N ∼ x1−ε.
Suppose that for w = ω, ω̃, we have∑

n∈I
d5(n)w(n) ≤ xA (73)

for some A > 0 and ∑
n∈I

N (n)�∈(x1−ι,x)

d5(n)w(n) ≤ λN1−η (74)

for some fixed ι ∈ [θ − 1/4, θ] and η > 0. Suppose further that for any se-
quences (aa)a∈I, (bb)b∈I of complex numbers with |aa| ≤ d3(a) and |bb| ≤ d3(b),
the inequalities

27



STEPHAN BAIER—DWAIPAYAN MAZUMDER—MARC TECHNAU∣∣∣∣∣∣∣∣
∑∑
a,b∈I

N (a)≤x1−θ

aa
(
ω(ab)− ω̃(ab)

)
∣∣∣∣∣∣∣∣
≤ λN1−η (75)

and ∣∣∣∣∣∣∣∣
∑∑
a,b∈I

xθ−ι≤N (a)≤x1−2θ

aabb
(
ω(ab)− ω̃(ab)

)
∣∣∣∣∣∣∣∣
≤ λN1−η (76)

are satisfied. Then we have

SO(ω̃,
√
x)

SO(ω,
√
x)

≥ C(θ) + o(1) as N → ∞. (77)

Here C(θ) is a monotonic and continuous function satisfying

C(θ) = 1 + O
(
(θ − 1/4)2

)
and C(7/22) > 1/10.

P r o o f. We shall literally translate [6, section 4] into our more general setting.
A lot of notations will be kept. We only arrange the material in a slightly different
order and make minor adjustments. The rough idea of the proof is as follows.
As in the proof of Theorem 3.2, we first note that

SO(ω̃,
√
x) = ΦO(ω̃, q0),

where
q0 := Q

(√
x
)
.

We decompose ΦO(ω̃, q0) into a number of sums by iteration of Buchstab’s
identity, Lemma 4.1. A part of the resulting terms can be discarded immedi-
ately if they have positive sign since we are only interested in lower bounds.
Another part is approximated by corresponding terms with ω in place of ω̃,
using Theorem 3.2 in conjunction with (75) and (76) or by a direct applica-
tion of (76). We are left with a sum containing just terms of the form Φr(ω, p).
Now we reverse all applications of Buchstab’s identity which allows us to greatly
simplify the said sum. We approximate the resulting shorter sum of terms
of the form Φr(ω, p) using Theorem 4.4. An application of Landau’s prime ideal
theorem together with partial summation then leads to integrals which were
calculated in [6, section 4]. We shall carry out in detail only the proof for θ ≤ 2/7.
In the case θ > 2/7, which requires additional decompositions, we cut the
calculations short and refer to the parallel treatment in [6, section 4].
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Let
q0 := Q

(
x1/2

)
and q1 := Q(xκ), where κ := 1− 3θ.

Then applying Lemma 4.1 twice yields

ΦO(ω̃, q0)

= ΦO(ω̃, q1) −
∑

q1	p≺q0

Φp(ω̃, p)

= ΦO(ω̃, q1) −
∑

q1	p≺Q(xθ)

or Q(x1−2θ)	p≺q0

Φp(ω̃, p) −
∑

Q(xθ)	p≺Q(x1−2θ)

Φp(ω̃, p)

= ΦO(ω̃, q1) −
∑

q1	p≺Q(xθ)

or Q(x1−2θ)	p≺q0

Φp(ω̃, q1) −
∑

Q(xθ)	p≺Q(x1−2θ)

Φp(ω̃, p)

+
∑

q1	q≺min{p,Q(x1/2/N (p)1/2)}
p≺Q(xθ) or Q(x1−2θ)	p≺q0

Φpq(ω̃, q) + O
(
λN1−η

)

= S̃1 − S̃2 − S̃3 + S̃4 + O
(
λN1−η

)
, say, (78)

where we have used (74) to truncate the sum over q in S̃4 at Q
(
x1/2/N (p)1/2

)
.

We split S̃4 into

S̃4 =
∑
(∇)

Φpq(ω̃, q) +
∑
(∇)

Φpq(ω̃, q) = S̃5 + S̃6, say, (79)

where

(∇) ⇐⇒ q ≺ p, N (p) = xα, N (q) = xβ , (α, β) ∈ M
with

M :=
{
(α, β) : α ∈ [κ, θ) ∪ [1− 2θ, 1/2), κ ≤ β ≤ α, β < (1− α)/2,

{β, α+ β} ∩ ([θ, 1− 2θ) ∪ [2θ, 1− θ)
)
= ∅
}
,

and (∇) indicates the same condition as (∇), except that

{β, α+ β} ∩ ([θ, 1− 2θ) ∪ [2θ, 1− θ)
) �= ∅.

The conditions (∇) and (∇) above correspond to those in [6, section 4], with the
minor modifications (which do not change the final result) that our intervals
therein are half-open except for the β-range κ ≤ β ≤ α which is κ ≤ β < α
in Harman’s setting. The latter modification is necessary because it may happen
that N (q) = N (p) although q ≺ p.
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Next, we split S̃5 into

S̃5 =
∑
(∇)

N (pq2)<x1−θ

Φpq(ω̃, q) +
∑
(∇)

N (pq2)≥x1−θ

Φpq(ω̃, q) = S̃7 + S̃8, say.

Applying Buchstab’s identity twice to the sum S̃7 gives a decomposition of the
form

S̃7 =
∑

Φpq(ω̃, q1)−
∑

Φpqr(ω̃, q1) +
∑

Φpqrs(ω̃, s)

= S̃9 − S̃10 + S̃11, say,
(80)

with the obvious summation ranges. We split the sum S̃8, in which we have the
summation condition

(∇) and N (pq2) ≥ x1−θ, (81)

into

S̃8 =
∑
(∇∇)

Φpq(ω̃, q) +
∑
(∇∇)

Φpq(ω̃, q) = S̃12 + S̃13, say.

Here (∇∇) stands for (81) combined with the condition

N (pq) < x1−θ and N (p) ≥ x1−2θ. (82)

The summation range in the second sum S̃13 then satisfies a condition (∇∇)
which is (81) combined with

N (pq) ≥ x1−θ or N (p) < xθ.

The sum S̃12 is treated by switching roles of variables as follows. We observe
that

S̃12 =
∑
(Ξ)

Φqt

(
ω̃q,t,Q

(
x1/2/N (qt)1/2

))
+O

(
λN1−η

)
, (83)

with the summation condition (Ξ) indicating that

N (q)xθ>N (t)≥xθ−ι, x1/2≤N (qt)<x1−θ, xκ≤N (q)<xθ, p|t⇒q�p

and ω̃q,t being defined as

ω̃q,t(nqt) = ω̃(nqt)1(n,q) satisfies (∇∇). (84)

Here we have again used (74) to truncate the sum over t. (In the above, note
that n takes the role of the original variable p, and p is now a new prime ideal.)
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Applying Buchstab’s identity to the right-hand side of (83) and reversing roles
of variables again, followed by another application of Buchstab’s identity gives

S̃12 =
∑
(Ξ)

Φqt(ω̃q,t, q1) −
∑
(Ξ)

q1	s≺Q(x1/2/N (qt)1/2)

Φqts(ω̃q,t, s) +O
(
λN1−η

)

= S̃14 −
∑
q,u,s

p|u⇒q1	s	p
(us,q) satisfies (∇∇)

Φqus(ω̃, q) +O
(
λN1−η

)
, say,

= S̃14 −
∑

Φqus(ω̃, q1) +
∑

Φqusr(ω̃, r) +O
(
λN1−η

)
= S̃14 − S̃15 + S̃16 +O

(
λN1−η

)
, say, (85)

with the obvious summation ranges in the third line. Here we have used (74)
again. For the last decomposition we take into account that N (qus) < x1−θ

follows from (82).

Combining everything above, we end up with a decomposition of the form

Φ(ω̃, q0) =

S̃1 − S̃2 − S̃3 + S̃6 + S̃9 − S̃10 + S̃11 + S̃13 + S̃14 − S̃15 + S̃16

+O
(
λN1−η

)
.

If θ ≤ 2/7, then except for the sum S̃13, it will turn out that all sums S̃i on
the right-hand side can be approximated by the corresponding sums Si with ω
in place of ω̃ using (76) or Theorem 3.2. This comes at the cost of an error of size
O
(
λN1−η/2

)
. We shall explain the details in each case below, following exactly

the arguments in [6, section 4]. First, let us finish the proof of the lower bound
if θ ≤ 2/7. It follows that

Φ(ω̃, q0) = (S1 − S2 − S3 + S4 + S9 − S10 + S11 + S13 + S14 − S15 + S16)

+ S̃13 − S13 +O
(
λN1−η/2

)
≥ (S1 − S2 − S3 + S4 + S9 − S10 + S11 + S13 + S14 − S15 + S16)

− S13 +O
(
λN1−η/2

)
= Φ(ω, q0)− S13 +O

(
λN1−η/2

)
,

where to obtain the last line, we have reversed all decompositions above
(in particular those using Buchstab’s identity).
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We recall that
S13 =

∑
(∇∇)

Φpq(ω, q).

Since, by assumption in Theorem 5.1, ω = λW with W satisfying (52), (53)
and (54), we may apply Theorem 4.4 to approximate S13 by

S13 = λ
∑
(∇∇)

B(u) · y

logN (q)
· (1 + o(1)

)
as N → ∞, where

y :=
N

N (pq)
and u :=

log y

logN (q)
.

We also have

ΦO(ω, q0) = λ · N

logN
· (1 + o(1)

)
(86)

by the same Theorem (4.4). Hence,

ΦO(ω̃, q0) = λ

⎛
⎝ N

logN
−
∑
(∇∇)

B(u) · y

logN (q)

⎞
⎠ · (1 + o(1)

)
.

To approximate the sum
∑

(∇∇) on the right-hand side, we use partial sum-

mation together with Landau’s prime ideal theorem (Lemma 4.2) in the same
fashion as in [6, section 4]. In the case when 1/4 ≤ θ ≤ 2/7, this leads to

ΦO(ω̃, q0) ≥ λ · N

logN
· C(θ)

(
1 + o(1)

)
,

where

C(θ) :=

(
1−
∫ 1/2

1−2θ

∫ (1−α)/2

1−θ−α

dβ dα

αβ(1− α− β)
−

∫ θ

(1−θ)/3

∫ α

(1−θ−α)/2

B
(
1− α− β

β

)
dβ dα

αβ2

)
. (87)

Together with (86), this gives

SO(ω̃,
√
x)

SO(ω,
√
x)

=
ΦO(ω̃, q0)
ΦO(ω, q0)

≥ C(θ) + o(1).

In [6, section 4], it was worked out that the above function C(θ) indeed satisfies

C(θ) = 1 +O
(
(θ − 1/4)2

)
,

as claimed in the theorem.
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Now we explain why the sums S̃i with i = 1, 2, 3, 6, 9, 10, 11, 14, 15, 16 are
in a form which allows us to approximate them by the corresponding sums Si

with ω in place of ω̃ by applying (76) or Theorem 3.2 in conjunction with (75)
and (76). If R ≤ x1−θ/2, then using (75) and (76) together with Theorem 3.2
with M = x1−θ, μ = θ and κ = 1− 3θ, we have∑

N (r)∼R

crΦr(ω̃, q1) =
∑

N (r)∼R

crΦr(ω, q1) +O
(
λN1−η/2

)
(88)

whenever cr ≤ 1, where we recall that q1 := Q (xκ). Hence, we can immediately

approximate S̃1, S̃2, S̃9 and S̃10 by the corresponding sums. Here we note that
N (pq),N (pqr) ≤ N (pq2) < x1−θ in the sums S̃9 and S̃10.

Since xθ ≤ N (p) ≤ x1−2θ in S̃3, this sum can be approximated directly
using (76) by disentangling variables using the Möbius function and cosmetic

surgery (Lemma 3.1) as in the proof of Theorem 3.2. Similarly, the sum S̃6 can
be approximated using (76). Indeed, if β ∈ [θ, 1− 2θ) or α+β ∈ [θ, 1− 2θ), then
N (p) or N (pq) lies in the correct range [xθ, x1−2θ]. If β ∈ [2θ, 1− θ) or α+ β ∈
[2θ, 1 − θ), then we reverse the roles of variables as follows: If x2θ ≤ N (a) ≤
x1−θ in our Type II sum, then xθ−ι ≤ N (b) ≤ x1−2θ unless N (ab) �∈ [x1−ι, x].
The contribution of the latter ab’s can be bounded using (74), and hence the
rest can be handled using (76) with the roles of a and b reversed.

The sum S̃11 counts certain products of five ideals pqrst. The norm of each
of these ideals is at least x1−3θ. Hence, if θ ≤ 2/7, then

xθ ≤ x2−6θ ≤ min{N (rs),N (st)} < x2/5 < x1−2θ.

Thus S̃11 can be approximated using (76) as well. In S̃14 and S̃15 we haveN (qt) <
x1−θ and N (qus) < x1−θ, respectively, which again allows us to approximate

these sums using (88). Finally, if θ ≤ 2/7, then S̃16 can be dealt with in a

similar way as S̃11. This completes the proof of the lower bound if θ ≤ 2/7.

Since the proof of the lower bound for θ > 2/7 is parallel to that in [6, sec-
tion 4], we cut the details short. In this case, there are further losses coming

from the sums S̃11 and S̃16 which make it necessary to subtract more integrals
on the right-hand side of (87). These integrals are of the form∫

D
B
(
1− α− β − γ − δ

δ

)
dαdβ dγ dδ

αβγδ2

and ∫
E
B
(
α− γ

γ

)
B
(
1− α− β − δ

δ

)
dα dβ dγ dδ

βγ2δ2
,
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where D and E are rather complicated regions which can be found in [6, page
250]. The numerical evaluation in [6, page 252] then establishes the desired lower
bound for 2/7 < θ ≤ 1/4, and one has C(7/22) > 1/10. �

Remark 4: In [6, section 4], Harman also established an upper bound. His
proof started with the same equations corresponding to (78) and (79) but then
continued with a different decomposition. As θ → 1/3, the fundamental lemma
of sieve theory is needed because in this case, Harman’s asymptotic sieve has no
Type II information to work with. We have refrained from working out a proof
of the upper bound sieve in the number field setting as we need only a lower
bound for our application.

6. Checking conditions (52), (53), (54), (73), (74)

To apply Theorem 5.1 to our sieve problem in real and imaginary quadratic
number fields, we need to check that our conditions (52), (53) and (54) for the
relevant function W hold in these settings. Moreover, we need to check that the
conditions (73) and (74) for the relevant functions ω and ω̃ in Theorem 5.1 hold
for a suitable A > 0 and ι = 2ε. This will be carried out in the following.

6.1. Real quadratic case

We first check the conditions (52), (53) and (54). In [2], we considered the
weight function

Ψ(n) :=
∑
k∈O
(k)=n

f

(
σ1(k)√

N

)
f

(
σ2(k)√

N

)
, (89)

here

f(x) :=
(
exp
(−πx2

)− exp
(−2πx2

))C
(90)

for some C ∈ N. Our function W (n) is precisely this function, scaled by some
factor, i.e.,

W (n) :=
Ψ(n)

constant
for all n ∈ I (91)

for a suitable positive constant only depending on C and K which we will specify
in (98). According to [2], the weight function ω is then defined as

ω(q) =
δ2

2
√
d
·Ψ(q) =

δ2

2
√
d
· constant ·W (q),
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where δ plays a similar role as in the imaginary-quadratic setting (here the

approximation problem is two-dimensional, though) and K = Q(
√
d) with d > 1

square-free. The function ω̃ (which depends on δ) is defined in [2] as follows:

We write

ΩΔ(x) := exp

(
−π · x

2

Δ2

)
(92)

and set

ω̃(q) :=
N

N (q)
·Ψ(q) · F (q) =

N

N (q)
· constant ·W (q) · F (q)

with

F (q) :=
∑
p∈O

Ωδ/
√
N

(
x1 − σ1(p)

σ1(q)

)
Ωδ/

√
N

(
x2 − σ2(p)

σ2(q)

)
,

where q above is any generator of q, i.e.,

q = (q).

For the sake of clarity, we first derive (52) for r = O. In this case, we need to
consider the average ∑

s∈P

Ψ(s).

We relate this sum to ∑
n∈I

Λ(n)Ψ(n),

where Λ(n) is the analog of the von Mangoldt function for ideals, defined by

Λ(n) =

{
logN (p) if n = pk with p ∈ P and k ∈ N,

0, otherwise.

Separating the contribution of prime ideal powers pk with k ≥ 2, we get∑
n∈I

Λ(n)Ψ(n) =
∑
s∈P

(
logN (s)

)
Ψ(s) +O

(
N1/2+ε

)
.

Using the bound Ψ(n) � logN (see [2, (12)]), which is valid for all ideals n ∈ I,
together with Landau’s prime ideal theorem, we get∑

s∈P

N (s)≤N/ log2 N

(
logN (s)

)
Ψ(s) � N

logN
.

We also have ∑
s∈P

N (s)>N log2 N

(
logN (s)

)
Ψ(s) � N

logN
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since (see [2, (12)])

Ψ(n) � exp

(
−πDC · N (n)

N

)
· logN (n) for all n ∈ I (93)

for some constant D > 0.

It follows that∑
n∈I

Λ(n)Ψ(n) =
∑
s∈P

N/ log2 N<N (s)≤N log2 N

(
logN (s)

)
Ψ(s) + O

(
N

logN

)
.

In the summation range

N

log2 N
< N (s) ≤ N log2N,

we have

logN (s) = logN +O(log logN).

Moreover, by a similar process as above,∑
s∈P

N/ log2 N<N (s)≤N log2 N

(
logN +O(log logN)

)
Ψ(s)

=
(
logN +O(log logN)

)∑
s∈P

Ψ(s) +O

(
N log logN

logN

)
.

We deduce that∑
n∈I

Λ(n)Ψ(n) =
(
logN + O(log logN)

)∑
s∈P

Ψ(s) +O
(
N log logN logN

)
and hence∑

s∈P

Ψ(s) =
1

logN +O(log logN)

∑
n∈I

Λ(n)Ψ(n) +O

(
N log logN

log2 N

)
. (94)

Next we evaluate the sum on the right-hand side of (94). Let ε be the funda-
mental unit. Then, for any generator k of n, we have

Ψ(n) = 2

∞∑
n=−∞

f

(
εn|σ1(k)|√

N

)
f

(
ε−n|σ2(k)|√

N

)
, (95)

taking into account all positive and negative units and using the fact that
f is even.
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Since
|σ1(k)σ2(k)| = N (n),

this can be re-written in the form

Ψ(n) = 2

∞∑
n=−∞

f

(
εn√
N

g1

(
log |σ1(k)/σ2(k)|

2 log ε

))
×

f

(
ε−n

√
N

g2

(
log |σ1(k)/σ2(k)|

2 log ε

))
,

where

g1(θ) := εθ ·
√
N (n) and g2(θ) := ε−θ ·

√
N (n).

Now we define G : R× R≥0 → R by

G(θ, x) =

∞∑
n=−∞

f(εn+θ
√
x)f(ε−(n+θ)

√
x).

Then it follows that

Ψ(n) = 2G

(
log |σ1(k)/σ2(k)|

2 log ε
,
N (n)

N

)
.

Clearly, G(θ, x) is periodic in θ with period 1 and hence has a Fourier series
development of the form

G(θ, x) =

∞∑
m=−∞

cm(x)e(mθ).

It follows that

Ψ(n) = 2

∞∑
m=−∞

cm

(N (n)

N

)
e

(
m · log |σ1(k)/σ2(k)|

2 log ε

)
.

The exponentials on the right-hand side are precisely the Hecke Größencharak-
tere (see [9] and [10])

λm(n) := e

(
m · log |σ1(k)/σ2(k)|

2 log ε

)
.

We note that the right-hand side indeed only depends on the ideal n. Hence,
in the shorter form, we may write

Ψ(n) = 2

∞∑
m=−∞

cm

(N (n)

N

)
λm(n).
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The Fourier coefficient cm(x) equals

cm(x) =

∫ 1

0

G(θ, x)e(−mθ) dθ

=

∞∑
n=−∞

∫ 1

0

f

(
εn+θ

√
x

)
f

(
ε−(n+θ)

√
x

)
e(−mθ) dθ

=

∫ ∞

−∞
f

(
εy
√
x

)
f

(
ε−y

√
x

)
e(−my) dy.

Therefore, we get

∑
n∈I

Λ(n)Ψ(n) = 2

∞∑
m=−∞

∫ ∞

−∞
e(−my)

(∑
n∈I

Fy

(N (n)

N

)
Λ(n)λm(n)

)
dy,

where
Fy(x) := f(εy

√
x)f(ε−y

√
x).

Now let φy(s) be the Mellin transform of Fy(x), i.e.,

φy(s) =

∫ ∞

0

xs−1Fy(x) dx.

Then, by Mellin inversion formula,

Fy(x) =
1

2πi

∫ c+i∞

c−i∞
x−sφy(s) ds

for any c > 1. Hence, we obtain∑
n∈I

Λ(n)Ψ(n)

= 2

∞∑
m=−∞

∫ ∞

−∞
e(−my)

(∑
n∈I

(
1

2πi

∫ c+i∞

c−i∞

(N (n)

N

)−s

φy(s) ds

)
Λ(n)λm(n)

)
dy

= 2

∞∑
m=−∞

1

2πi

∫ c+i∞

c−i∞
N s

(∑
n∈I

N (n)−sΛ(n)λm(n)

)(∫ ∞

−∞
φy(s)e(−my) dy

)
ds

= −2

∞∑
m=−∞

1

2πi

∫ c+i∞

c−i∞
N s · L

′

L
(s, λm)

(∫ ∞

−∞
φy(s)e(−my) dy

)
ds,

where
L(s, λm) :=

∑
n∈I

λm(n)N (n)−s

is the Hecke L-function associated to the Größencharakter λm.

38



ON THE DISTRIBUTION OF αp MODULO ONE IN QUADRATIC NUMBER FIELDS

Next, we want to find the Mellin transform of Fy(x). Using the definition of f
in (90) and multiplying out, we get

Fy(x) :=
(
exp
(−πε2yx

)− exp
(−2πε2yx

))C
×
(
exp
(−πε−2yx

)− exp
(−2πε−2yx

))C

=

( C∑
a=0

(−1)a
(C
a

)
exp
(
−π(2C − a)ε2yx

))

×
( C∑

b=0

(−1)b
(C
b

)
exp
(
−π
(
2C − b

)
ε−2yx

))

5ex] =

2C∑
a=C

2C∑
b=C

(−1)a+b

( C
2C − a

)( C
2C − b

)
exp
(
−π
(
aε2y + bε−2y

)
x
)
.

Hence, the Mellin transform is

φy(s) = π−sΓ(s)

2C∑
a=C

2C∑
b=C

(−1)a+b

( C
2C − a

)( C
2C − b

)(
aε2y + bε−2y

)−s
.

We deduce that∑
n∈I

Λ(n)Ψ(n) = −2

2C∑
a=C

2C∑
b=C

(−1)a+b

( C
2C − a

)( C
2C − b

) ∞∑
m=−∞

1

2πi
×

∫ c+i∞

c−i∞
N sπ−sΓ(s) · L

′

L
(s, λm)

(∫ ∞

−∞

(
aε2y + bε−2y

)−s
e(−my) dy

)
ds. (96)

The function L(s, λ0) equals the Dedekind zeta function and hence has a sim-
ple pole at s = 1. If m �= 0, then L(s, λm) is entire. It is known (see [4],
[12, chapter 5]) that L(s, λm) has no zeros in the set{

s ∈ C : 	s ≥ 1− ε

log(2 + |�s|)
}
,

and satisfies a bound of the form

L′

L
(s, λm) � log2(2 + |�s|) (97)

there if ε > 0 is small enough.
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We suppose that N ≥ 2, choose c = 1 + 1/ logN and then replace the contour
(c − i∞, c + i∞) of integration on the right-hand side of (96) by the union U
of line segments

(c−i∞, c−iT ], [c−iT, u−iT ], [u−iT, u+iT ], [u+iT, c+iT ] and [c+iT, c+i∞),

where
T := logN

and
u = 1− ε

log(2 + T )
.

Now using Cauchy’s residue theorem, we get∑
n∈I

Λ(n)Ψ(n) = constant ·N −E,

where

constant :=
2

π
·

2C∑
a=C

2C∑
b=C

(−1)a+b

( C
2C − a

)( C
2C − b

)

×
∫ ∞

−∞

(
aε2y + bε−2y

)−1
dy (98)

and

E := 2

2C∑
a=C

2C∑
b=C

(−1)a+b

( C
2C − a

)( C
2C − b

)∑
m �=0

1

2πi

×
∫
U
N sπ−sΓ(s) · L

′

L
(s, λm)

(∫ ∞

−∞

(
aε2y + bε−2y

)−s
e(−my) dy

)
ds.

For an estimation of the error term E, we use Stirling’s formula to bound Γ(s)
and (97) to bound L′/L(s). It remains to bound the Fourier transform∫ ∞

−∞

(
aε2y + bε−2y

)−s
e(−my) dy.

Let s = σ + it. We write the above integral in the form∫ ∞

−∞

(
aε2y + bε−2y

)−σ
e
(
fa,b,m(y)

)
dy

with

fa,b,m(y) := − t

2π
· log(aε2y + bε−2y

)−my.
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To get an idea of the behavior of this exponential integral, we first calculate that
the stationary phase points y0 with f ′

a,b,m(y0) = 0 satisfy

ε4y0 =
b

a
· t log ε− πm

t log ε+ πm
.

For them to exist, the right-hand side needs to be positive which is the case
if and only if

|t| > π

log ε
· |m|.

If

|t| ≤ π

2 log ε
· |m| and σ ≥ 1

2
,

then, in a standard way, repeated integration by part gives∫ ∞

−∞

(
aε2y + bε−2y

)−σ
e
(
fa,b,m(y)

)
dy = Oa,b,B(|m|−B),

where B is any positive real. If

|t| > π

2 log ε
· |m| and σ ≥ 1

2
,

then we shall use just the trivial bound∫ ∞

−∞

(
aε2y + bε−2y

)−σ
e
(
fa,b,m(y)

)
dy = Oa,b(1).

Combining the above bounds, Stirling’s formula and (97), we find that

E � N1−ε/ log logN

for a suitable ε > 0. Hence, we have∑
n∈I

Λ(n)Ψ(n) = constant ·N + O
(
N1−ε/ log logN

)
. (99)

Moreover, lower bounds for Ψ(n) in [2] together with Landau’s prime ideal
theorem and the above asymptotic estimate (99) show that constant > 0.
Combining (94) and (99), we obtain∑

s∈P

W (s) =
N

logN
+O

(
N log logN

log2N

)
(100)

if W (n) is defined as in (91), establishing (52) for r = O.

It is easy to modify the calculations above to derive (52) for general r ∈ O
satisfying N (r) ≤ N/2: Choose some generator l of r which satisfies

|σ1(l)| �
√
N (r) � |σ2(l)|
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and write

W (rs) :=
∑
k∈O
(k)=s

f

(
c1 · σ1(k)√

N/N (r)

)
f

(
c2 · σ2(k)√

N/N (r)

)
,

where

ci :=
σi(l)√N (r)

for i = 1, 2.

Now the above calculations for the case r = O go through in this general case as
well, where

√
N is replaced by

√
N/N (r) and the additional constants c1 and c2

above are taken into consideration. This establishes (52).

The bound (53) is a consequence of

W (n) �ε 1 if N (n) ≥ N ε/2,

and the bound (54) follows from (93). Hence, we have established the required
conditions (52), (53) and (54) on W .

Now we turn to the conditions (73) and (74) for the weight functions w = ω, ω̃,
which we shall establish for A = 2, ι = 2ε and η > 0 small enough, provided our
constant C in (90) is large enough. It was proved in [2, (14)] that

w(n) � exp

(
−E · N (n)

N

)
· logN

for a suitable constant E > 0 depending on D. We recall that N ∼ x1−ε, λ � δ2

and d5(n) � N (n)ε. Moreover, we may assume δ ≥ x−7/44 in order to establish
Theorem 2.4. Hence, to prove both (73) and (74) with the said choices of A, ι
and η, it suffices to show that

w(n) � N (n)−1 if N (n) < x1−2ε.

Using [2, (6),(7),(8),(11)], we have the rough bound

w(n) � NN (n)−1Ψ(n)

in this range. Hence, it suffices to show that

W (n) � x−1 if N (n) < x1−2ε, (101)

which we shall establish in the following.

We start with (95) and note that the generator k of n can be chosen in such
a way that |σ1(k)| � |σ2(k)| � N (n)1/2.

We further note that (see [2, (4)])

|f(x)| � min
{
1, |x|2C} .
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Hence, we have

Ψ(n) �
∞∑

n=−∞
min

{
1,

∣∣∣∣N (n)

N

∣∣∣∣
C
· ε2nC

}
·min

{
1,

∣∣∣∣N (n)

N

∣∣∣∣
C
· ε−2nC

}

�
∞∑
n=0

∣∣∣∣N (n)

N

∣∣∣∣
C
· ε−2nC � x−Cε

if N (n) ≤ x1−2ε. Now we choose C larger than 1/ε. Then (101) follows, and
the proof is complete. In [2], we chose C = �100/ε�, which consists with what
we need here.

6.2. Imaginary quadratic case

We first establish (52), (53), (54) and (73) for the original functions W , ω
and ω̃ used in [1]. In this paper, we worked in the ring of integers O rather
than the set of ideals I throughout and hence defined our weight functions on
O instead of I. Since the unit group of K = Q(

√−d) is finite and the class
number is supposed to be 1, there is no essential difference between the O- and
the I-setting as far as the sieve part is concerned. It therefore suffices to check the
said conditions for the corresponding weight function W on the set of ideals I,
possibly scaled by a suitable factor to ensure that we get exactly the asymptotic
in (52). This weight function is simply (cf. [1])

W (n) = π · exp
(
−π · N (n)

N

)
,

with scaling factor π. The function ω is then ω(a) = λW (a) with λ = 4δ2 for
some parameter δ which specifies the weight function ω̃. For the precise definition
of ω̃ in the setting of O, we refer to [1]. Here we just mention that it detects
elements n of O such that the distance of nα to the nearest element a of O is
not much larger than δ.

An application of partial summation, Lemma 4.2 and integration by parts
gives
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∑
s∈P

W (rs) = −π

∫ ∞

2

d

dt
exp

(
−π · N (r)t

N

)⎛⎜⎜⎝ ∑
s∈P

N (s)≤t

1

⎞
⎟⎟⎠ dt

= −π

∫ ∞

2

d

dt
exp

(
−π · N (r)t

N

)(
t

log t
+O

(
t

log2 t

))
dt

= π

∫ ∞

2

exp

(
−π · N (r)t

N

)
d

dt

(
t

log t

)
dt+O

(
N/N(r)

log2(N/N(r))

)

=
N/N (r)

log(N/N (r))
+O

(
N/N (r)

log2(N/N (r))

)

if N (r) ≤ N/2, establishing (52). The condition (53) follows immediately from
W (a) ≤ 1 and Lemma 4.2, without dependence on ε. Moreover, using partial
summation, we easily establish the stronger bound

∑
a∈O

N (ar)>Ñ

W (ar) = Oξ

(
N

N (r)
· exp(−(logN)ξ/2

))

in place of (54) provided that Ñ = N(logN)ξ and N (r) ≤ N/2. Hence, we have
established the required conditions (52), (53) and (54) on W . Clearly, (73) holds
as well with A = 2.

However, with the above choices of W , ω and ω̃, the condition (74) will not
hold since we need W (n) to be small if N (n) is small compared to x. The obvious
solution to this problem is to modify W (and correspondingly, ω̃) in a similar
way as in the real quadratic case, namely to choose

W (n) =
1

constant

(
exp

(
−π · N (n)

N

)
− exp

(
−2π · N (n)

N

))C
(102)

for a suitable constant and C ∈ N. This will allow us, similarly as in the real
quadratic case, to establish (74) for ι = 2ε and small enough η. (In fact, the
estimations are easier here.) To establish (52), (53) and (54) for this modified
function, we simply open up the C-th power in (102) by applying the binomial
formula and use similar estimations as above for the relevant sums of the result-
ing terms. The bound (73) remains valid with A = 2, of course.
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7. Application to restricted Diophantine approximation

To prove Theorems 2.1 and 2.4, it remains to modify the final arguments
in [1] and [2]. Now we use Harman’s lower bound sieve in place of his asymptotic
sieve, which we are allowed to do since we have verified the conditions (52), (53),
(54), (73) and (74) in the last section. The underlying Type I and Type II sum
estimates remain the same as in [1] and [2].

7.1. Proof of Theorem 2.1

We use the setup in [1]. Since our field K has class number one and finite
unit group, we are again free to switch between elements and ideals in O since
it is a PID. Applying [1, Propositions 6.6 and 6.7] with M = x1−θ, μ = θ − 2ε,
μ + κ = 1 − 2θ where 1/4 + 2ε ≤ θ ≤ 1/3, we get that the sum of the Type I
and Type II sums is bounded by

�C,ε,ω δ2N · x9ε
(|q|2x−1 + δ−2|q|−1 + δ−1|q|x−1/2 + δ−2x−θ + δ−1x−θ/2

)
.

Upon taking x = |q|1/θ (and hence |q| = xθ) and recalling that N = x1−ε in [1],
we find that the above is dominated by

�C,ε,ω δ2N1−ε

provided that 1
2 ≥ δ ≥ x−θ/2+12ε. If θ = 7/22, we then obtain the lower bound

SO(ω̃,
√
x) � δ2

N

logN

from [1, Lemma 6.1.] and Theorem 5.1 with

λ = δ2 · constant′

for a suitable constant constant′ > 0 coming from the modification of the weight
function W in (102). Now Theorem 2.1 follows after cutting the series defining
S(ω̃,

√
x) at x as in [1, Lemma 6.2].

7.2. Proof of Theorem 2.4

Here we use the setup in [2]. Again, we take

M = x1−θ, μ = θ − 2ε, μ+ κ = 1− 2θ, where 1/4 + 2ε ≤ θ ≤ 1/3.

We first note that the term x3/4 in [2, equation (87)] can be replaced by
x1−θ+2ε because K is now in the range

xθ−2ε � K � x1−2θ ≤ x1/2.
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Then proceeding along the lines in [2, section 11], we arrive at

x−15ε · (sum of Type I and Type II sums) �
x1−θW 4η + δ−2x2−θW 4η−2 + xW 2η−1 + δ2W 2η+1 +(

δ + x1/2W−1
)(
x1−θ/2W 2η + x1/2W 1/2+η

)
+ xW η−1/2 + x1−θ (103)

in place of [2, equation (126)]. As in [2, section 11], we choose x depending on W
in such a way δ = x1/2W−1, i.e.

x := (δW )2

and hence

W � x1/2δ−1.

Then (103) turns into

x−15ε · (sum of Type I and Type II sums) �

x1−θ+2ηδ−4η + x1−θ/2+ηδ1−2η + x3/4+η/2δ1/2−η + x1−θ.

Recalling that N :=
⌈
x1−ε

⌉
in [2], the estimate

sum of Type I and Type II sums � δ2N1−ε

follows if ε ≤ 1/16 and

δ ≥ N−ν+17ε (104)

with

ν := min

{
θ/2− η

1 + 2η
,
1/4− η/2

3/2 + η

}
.

If θ ≤ 1/3, then the first term in the minimum is less than the second term.
Fixing θ := 7/22, it follows that

ν =
7/44− η

1 + 2η
. (105)

As in subsection 7.1, we now obtain the desired lower bound

SO(ω̃,
√
x) � δ2

N

logN

from Theorem 5.1 with

λ =
δ2

2
√
d
· constant,

provided δ satisfies (104). Using [2, equation (26)], we get a sharpened version
of [2, Theorem 6] with ν as in (105) above which leads to Theorem 2.4 using the
same “unsmoothing” procedure as in [2, section 12].
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