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DISCRETE ENERGY ASYMPTOTICS ON A

RIEMANNIAN CIRCLE

Johann S. Brauchart∗, Douglas P. Hardin†, and Edward B. Saff†

ABSTRACT. We derive the complete asymptotic expansion in terms of powers
of N for the geodesic f -energy of N equally spaced points on a rectifiable simple
closed curve Γ in Rp, p ≥ 2, as N → ∞. For f decreasing and convex, such a
point configuration minimizes the f -energy

∑
j 6=k f(d(xj ,xk)), where d is the ge-

odesic distance (with respect to Γ) between points on Γ. Completely monotonic
functions, analytic kernel functions, Laurent series, and weighted kernel func-
tions f are studied. Of particular interest are the geodesic Riesz potential 1/ds

(s 6= 0) and the geodesic logarithmic potential log(1/d). By analytic continuation
we deduce the expansion for all complex values of s.

Communicated by Robert F. Tichy

Dedicated to the memory of Gérard Rauzy

1. Introduction

Throughout this article, Γ is a Riemannian circle (that is, a rectifiable simple
closed curve in Rp, p ≥ 2) with length |Γ| and associated (Lebesgue) arclength
measure σ = σΓ. Choosing an orientation for Γ, we denote by ℓ(x,y) the length
of the arc of Γ from x to y, where x precedes y on Γ. Thus ℓ(x,y)+ℓ(y,x) = |Γ|
for all x,y ∈ Γ. The geodesic distance d(x,y) between x and y on Γ is given by
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the length of the shorter arc connecting x and y; that is,

d(x,y) : = dΓ(x,y) : =min {ℓ(x,y), ℓ(y,x)} =
|Γ|
2

−
∣∣∣∣ℓ(x,y) −

|Γ|
2

∣∣∣∣ . (1)

The geodesic distance between two points on Γ can be at most |Γ|/2.
We remark that it would be sufficient to study the Euclidean circle with its

arclength metric; however, for the purpose of emphasizing that our results hold
as well for geodesic distances on a closed curve, we state them for the Riemannian
circle.

Given a lower semicontinuous function f : [0, |Γ|/2] → R∪{+∞}, the discrete
f -energy problem is concerned with properties ofN point systems z∗1,N , . . . , z

∗
N,N

on Γ (N ≥ 2) that minimize the f -energy functional

Gf (x1, . . . ,xN ) : =
∑

j 6=k

f(d(xj ,xk)) : =

N∑

j=1

N∑

k=1
j 6=k

f(d(xj ,xk)), (2)

over all N point configurations ωN of not necessarily distinct points x1, . . . ,xN

on Γ. The following result asserts that equally spaced points (with respect to
arclength) on Γ are minimal f -energy point configurations for a large class of
functions f .Proposition 1. Let f : [0, |Γ|/2] → R ∪ {+∞} be a lower semicontinuous
function.

(A) If f is convex and decreasing, then the geodesic f -energy of N points on
Γ attains a global minimum at N equally spaced points on Γ. If f is strictly
convex, then these are the only configurations that attain a global minimum.

(B) If f is concave and decreasing, then the geodesic f -energy of N points
on Γ attains a global minimum at antipodal systems ωN with ⌈N/2⌉ points at p
and ⌊N/2⌋ points at q, where p and q are any pair of points on Γ with geodesic
distance |Γ|/2. If f is strictly concave, then these are the only configurations that
attain a global minimum.

Part (A) of Proposition 1 follows from a standard “winding number argument”
that can be traced back to the work of Fejes Tóth [15]. The result in the general
form stated here appears explicitly in the work of M. Götz [17, Proposition 9]
who uses a similar notion of “orbits.” For completeness, we present in Section 4
a brief proof of Part (A).

Remark. Alexander and Stolarsky [2] studied the discrete and continuous energy
problem for continuous kernel functions f on compact sets. In particular, they
established the optimality of vertices of a regularN -gon circumscribed by a circle
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Ca of radius a for various non-Euclidean metrics ρ(x,y) (including the geodesic
metric) with respect to an energy functional Eσ,λ(x1, . . . ,xN ) : = σ([ρ(xj ,xk)]

λ),
0 < λ ≤ 1, on Ca where σ is an elementary symmetric function on

(
n
2

)
real vari-

ables. This result does not extend to the complete class of functions in Propo-
sition 1 and vice versa. However, both cover the generalized sum of geodesic
distances problem.

In the case of Riesz potentials we set

fs(x) : =−x−s, s < 0, f0(x) : = log(1/x), fs(x) : = x−s, s > 0.

Then Proposition 1(A) asserts that equally spaced points are unique (up to
translation along the simple closed curve Γ) optimal geodesic fs-energy points for
s > −1. (For s > 0 this fact is also proved in the dissertation of S. Borodachov
[6, Lemma V.3.1], see also [7].) Proposition 1(B) shows that for s < −1 and
N ≥ 3, antipodal configurations are optimal fs-energy points, but equally spaced
points are not. (We remark that if Euclidean distance is used instead of geodesic
distance, then the N -th roots of unity on the unit circle cease to be optimal fs-
energy points when s < −2, cf. [5] and [10].)

For s = −1 in the geodesic case, equally spaced points are optimal but so
are antipodal and other configurations. Fejes Tóth [16] showed that a configura-
tion on the unit circle is optimal with respect to the sum of geodesic distances∗

(s = −1) if and only if the system is centrally symmetric for an even number
of points and, for an odd number of points, it is the union of a centrally sym-
metric set and a set {x1, . . . ,x2k+1} such that each half circle determined by xj

(j = 1, . . . , 2k + 1) contains k of the points in its interior. (This result is reproved
in [20].) These criteria easily carry over to Riemannian circles. In particular, any
system of N equally spaced points on Γ and any antipodal system on Γ satisfy
these criteria.

Remark. Equally spaced points on the unit circle are also universally optimal in
the sense of Cohn and Kumar [11]; that is, they minimize the energy functional∑

j 6=k f(|xj−xk|2) for any completely monotonic potential function f ; that is, for

a function f satisfying (−1)kf (k)(x) > 0 for all integers k ≥ 0 and all x ∈ [0, 2].

To determine the leading term in the energy asymptotics it is useful to con-
sider the continuous energy problem. Let M(Γ) denote the class of Borel prob-
ability measures supported on Γ. The geodesic f -energy of µ ∈ M(Γ) and the

∗The analogue problem for the sum of (Euclidean) distances on the unit circle was also studied
by Fejes Tóth [15] who proved that only (rotated copies) of the N-th roots of unity are optimal.
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minimum geodesic f -energy of Γ are defined, respectively, as

Ig
f [µ] : =

∫ ∫
f(d(x,y)) dµ(x) dµ(y), V g

f (Γ) := inf
{
Ig
f [µ] : µ ∈ M(Γ)

}
.

The continuous f -energy problem concerns the existence, uniqueness, and char-
acterization of a measure µΓ satisfying V g

f (Γ) = Ig
f [µΓ]. If such a measure exists,

it is called an equilibrium measure on Γ.Proposition 2. Let f be a Lebesgue integrable lower semicontinuous function
on [0, |Γ|/2] and convex and decreasing on (0, |Γ|/2]. Then the normalized ar-
clength measure σΓ is an equilibrium measure on Γ and

lim
N→∞

Gf (ω
(f)
N )/N2 = V g

f (Γ). (3)

If, in addition, f is strictly decreasing, then σΓ is unique.

The proofs of the propositions in this introduction are given in Section 4.

Note that (3) provides the first term in the asymptotic expansion of Gf (ω
(f)
N )

for large N ; that is, Gf (ω
(f)
N ) ∼ V g

f (Γ)N
2 as N → ∞. The goal of the present

paper is to extend this asymptotic expansion to an arbitrary number of terms.

The case when limN→∞Gf (ω
(f)
N )/N2 → ∞ as N → ∞ is also studied. For a cer-

tain class of functions f , satisfying xs0 f(z) → a0 as x→ 0+ for some s0 > 1 and
finite a0, it turns out that the leading term is of the form a02 ζ(s0)|Γ|−s0N1+s0 ,
where ζ(s) is the classical Riemann zeta function. However, such a leading term
might even not exist. Indeed, if the function f has an essential singularity at 0
and is otherwise analytic in a sufficiently large annulus centered at zero, then the
asymptotics of the geodesic f -energy of equally spaced points on Γ contains an
infinite series part with rising positive powers of N determined by the principal
part of the Laurent expansion of f at 0. Consequently, there is no “highest power
of N”, see Examples 11 and 12 below.

An outline of our paper is as follows. In Section 2, the geodesic f -energy
of equally spaced points on Γ is investigated. In particular, completely mono-
tonic functions, analytic kernel functions, Laurent series, and weighted kernel
functions f are considered. Illustrative examples complement this study. In Sec-
tion 3, the geodesic logarithmic energy and the geodesic Riesz s-energy of equally
spaced points on Γ are studied. The results are compared with their counterparts
when d(·, ·) is replaced by the Euclidean metric. The proofs of the results are
given in Section 4.
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2. The geodesic f-energy of equally spaced points on ΓDefinition 3. Given a kernel function f : [0, |Γ|/2] → C ∪ {+∞}, the discrete
geodesic f -energy of N equally spaced points z1,N , . . . , zN,N on Γ is denoted by

M(Γ, f ;N) : =
∑

j 6=k

f(d(zj,N , zk,N )) = N

N−1∑

j=1

f(d(zj,N , zN,N)).

Set N = 2M +κ (κ = 0, 1). Using the fact that the points are equally spaced,
it can be easily shown that

M(Γ, f ;N) = 2N

⌊N/2⌋∑

n=1

f(n |Γ| /N)− (1− κ) f(|Γ| /2)N. (4)

An essential observation is that the geodesic f -energy has (when expressed in
terms of powers of N) different asymptotics for even N and odd N . We remark
that for real-valued functions f a configuration of equally spaced points is op-
timal with respect to the geodesic f -energy defined in (2), whenever f satisfies
the hypotheses of Proposition 1(A).

An application of the generalized Euler-MacLaurin summation formula (see
Proposition 20 below) yields an exact formula for M(Γ, f ;N) in terms of pow-
ers of N . The asymptotic analysis of this expression motivates the following
definition.Definition 4. A function f : [0, |Γ|/2] → C ∪ {+∞} is called admissible if the
following holds:

(i) f has a continuous derivative of order 2p+ 1 on the interval (0, |Γ|/2];
(ii) there exists a function Sq(x) of the form Sq(x) =

∑q
n=0 an x

−sn , where an
and sn (n = 0, . . . , q) are complex with Re s0 > Re s1 > · · · > Re sq

† and
Re sq + 2p > 0 or sq = −2p such that for some δ > 0
(a) 1− Re sq + δ > 0,

(b)

∫ x

0

{f(y)− Sq(y)} dy = O(x1+δ−sq ) as x→ 0+,

(c) {f(x) − Sq(x)}(ν) = O(xδ−sq−ν) as x→ 0+ for all ν = 0, 1, . . . , 2p+1.

For p ≥ 1 an integer the following sum arises in the main theorems describing
the asymptotics of M(Γ, f ;N): Let N = 2M + κ, κ = 0, 1. Then

Bp(Γ, f ;N) : =
2

|Γ|N
2

p∑

n=1

B2n(κ/2)

(2n)!
(|Γ| /N)2n f (2n−1)(|Γ| /2), (5)

†The powers in Sq(x) are principal values.
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where Bm(x) denotes the Bernoulli polynomial of degree m defined by

z

ez − 1
exz =

∞∑

m=0

Bm(x)

m!
zm, Bm(x) =

m∑

k=0

(
m

k

)
Bm−kx

k,

where B0 = 1, B1 = −1/2, . . . , are the so-called Bernoulli numbers. Recall that
B2k+1 = 0, (−1)k−1B2k > 0 for k = 1, 2, 3, . . . , and Bn(1/2) = (21−n − 1)Bn for
n ≥ 0 ([1]).Theorem 5 (general case). Let f be admissible in the sense of Definition 4 and
suppose none of s0, s1, . . . , sq equals 1. Then, for N = 2M + κ with κ = 0 or
κ = 1,

M(Γ, f ;N) = Vf (Γ)N
2+

q∑

n=0

an
2 ζ(sn)

|Γ|sn N1+sn +Bp(Γ, f ;N)+Rp(Γ, f ;N), (6)

where

Vf (Γ) =
2

|Γ|

q∑

n=0

an
(|Γ| /2)1−sn

1− sn
+

2

|Γ|

∫ |Γ|/2

0

(f − Sq)(x) dx. (7)

The remainder term satisfies Rp(Γ, f ;N) = O(N1−2p)+O(N1−δ+sq ) as N → ∞
if 2p 6= δ − Re sq, whereas Rp(Γ, f ;N) = O(N1−2p logN) if 2p = δ − Re sq.

The next result involves the Euler-Mascheroni constant defined by

γ : = lim
n→∞

(
1 +

1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− log n

)
.Theorem 6 (exceptional case). Let f be admissible in the sense of Definition 4

and sq′ = 1 for some 1 ≤ q′ ≤ q.‡ Then, for N = 2M + κ with κ = 0 or κ = 1,

M(Γ, f ;N) =
2

|Γ|aq′ N
2 logN + Vf (Γ)N

2 +

q∑

n=0,
n6=q′

an
2 ζ(sn)

|Γ|sn N1+sn

+ Bp(Γ, f ;N) +Rp(Γ, f ;N),

where

Vf (Γ) =
2

|Γ|

{
q∑

n=0,
n6=q′

an
(|Γ| /2)1−sn

1− sn
+

∫ |Γ|/2

0

(f−Sq)(x) dx−aq′ (log 2− γ)

}
. (8)

The remainder term satisfies Rp(Γ, f ;N) = O(N1−2p)+O(N1−δ+sq ) as N → ∞
if 2p 6= δ − Re sq, whereas Rp(Γ, f ;N) = O(N1−2p logN) if 2p = δ − Re sq.

‡By Definition 4 there is only one such sq′ .
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Remark. Both Theorems 5 and 6 show that only the coefficients of the nonpos-
itive even powers of N depend on the parity of N . These dependencies appear
in the sum Bp(Γ, f ;N).

Remark. If f(z) ≡ Sq(z) =
∑q

n=0 anz
−sn for some q and Re s0 > · · · > Re sq,

then all expressions in Theorems 5 and 6 containing f−Sq vanish. In general, the
remainder term Rp(Γ, f ;N) is of order O(N1−2p), where the integer p satisfies
Re sq + 2p > 0. In particular, this holds for the Riesz kernels (cf. Theorems 17
and 19 below).

Completely monotonic functions

A non-constant completely monotonic function f : (0,∞) → R has derivatives
of all orders and satisfies (−1)kf (k)(x) > 0 (cf. [13]).§ In particular, it is a con-
tinuous strictly decreasing convex function. Therefore, by Proposition 1, equally
spaced points are optimal f -energy configurations on the Riemannian circle Γ.

By Bernstein’s theorem [31, p. 161] a function is completely monotonic on
(0,∞) if and only if it is the Laplace transformation f(x) =

∫∞

0
e−xt dµ(t) of

some nonnegative measure µ on [0,∞) such that the integral converges for all
x > 0.

The following result applies in particular to completely monotonic functions.Theorem 7. Let f be the Laplace transform f(x) =
∫∞

0 e−xt dµ(t) for some

signed Borel measure µ on [0,∞) such that
∫∞

0 tm d|µ|(t), m = 0, 1, 2, . . . , are
all finite. Then for all integers p ≥ 1 and N = 2M + κ with κ = 0, 1

M(Γ, f ;N) =

{
2

|Γ|

∫ ∞

0

1− e−t|Γ|/2

t
dµ(t)

}
N2 +

2p∑

n=0

(−1)n
µn

n!

2 ζ(−n)
|Γ|−n N1−n

+ Bp(Γ, f ;N) +O(N1−2p),

where µm : =
∫∞

0 tm dµ(t) denotes the m-th moment of µ.

Remark. The derivation of the (complete) asymptotic expansion for M(Γ, f ;N)
as N → ∞ for Laplace transforms for which not all moments µm are finite,
depends on more detailed knowledge of the behavior of f(x) near the origin.
For example, for integral transforms G(x) =

∫∞

0 h(xt)g(t) dt there is a well-

established theory of the asymptotic expansion of G(x) at 0+. See, [18], [19],
[4] or [25] and [14]. These expansions give rise to results similar to our theorem
above.

§A completely monotonic function on (0,∞) is necessarily analytic in the positive half-plane
([31]).
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Remark. Recently, Koumandos and Pedersen [22] studied so-called completely
monotonic functions of integer order r ≥ 0; that is, functions f for which xrf(x)
is completely monotonic. The completely monotonic functions of order 0 are
the classical completely monotonic functions; those of order 1 are the so-called
strongly completely monotonic functions satisfying that (−1)kxk+1f (k)(x) is non-
negative and decreasing on (0,∞). In [22] it is shown that f is completely mono-
tonic of order α > 0 (α real) if and only if f is the Laplace transformation of a
fractional integral of a positive Radon measure on [0,∞); that is,

f(x) =

∫ ∞

0

e−xtJα[µ](t) dt, Jα[µ](t) : =
1

Γ(α)

∫ t

0

(t− s)
α−1

dµ(s).

Results similar to Theorem 7 hold for these kinds of functions. However, the
problem of giving an asymptotic expansion of f(x) near the origin is more subtle.

Analytic kernel functions

If f is analytic in a disc with radius |Γ|/2 + ε (ε > 0) centered at the origin,
then f is admissible in the sense of Definition 4 and we have the following result.Theorem 8. Let f(z) =

∑∞
n=0 anz

n be analytic in |z| < |Γ|/2+ ε, ε > 0. Then
for N = 2M + κ with κ = 0 or κ = 1

M(Γ, f ;N) =

{
2

|Γ|

∫ |Γ|/2

0

f(x) dx

}
N2 +

2p∑

n=0

an
2 ζ(−n)
|Γ|−n N1−n

+ Bp(Γ, f ;N) +Op,|Γ|,f (N
1−2p).

Note that ζ(0) = −1/2 and ζ(−2k) = 0 for k = 1, 2, 3, . . . .Example 9. If f(x) = e−x, then for any positive integer p:

M(Γ, f ;N) =
2

|Γ|
(
1− e−|Γ|/2

)
N2 −N +

p∑

n=1

1

(2n− 1)!

2 ζ(1− 2n)

|Γ|1−2n N2−2n

−
p∑

n=1

B2n(κ/2)

(2n)!

2e−|Γ|/2

|Γ|1−2n N
2−2n +Op,|Γ|,f(N

1−2p)

as N = 2M + κ → ∞, where the notation of the last term indicates that the
O-constant depends on p, |Γ| and f . Since f(x) is a strictly decreasing convex
function, by Proposition 1(A), equally spaced points are also optimal f -energy
points. Thus, the relation above gives the complete asymptotics for the optimal
N -point geodesic e−(·)-energy on Riemannian circles.
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Laurent series kernels

If f(z) is analytic in the annulus 0 < |z| < |Γ|/2 + ε (ε > 0) with a pole
at z = 0, then f is admissible in the sense of Definition 4 and we obtain the
following result.Theorem 10. Let f be analytic in the annulus 0 < |z| < |Γ|/2 + ε (ε > 0)
having there the Laurent series expansion f(z) =

∑∞
n=−K anz

n, K ≥ 1.

(i) If the residue a−1 = 0, then for N = 2M + κ with κ = 0, 1

M(Γ, f ;N) = Vf (Γ)N
2 +

2p∑

n=−K,
n6=−1

an
2 ζ(−n)
|Γ|−n N1−n

+ Bp(Γ, f ;N) +Op,|Γ|,f (N
1−2p),

where the coefficient of N2 is

Vf (Γ) =
2

|Γ|

∞∑

n=−K

an
(|Γ| /2)1+n

1 + n
.

(ii) If the residue a−1 6= 0, then for N = 2M + κ with κ = 0, 1

M(Γ, f ;N) =
2

|Γ|a−1N
2 logN + Vf (Γ)N

2 +

2p∑

n=−K,
n6=−1

an
2 ζ(−n)
|Γ|−n N1−n

+ Bp(Γ, f ;N) +Op,|Γ|,f (N
1−2p),

where the coefficient of N2 is

Vf (Γ) =
2

|Γ|

{
∞∑

n=−K,
n6=−1

an
(|Γ| /2)1+n

1 + n
− a−1 (log 2− γ)

}
.

Next, we give two examples of kernels f each having an essential singularity
at 0. Such kernels can also be treated in the given framework, since they satisfy
an extended version of Definition 4; see Proof of Examples 11 and 12 in Section 4.Example 11. Let f(x) = e1/x =

∑∞
n=0 1/(n!x

n), x ∈ (0,+∞), f(0) = +∞. We
define the entire function

F (z) : =

∞∑

n=2

ζ(n)

n!
zn = −γz − 1

2πi

∮

|w|=ρ<1

ez/w ψ(1− w) dw, z ∈ C,
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where ψ(z) denotes the digamma function and we observe that, because of
0 < ζ(n)− 1 < c2−n for all integers n ≥ 2 for some c > 0,

F (x) = ex − 1− x+

∞∑

n=2

ζ(n)− 1

n!
xn = ex +O(ex/2) as x→ ∞.

Then

M(Γ, f ;N) = 2NF (N/ |Γ|) + 2

|Γ| N
2 logN + Vf (Γ)N

2 −N

+

p∑

n=1

2B2n(κ/2)

(2n)! |Γ|1−2nN
2−2nf (2n−1)(|Γ| /2) +Op,|Γ|,f(N

1−2p),

where

Vf (Γ) = 1 +
2

|Γ|

∞∑

n=2

1

n!

(|Γ| /2)1−n

1− n
− 2

|Γ| (log 2− γ)

= e2/|Γ| − 2

|Γ| {1− 2γ + log |Γ|+ Ei(2/ |Γ|)} ,

where Ei(x) = −
∫∞

−x
e−tt−1 dt is the exponential integral (taking the Cauchy

principal value of the integral). In particular it follows that

lim
N→∞

M(Γ, f ;N)

N eN/|Γ|
= 2.

Since f is a strictly decreasing convex function on (0,∞), by Proposition 1(A),
equally spaced points are also optimal. Thus, the above expansion gives the
asymptotics of the optimal N -point e1/(·)-energy.Example 12. Let Jk(λ) = (−1)k J−k(λ) : =

1
2π

∫ 2π

0
cos(kθ − λ sin θ) dθ denote

the Bessel function of the first kind of order k whose generating function relation
is given by (cf. [28, Exercise 5.5(10)])

f(x) = exp

[
λ

2

(
x− 1

x

)]
=

∞∑

n=−∞

Jn(λ)x
n for |x| > 0.

For integers m ≥ 2 we define the entire functions

Fm(z) : =

∞∑

n=m

J−n(λ) ζ(n)z
n =

∞∑

k=1

Gm(z/k), Gm(z) : =

∞∑

n=m

J−n(λ)z
n, z ∈ C.
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If λ is a zero of the Bessel function J−1, then for positive integers p and m ≥ 2
there holds

M(Γ, f ;N) = 2NFm(N/ |Γ|) + 2

m−1∑

n=2

J−n(λ) ζ(n) |Γ|−n
N1+n

+ Vf (Γ)N
2 + |Γ|B2(

κ

2
)f ′(|Γ| /2)

+

p∑

n=2

{
2B2n

2n

f2n−1(|Γ| /2)
(2n− 1)!

+ 2 J2n−1(λ) ζ(1− 2n)

}
|Γ|2n−1

N2−2n

+O(N1−2p)

where

Vf (Γ) =
2

|Γ|

∞∑

n=−∞,
n6=±1

Jn(λ)
(|Γ| /2)1+n

1 + n
.

If, in addition, λ < 0, then f(x) is a strictly decreasing convex function and,
therefore, M(Γ, f ;N) is also the minimal N -point f -energy on Γ and it follows
from the observation

Gm(x/k) = exp

[
−λ
2

(
x

k
− k

x

)]
−

m−1∑

n=−∞

Jn(λ)(−x/k)n, k = 1, 2, 3, . . . ,

that

lim
N→∞

M(Γ, f ;N)

Nf(−N/|Γ|) = 2.

If λ is not a zero of J−1, then the above asymptotics must be modified to include
a logarithmic term.

The weighted kernel function fw
s (x) = x−sw(x)

Given a weight function w(x), the kernel fw
s (x) = x−sw(x) gives rise to the so-

called geodesic weighted Riesz s-energy of an N -point configuration (x1, . . . ,xN )

Gw
s (x1, . . . ,xN ) : =

∑

j 6=k

w(d(xj ,xk))

[d(xj ,xk)]
s .

For the Euclidean metric the related weighted energy functionals are studied
in [8].

If w(x) is such that fw
s (x) is admissible in the sense of Definition 4, then The-

orems 5 and 6 provide asymptotic expansions for the weighted geodesic Riesz s-
energy of equally spaced points on a Riemannian circle Γ, which are also optimal
configurations if fw

s (x) is strictly decreasing and convex (cf. Proposition 1(A)).
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∑∞

n=0 anz
n be analytic in |z| < |Γ|/2 + ε, ε > 0. Set

fw
s (z) : = z−sw(z). Then for integers p, q > 0 and s ∈ C, s not an integer, such
that q − 2p < Re s < 2 + q we have

M(Γ, fw
s ;N) = Vfw

s
(Γ)N2 +

q∑

n=0

an
2 ζ(s− n)

|Γ|s−n N1+s−n

+ Bp(Γ, f
w
s ;N) +Rp(Γ, f

w
s ;N),

where Bp(Γ, f
w
s ;N) is defined in (5). The coefficient of N2 is the meromorphic

continuation to C of the geodesic fw
s -energy of Γ given by (2/|Γ|)

∫ |Γ|/2

0
fw
s (x) dx

for 0 < s < 1; that is,

Vfw
s
(Γ) =

2

|Γ|

∞∑

n=0

an
(|Γ| /2)1+n−s

1 + n− s
, s 6= 1, 2, 3, . . . .

The remainder Rp(Γ, f
w
s ;N) is of order O(N1−2p) +O(Ns−2p) as N → ∞.

Remark. For s is a positive integer the series
∑∞

n=0 anz
n−s is the Laurent ex-

pansion of f(z) in 0 < |z| < |Γ|/2 + ε and Theorem 10 applies. For s is a
non-positive integer the series

∑∞
n=0 anz

n−s is the power series expansion of
f(z) in 0 < |z| < |Γ|/2 + ε and Theorem 8 applies.Example 14. Let w(z) = sin(zπ/|Γ|). Then for Re s > 0 not an integer

fw
s (z) = z−sw(z) =

∞∑

n=0

(−1)n

(2n+ 1)!
(π/ |Γ|)2n+1

z2n+1−s

and, by Theorem 13, the geodesic weighted Riesz s-energy of N equally spaced
points has the asymptotic expansion (0 < Re s < 1 + 2p)

M(Γ, fw
s ;N) = Vfw

s
(Γ)N2 + (π/ |Γ|)s

p∑

k=1

(−1)k−1

(2k − 1)!

2 ζ(1 + s− 2k)

π1+s−2k
N2+s−2k

+ Bp(Γ, f
w
s ;N) +Rp(Γ, f

w
s ;N),

where Bp(Γ, f
w
s ;N) is given in (5). The remainder Rp(Γ, f

w
s ;N) is of order

O(N1−2p) +O(Ns−2p) as N → ∞ and

Vfw

s
(Γ) =

2

π
(|Γ| /π)−s

∞∑

k=1

(−1)k−1

(2k − 1)!

(π/2)2k−s

2k − s
.

For 0 < s < 1 we have

Vfw
s
(Γ) =

2

|Γ|

∫ |Γ|/2

0

fw
s (x) dx =

π

2

(|Γ| /2)−s

2− s
1F2

(
1− s/2

2− s/2, 3/2
;− (π/4)

2

)
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expressed in terms of a generalized 1F2(; )-hypergeometric function, which is
analytic at s not an even integer. Hence, Vfw

s
(Γ) is the meromorphic continuation

to the complex plane of the integral 2
|Γ|

∫ |Γ|/2

0 fw
s (x) dx. We observe that for

s = 1/2 we have Vfw
s
(Γ) = 2

√
2/|Γ|S(1), where S(u) is the Fresnel integral

S(u) : =
∫ u

0 sin(x2π/2) dx.

As an application of the theorems of this section, we recover results recently
given in [10] regarding the complete asymptotic expansion of the Euclidean Riesz
s-energy Ls(N) of the N -th roots of unity on the unit circle S1 in the complex
plane C. Indeed, if |z −w| denotes the Euclidean distance between two points ζ
and z in C, then from the identities |z− ζ|2 = 2(1− cosψ) = 4[sin(ψ/2)]2, where
ψ denotes the angle “between” ζ and z on S1, we obtain the following relation
between Euclidean and geodesic Riesz s-kernel:

|z − ζ|−s
= |2 (1− cosψ)|s/2 =

∣∣∣∣2 sin
ψ

2

∣∣∣∣
s

=

∣∣∣∣2 sin
d(ζ, z)

2

∣∣∣∣
s

, ζ, z ∈ S
1.

Thus, for ζ, z ∈ S1 there holds

|z − ζ|−s
= fw

s (d(ζ, z)), w(x) : =
(
sinc

x

2

)−s

, fw
s (x) = x−s sinc−s(x/2), (9)

where the “sinc” function, defined as sinc z = (sin z)/z is an entire function
that is non-zero for |z| < π and hence, has a logarithm g(z) = log sinc z that
is analytic for |z| < π (we choose the branch such that log sinc 0 = 0). The
function sinc−s(z/2) :=exp[−s log sinc(z/2)] is even and analytic on the unit
disc |z| < 2π and thus has a power series representation of the form

sinc−s(z/2) =

∞∑

n=0

αn(s)z
2n, |z| < 2π, s ∈ C.

It can be easily seen that for s > −1 and s 6= 0 the function (sgn s)fw
s (x) ¶ is a

convex and decreasing function. Hence, application of Proposition 1(A) reproves
the well-known fact that the N -th roots of unity and their rotated copies are
the only optimal fw

s -energy configurations for s in the range (−1, 0) ∪ (0,∞).
(We remind the reader that, in contrast to the geodesic case, in the Euclidean
case the N -th roots of unity are optimal for s ≥ −2, s 6= 0, and they are unique
up to rotation for s > −2, see discussion in [10].) The complete asymptotic
expansion of Ls(N) = M(S1, fw

s ;N) can be obtained from Theorem 13 if s is
not an integer, from Theorem 10 if s is a positive integer, and from Theorem 8
if s is a negative integer. ( We leave the details to the reader.) For s ∈ C with

¶The function sgn s denotes the sign of s. It is defined to be −1 if s < 0, 0 if s = 0, and 1 if
s > 0.
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s 6= 0, 1, 3, 5, . . . and q− 2p < Re s < 2+ q, the Euclidean Riesz s-energy for the
N -th roots of unity is given by (cf. [10, Theorem 1.1])

Ls(N) = VsN
2 +

2 ζ(s)

(2π)s
N1+s +

q∑

n=1

αn(s)
2 ζ(s− 2n)

(2π)s−2n
N1+s−2n

+O(N1−2p) +O(Ns−2p)

(10)

as N → ∞, where (cf. [10])

Vs =
2−s Γ((1 − s)/2)√
π Γ(1− s/2)

, αn(s) =
(−1)nB

(s)
2n (s/2)

(2n)!
, n = 0, 1, 2, . . . . (11)

Here, B
(α)
n (x) is the generalized Bernoulli polynomial, where Bn(x) = B

(1)
n (x).

Notice the absence of the term Bp(Γ, f
w
s ;N), which follows from the fact that

odd derivatives of fw
s (x) evaluated at π assume the value 0. (This can be seen,

for example, from Faà di Bruno’s differentiation formula.)

The entirety of positive odd integers s constitutes the class of exceptional cases
regarding the Euclidean Riesz s-energy of the N -th roots of unity. For such s
Theorem 10(ii) provides the asymptotic expansion of Ls(N) = M(S1, fw

s ;N),
which features an N2 logN term as leading term. That is, for s = 2L + 1,
L = 0, 1, 2, . . . , we have from Theorem 10(ii) that (cf. [10, Thm. 1.2])

Ls(N) =
αL(s)

π
N2 logN + Vfw

s
(S1)N2

+

p+L∑

m=0,
m 6=L

αm(s)
2 ζ(s− 2m)

(2π)s−2m N1+s−2m +O(N1−2p),
(12)

where the coefficients αm(s) are given in (11) and

Vfw
s
(S1) =

1

π

{
∞∑

m=0,
m 6=L

αm(s)
π2m+1−s

2m+ 1− s
− αL(s) (log 2− γ)

}
.

We remark that in [10, Thm. 1.2] we also give a computationally more acces-
sible representation of Vfw

s
(S1). The appearance of the N2 logN terms can be

understood on observing that the constant Vs in (10) has its simple poles at
positive odd integers s and when using a limit process as s → K (K a positive
odd integer) in (10), the simple pole at s = K need to be compensated by the
simple pole of the Riemann zeta function in the coefficient of an appropriate
lower-order term. This interplay produces eventually the N2 logN term.
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3. Geodesic Riesz s-energy of equally spaced points

Here, we state theorems concerning the geodesic Riesz s-energy of equally
spaced points on Γ that follow of the results from the preceding section together
with asymptotic properties of generalized harmonic numbers. The proofs are
given in Section 4.Definition 15. The discrete geodesic Riesz s-energy ofN equally spaced points
z1,N , . . . , zN,N on Γ is given by

Ms(Γ;N) : =
∑

j 6=k

[d(zj,N , zk,N )]
−s

= N

N−1∑

j=1

[d(zj,N , zN,N)]
−s
, s ∈ C.

The discrete logarithmic geodesic energy ofN equally spaced points z1,N , . . . , zN,N

on Γ enters in a natural way by taking the limit

Mlog(Γ;N) : = lim
s→0

Ms(Γ;N)−N(N − 1)

s
=

∑

j 6=k

log
1

d(zj,N , zk,N )
. (13)

We are interested in the asymptotics of Ms(Γ;N) for large N for all values of
s in the complex plane and we shall compare them with the related asymptotics
for the Euclidean case given in our recent paper [10]. In the following we use the
notation

Ig
s [µ] : =

∫∫
dµ(x) dµ(y)

[d(x,y)]
s , V g

s (Γ) := inf{Ig
s [µ] : µ ∈ M(Γ)},

Ig
log[µ] : =

∫∫
log

1

d(x,y)
dµ(x) dµ(y), V g

log(Γ) := inf{Ig
log[µ] : µ ∈ M(Γ)}.

3.1. The geodesic logarithmic energyTheorem 16. Let q be a positive integer. For N = 2M + κ, κ = 0, 1

Mlog(Γ;N) = V g
log(Γ)N

2 −N logN +N log
|Γ|
2π

−
q∑

n=1

B2n(κ/2)

(2n− 1) 2n
22nN2−2n +Oq,κ(N

−2q)

as N → ∞. Here, V g
log(Γ) = 1− log(|Γ|/2).

Remark. The parity of N affects the coefficients of the powers N2−2m, m ≥ 1.
The N2-term vanishes for curves Γ with |Γ| = 2e and the N -term vanishes when
|Γ| = 2π. By contrast, the Euclidean logarithmic energy of N equally spaced
points on the unit circle is given by (cf. [10])

Llog(N) = −N logN.
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3.2. The geodesic Riesz s-energy

The next result provides the complete asymptotic formula for all s 6= 1. This
exceptional case, in which a logarithmic term arises, is described in Theorem 19.Theorem 17 (general case). Let q be a positive integer. Then for all s ∈ C with
s 6= 1 and Re s+ 2q ≥ 0 there holds

Ms(Γ;N) = V g
s (Γ)N

2 +
2 ζ(s)

|Γ|s N1+s

− 1

(|Γ| /2)s
q∑

n=1

B2n(κ/2)

(2n)!
(s)2n−12

2nN2−2n +Os,q,κ(N
−2q)

(14)

as N → ∞, where V g
s (Γ) = (|Γ|/2)−s/(1− s) and N = 2M + κ, κ = 0, 1.

In (14) the symbol (s)n denotes the Pochhammer symbol defined as (s)0 = 1
and (s)n+1 = (n+ s)(s)n for integers n ≥ 0.

Remark. It is interesting to compare (14) with (10). It should be noted that in
both the geodesic and the Euclidean case, the respective asymptotics have an
N2-term whose coefficient is the respective energy integral of the limit distri-
bution (which is the normalized arc-length measure) or its appropriate analytic
continuation, and an N1+s-term with the coefficient 2 ζ(s)/|Γ|s. Regarding the
latter, it has been shown in [27] that for s > 1 the dominant term of the asymp-
totics for the (Euclidean) Riesz s-energy of optimal energy N -point systems for
any one-dimensional rectifiable curves in Rp is given by 2 ζ(s)/|Γ|sN1+s. Re-
garding the remaining terms of the asymptotics of Ms(Γ;N) and Ls(N) one
sees that the exponents of the powers of N do not depend on s in the geodesic
case but do depend on s in the Euclidean case.

Remark. In the general case s 6= 1, the asymptotic series expansion (14) is not
convergent, except for s = 0,−1,−2, . . . when the infinite series reduces to a
finite sum. The former follows, for example, from the ratio test and properties
of the Bernoulli numbers and the latter from properties of the Pochhammer
symbol (a)n.

For a negative integer s we have the following result.Proposition 18. Let p be a positive integer. Then

M−p(Γ;N) =
(|Γ| /2)p
p+ 1

N2 +
(|Γ| /2)p
p+ 1

⌊p/2⌋∑

n=1

(
p+ 1

2n

)
B2n(κ/2) 2

2nN2−2n

+
2 |Γ|p
p+ 1

(Bp+1(κ/2)−Bp+1)N
1−p
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for N = 2M + κ, κ = 0, 1. The right-most term above vanishes for even p.

Remark. The corresponding Euclidean Riesz (−m)-energy of N -th roots of unity

[10, Eq. (1.19)] reduces to‖

L−m(N) = V−mN
2 if m = 2, 4, 6, . . . and N is sufficiently large.

Remark. The quantity M−1(S;N) gives the maximum sum of geodesic distances
on the unit circle. Corollary 18 yields

M−1(S;N) =
π

2

(
N2 − κ

)
, N = 2M + κ, κ = 0, 1. (15)

We remark that L. Fejes Tóth [16] conjectured (and proved for N ≤ 6) that the
maximum sum of geodesic distances on the unit sphere S2 in R3 is also given by
the right-hand side in (15). This conjecture was proved by Sperling [30] for even
N ∗∗ and by Larcher [24] for odd N .†† An essential observation is that the sum
of geodesic distances does not change if a given pair of antipodal points (x,x′)
is rotated simultaneously, since d(x,y) + d(x′,y) = π for every y ∈ S2.

In the exceptional case s = 1 a logarithmic term appears.Theorem 19. Let q ≥ 1 be an integer. For N = 2M + κ, κ = 0, 1,

M1(Γ;N) =
2

|Γ|N
2 logN − log 2− γ

|Γ| /2 N2 − 2

|Γ|

q∑

n=1

B2n(κ/2)

2n
22nN2−2n

− θq,N,κ
2

|Γ|
B2q+2(κ/2)

2q + 2
22q+2N−2q,

(16)

where 0 < θq,N,κ ≤ 1 depends on q, N and κ.

Remark. A comparison of the asymptotics (16) and the corresponding result for
the Euclidean Riesz 1-energy of N -th roots of unity (cf. (12) and [10, Thm. 1.2]),

L1(N) =
1

π
N2 logN +

γ − log(π/2)

π
N2

+

q∑

n=1

(−1)nB2n(1/2)

(2n)!

2 ζ(1− 2n)

(2π)
1−2n N2−2n +O(N1−2q),

shows that for |Γ| = 2π the dominant term is the same and the coefficients of
all other powers of N differ. The latter is obvious for the N2-term, and for the

‖We caution the reader that in [10] the condition ’N is sufficiently large’ is missing from formula
(1.19). Direct computation shows that (1.19) is true for N > m. Exact formulas for L2k(N),
k a non-zero integer, have been derived and appear in [9].
∗∗Sperling mentions that his proof can be easily generalized to higher-dimensional spheres.
††Larcher also characterizes all optimal configurations.
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N2−2n-term, follows from the fact that the coefficient in (16) multiplied by π
is rational whereas the coefficient in the asymptotics for L1(N) multiplied by π
is transcendental. Interestingly, except for s = 1, there are no other exceptional
cases with an N2 logN term in the asymptotics of Ms(Γ;N), whereas in the
asymptotics of Ls(N) there appears an N2 logN term whenever s is a positive
integer, cf. [10, Thm. 1.2].

4. Proofs

P r o o f o f P r o p o s i t i o n 1. Part (A). The proof utilizes the “winding num-
ber” argument of L. Fejes Tóth. The key idea is to regroup the terms in the sum
in (2) with respect to its m nearest neighbors (m = 1, . . . , N) and then use
convexity and Jensen’s inequality.

W.l.o.g. we assume that w1, . . . ,wN on Γ are ordered such that wk precedes
wk+1 (denoted wk ≺ wk+1). We identify wj+N with wj for j = 1, . . . , N − 1.
By convexity

N∑

j=1

N∑

k=1
k 6=j

f(d(wj ,wk)) = N

N−1∑

k=1

[
1

N

N∑

j=1

f(d(wj ,wj+k))

]

≥ N

N−1∑

k=1

f
( 1

N

N∑

j=1

d(wj ,wj+k)
)
.

(17)

Let z1,N ≺ · · · ≺ zN,N be N equally spaced (with respect to the metric d) points
on Γ. Set z0,N = zN,N . Assuming further that this metric d also satisfies

1

N

N∑

j=1

d(xj ,xj+k) ≤ d(z0,N , zk,N ), k = 1, . . . , N − 1, (18)

for every ordered N -point configuration x1 ≺ · · · ≺ xN with xj = xj+N , it
follows that

Gf (w1, . . . ,wN) ≥ N
N−1∑

k=1

f(d(z0,N , zk,N )) = Gf (z1,N , . . . , zN,N).

It remains to show that the geodesic distance satisfies (18). From

d(xj ,xk) = min {ℓ(xj ,xk), |Γ| − ℓ(xj ,xk)} if 0 ≤ k − j < N
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and additivity of the distance function ℓ(·, ·) it follows that

N∑

j=1

d(xj ,xj+k) ≤





N∑

j=1

ℓ(xj ,xj+k) =

N∑

j=1

k∑

n=1

ℓ(xj+n−1,xj+n) = |Γ| k,

N∑

j=1

(|Γ| − ℓ(xj ,xj+k)) = |Γ| (N − k)

and therefore

1

N

N∑

j=1

d(xj ,xj+k) ≤ min{|Γ| k/N, |Γ| (N − k) /N} = d(z0,N , zk,N ).

In the case of a strictly convex function f we have equality in (17) if and only
if the points are equally spaced. This shows uniqueness (up to translation along
the simple closed curve Γ) of equally spaced points.

Part (B). Given N = 2M + κ (κ = 0, 1), let ωN denote the antipodal set
with M + κ points placed at the North Pole and M points at the South Pole of
Γ, where both Poles can be any two points on Γ with geodesic distance |Γ|/2.
Thus, the geodesic distance between two points in ωN is either 0 or |Γ|/2. Hence

Gf (ωN ) = 2M (M + κ) f(|Γ| /2) = 1

2
f(|Γ| /2)

(
N2 − κ

)
. (19)

Since adding a constant to Gf does not change the positions of optimal f -
energy points, we may assume w.l.o.g. that f(0) = 0. In fact, we will prove the
equivalent assertion that if f is a non-constant convex and increasing function
with f(0) = 0, then the functionalGf has a maximum at ωN , which is unique (up
to translation along Γ) if f is strictly increasing. (Note that by these assumptions
f(x) ≥ 0.) Indeed, any N -point system XN of points x1, . . . ,xN from Γ satisfies

Gf (XN ) = f(|Γ| /2)
∑

j 6=k

f(d(xj ,xk))

f(|Γ| /2) ≤ f(|Γ| /2)
∑

j 6=k

d(xj ,xk)

|Γ| /2

= f(|Γ| /2)Gid(XN )

|Γ| /2 ≤ f(|Γ| /2)Gid(ωN )

|Γ| /2 =
1

2
f(|Γ| /2)

(
N2 − κ

)
,

where we used that antipodal configurations are optimal for the “sum of distance
function” (f is the identity function id) and relation (19) with f ≡ id. Note
that the first inequality is strict if there is at least one pair (j, k) such that
0 < d(xj ,xk) < |Γ|/2. On the other hand, if XN = ωN , then equality holds
everywhere. �

P r o o f o f P r o p o s i t i o n 2. For Lebesgue integrable functions f the mini-
mum geodesic f -energy V g

f (Γ) is finite, since Ig
f [σΓ] =

∫
f(d(x,y)) dσΓ(x) =
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(2/|Γ|)
∫ |Γ|/2

0 f(ℓ) dℓ 6= ∞ (y ∈ Γ arbitrary). Moreover, for lower semicon-
tinuous functions f , a standard argument (see [23]) shows that the sequence

{Gf (ω
(f)
N )/[N(N − 1)]}N≥2 is monotonically increasing. Since f is Lebesgue in-

tegrable, this sequence is bounded from above by Ig
f [σΓ]; thus, the limit

limN→∞Gf (ω
(f)
N )/N2 exists in this case. If f also satisfies the hypotheses of

Proposition 1(A), then limN→∞Gf (ω
(f)
N )/N2 = Ig

f [σΓ]. (By a standard argu-

ment, one constructs a family of continuous functions Fε(x) with Fε(x) = f(x)
outside of ε-neighborhoods at points of discontinuity of f , f(x) ≥ Fε(x) ev-
erywhere and limε→0 Fε(x) = f(x) wherever f is continuous at x. Then the

lower bound follows from weak-star convergence of ν[ω
(Fε)
N ] as N → ∞ and,

subsequently, letting ε→ 0.) �

We next present some auxiliary results that are needed to prove the main
Theorems 5 and 6. We begin with the following generalized Euler-MacLaurin
summation formula.Proposition 20. Let ω = 0 or ω = 1/2. Let M ≥ 2. Then for any function h
with continuous derivative of order 2p+1 on the interval [1−ω,M+ω] we have

M∑

k=1

h(k) =

∫ b

a

h(x) dx + (1/2− ω) {h(a) + h(b)}

+

p∑

k=1

B2k(ω)

(2k)!

{
h(2k−1)(b)− h(2k−1)(a)

}

+
1

(2p+ 1)!

∫ b

a

C2p+1(x)h
(2p+1)(x) dx, a = 1− ω, b =M + ω,

where Ck(x) is the periodized Bernoulli polynomial Bk(x− ⌊x⌋).

P r o o f. For ω = 0, the above formula is the classical Euler-MacLaurin sum-
mation formula (cf., for example, [3]). For ω = 1/2, iterated application of
integration by parts yields the desired result. �

Let f have a continuous derivative of order 2p + 1 on the interval (0, |Γ|/2].
Then applying Proposition 20 with h(x) = f(x|Γ|/N) and ω = κ/2, where
N = 2M + κ ≥ 2, κ = 0, 1, we obtain

M(Γ, f ;N) = 2N

⌊N/2⌋∑

n=1

f(n |Γ| /N)− (1− κ) f(|Γ| /2)N

= 2N

∫ N/2

1−ω

f(x|Γ|/N) dx + 2

(
1

2
− ω

)
N {f((1− ω)|Γ|/N) + f(|Γ|/2)}
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+ 2N

p∑

k=1

B2k(ω)

(2k)!
{f(x|Γ|/N)}(2k−1)

∣∣∣
N/2

1−ω

+
2N

(2p+ 1)!

∫ N/2

1−ω

C2p+1(x) {f(x|Γ|/N)}(2p+1) (x) dx

− 2

(
1

2
− ω

)
f(|Γ| /2)N.

Regrouping the terms in the last relation and using the fact that B2k+1 =
B2k+1(1/2) = 0 for k = 1, 2, 3, . . . and B1(ω) = ω − 1/2, we derive the exact
representation

M(Γ, f ;N) = N2 2

|Γ|

∫ |Γ|/2

(1−ω)|Γ|/N

f(y) dy −Ap(Γ, f ;N)

+ Bp(Γ, f ;N) +Rp(Γ, f ;N)

(20)

valid for every integer N ≥ 2, where

Ap(Γ, f ;N) : =−2B1(ω)f((1− ω)|Γ|/N)

− 2N

p∑

k=1

B2k(ω)

(2k)!
{f(x|Γ|/N)}(2k−1)

∣∣∣
1−ω

=
2

|Γ|N
2

2p∑

r=1

Br(ω)

r!
(|Γ| /N)

r
f (r−1)((1− ω) |Γ| /N), (21a)

Bp(Γ, f ;N) : =
2

|Γ|N
2

p∑

k=1

B2k(ω)

(2k)!
(|Γ| /N)2k f (2k−1)(|Γ| /2), (21b)

Rp(Γ, f ;N) : = 2N
(|Γ| /N)

2p+1

(2p+ 1)!

∫ N/2

1−ω

C2p+1(x)f
(2p+1)(x |Γ| /N) dx. (21c)

If f is admissible in the sense of Definition 4, then by linearity

M(Γ, f ;N) = M(Γ, Sq;N) +M(Γ, f − Sq;N),

where the term M(Γ, Sq;N) contains the asymptotic expansion of M(Γ, f ;N)
and the term M(Γ, f − Sq;N) is part of the remainder term. The next lemma
provides estimates for the contributions to the remainder term in the asymptotic
expansion of M(Γ, f ;N) as N → ∞.Lemma 21. Let f be admissible in the sense of Definition 4. Then as N → ∞:

N2 2

|Γ|

∫ (1−ω)|Γ|/N

0

(f − Sq)(y) dy = O(N1−δ+sq ),
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Ap(Γ, f − Sq;N) = O(N1−δ+sq ),

Rp(Γ, f − Sq;N) =






O(N1−2p) if 2p 6= δ − Re sq,

O(N1−2p logN) if 2p = δ − Re sq.

The O-term depends on |Γ|, p, sq, and f .

P r o o f. The first relation follows directly from Definition 4(ii.a). The second
estimate follows from Definition 4(ii.b) and (21a); that is, for some positive
constant C

|Ap(Γ, f − Sq;N)| ≤ 2

|Γ|N
2

2p∑

r=1

|Br(ω)|
r!

(|Γ| /N)
r
∣∣∣(f − Sq)

(r−1)((1− ω) |Γ| /N)
∣∣∣

≤ C
2

|Γ|N
2

2p∑

r=1

|Br(ω)|
r!

(|Γ| /N)
r
(1− ω)

δ−Re sq−r+1

× (|Γ| /N)
r+δ−Re sq−r+1

.

The last estimate follows from Definition 4(ii.b), (21c) and the fact that

|C2p+1(x)| ≤ (2p+ 1) |B2p| for all real x and all p = 1, 2, . . . ; (22)

that is, for some positive constant C

|Rp(Γ, f − SQ;N)| ≤ 2N
(|Γ| /N)2p+1

(2p+ 1)!

∫ N/2

1−ω

|C2p+1(x)|
∣∣(f − Sq)

(2p+1)(x
|Γ|
N

)
∣∣ dx

≤ 2CN
B2p

(2p)!
(|Γ| /N)δ−Re sq

∫ N/2

1−ω

xδ−1−2p−Re sq dx.

�

Other functions arising in the asymptotics of M(Γ, f ;N) are defined next.Definition 22. Let ω = 0, 1/2 and p be a positive integer. For s ∈ C, s 6= 1,

ζp(ω, y; s) : =
1

s− 1

2p∑

r=0

Br(ω)

r!
(−1)r(s− 1)r (1− ω)

1−s−r

−
(s)2p+1

(2p+ 1)!

∫ y

1−ω

C2p+1(x)x
−s−1−2p dx,

which we call incomplete zeta function and

Ψp(ω, y) : =− log(1− ω) +

2p∑

r=1

Br(ω)

r
(−1)r (1− ω)

−r −
∫ y

1−ω

C2p+1(x)

x2+2p
dx.
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Ψp(ω, y) = lim
s→1

(ζp(ω, y; s)− 1/(s− 1)),

ζp(ω, y;−n) = −Bn+1

n+ 1
= ζ(−n), n = 0, 1, . . . , 2p,

ζp(ω, y; s)− ζ(s) =
(s)2p+1

(2p+ 1)!

∫ ∞

y

C2p+1(x)x
−s−1−2p dx, Re s+ 2p > 0,

ζ(s) = lim
y→∞

ζp(ω, y; s), Re s+ 2p > 0,

Ψp(ω, y)− γ =

∫ ∞

y

C2p+1(x)x
−2−2p dx,

γ = lim
y→∞

Ψp(ω, y).

P r o o f. The second relation follows from [26, Eq. 2.8(13)], B2k+1(ω) = 0 for
ω = 0, 1/2 and k ≥ 1 and [1, Eq. 23.2.15]. The representations and therefore the
limit relations for ζ(s) and γ follow from Proposition 20. �

P r o o f o f T h e o r e m 5. Let f be admissible in the sense of Definition 4. In
the representation (20) we can write the integral as follows: Set a : =(1−ω)|Γ|/N ,
then

2

|Γ|

∫ |Γ|/2

a

f(y) dy =
2

|Γ|

∫ |Γ|/2

a

Sq(x) dx+
2

|Γ|

∫ |Γ|/2

a

(f − Sq)(x) dx

=
2

|Γ|

q∑

n=0

an

∫ |Γ|/2

a

x−sn dx+
2

|Γ|

∫ |Γ|/2

0

(f − Sq)(x) dx

− 2

|Γ|

∫ a

0

(f − Sq)(x) dx

= Vf (Γ)−
2

|Γ|

q∑

n=0

an
a1−sn

1− sn
− 2

|Γ|

∫ a

0

(f − Sq)(x) dx.

Defining

R̃p(f − Sq;N) : =− 2

|Γ|N
2

∫ (1−ω)|Γ|/N

0

(f − Sq)(x) dx −Ap(Γ, f − Sq;N)

+Rp(Γ, f − Sq;N),

formula (20) becomes (in condensed notation)

M(f ;N) = Vf N
2 − 2

|Γ|N
2

q∑

n=0

an
a1−sn

1− sn
−Ap(Sq;N) + Bp(f ;N)
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+Rp(Sq;N) + R̃p(f − Sq;N)

= Vf N
2 +

q∑

n=0

an

{
2

|Γ|N
2 a

1−sn

sn − 1
−Ap(x

−sn ;N) +Rp(x
−sn ;N)

}

+ Bp(f ;N) + R̃p(f − Sq;N).

Furthermore, using (21a), (21c) and Definition 22, we can write the expression
in curly brackets above as follows:

2

|Γ|N
2 a

1−sn

sn − 1
−Ap(x

−sn ;N) +Rp(x
−sn ;N) =

2

|Γ|N
2 a

1−sn

sn − 1

− 2

|Γ|N
2

2p∑

r=1

Br(ω)

r!
(|Γ| /N)

r {
t−sn

}(r−1)
∣∣∣
t=a

+ 2N
(|Γ| /N)

2p+1

(2p+ 1)!

∫ N/2

1−ω

C2p+1(x)
{
t−sn

}(2p+1)
∣∣∣
t=x|Γ|/N

dx

=
2

|Γ|N
2 (|Γ| /N)

1−sn

{
(1− ω)

1−sn

sn − 1

+

2p∑

r=1

Br(ω)

r!
(−1)r(sn)r−1 (1− ω)

1−sn−r

−
(sn)2p+1

(2p+ 1)!

∫ N/2

1−ω

C2p+1(x)x
−sn−1−2p dx

}

=
2

|Γ|N
2 (|Γ| /N)

1−sn ζp(ω,N/2; sn).

Hence, we arrive at the formula

M(f ;N) = Vf N
2 +

q∑

n=0

an
2 ζp(ω,N/2; sn)

|Γ|sn N1+sn + Bp(f ;N) + R̃p(f − Sq;N).

For Rp(Γ, f ;N) defined by (6) we have

Rp(Γ, f ;N) =

q∑

n=0

an
2 ζp(κ/2, N/2; sn)− 2 ζ(sn)

|Γ|sn N1+sn + R̃p(f − Sq;N). (23)

Furthermore, it follows from Lemma 21 that R̃p(f − Sq;N) = O(N1−δ+sq ) +

O(N1−2p) if 2p 6= δ−Re sq and R̃p(f −Sq;N) = O(N1−δ+sq )+O(N1−2p logN)
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if 2p = δ −Re sq. Finally, using (22) and Proposition 23 we obtain the estimate
∣∣∣∣∣

q∑

n=0

an
ζp(κ/2, N/2, sn)− ζ(sn)

|Γ|sn N1+sn

∣∣∣∣∣

≤ 2 (N/2)1−2p
q∑

n=0

∣∣∣∣an
B2p

(2p)!
(sn)2p

2p+ sn
2p+Re sn

∣∣∣∣ (|Γ| /2)
−Re sn .

Note that, whenever sn = −k for some k = 0, 1, . . . , 2p, then the corresponding
terms on both sides of the estimate above are not present. Also, from Definition
4 it follows that 2p + Re sn > 0 for n = 0, . . . , q − 1 and that either Re sq +
2p > 0 or sq = −2p. In either case the sum on the left-hand side above is of
order O(N1−2p). Hence, we have from (23) that Rp(Γ, f ;N) = O(N1−δ+sq ) +
O(N1−2p) if 2p 6= δ − Re sq and Rp(Γ, f ;N) = O(N1−δ+sq ) + O(N1−2p logN)
if 2p = δ − Re sq. �

P r o o f o f T h e o r e m 6. Proceeding as in the proof of Theorem 5 the remain-
der term now takes the form

Rp(Γ, f ;N) =
2

|Γ|N
2aq′ (Ψp(κ/2, N/2)− γ)

+

q∑

n=0,
n6=q′

an
2 ζp(κ/2, N/2, sn)− 2 ζ(sn)

|Γ|sn N1+sn

−N2 2

|Γ|

∫ (1−ω)|Γ|/N

0

(f − Sq)(y) dy

−Ap(Γ, f − Sq;N) +Rp(Γ, f − Sq;N).

Using Lemma 21, Proposition 23, and the inequality
∣∣∣∣
2

|Γ|N
2aq′ (Ψp(κ/2, N/2)− γ)

∣∣∣∣ ≤ 4
2

|Γ| |aq′B2p| (N/2)1−2p ,

we get the estimate Rp(Γ, f ;N) = O(N1−2p) + O(N1−δ+sq ) if 2p 6= δ − Re sq
and Rp(Γ, f ;N) = O(N1−2p logN) if 2p = δ − Re sq. �

Next, we prove the results related to particular types of kernel functions.

P r o o f o f T h e o r e m 7. The Laplace transform f(x) : =
∫∞

0
e−xt dµ(t) of a

signed measure µ on [0,∞) satisfying
∫∞

0 tm d|µ|(t) <∞ for everym = 0, 1, 2, . . .
has derivatives of all orders on (0,∞). For q a positive integer let Sq(x) be defined
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by Sq(x) : =
∑q

n=0
µn

n! (−x)n. For every 0 ≤ m ≤ q we can write

f (m)(x) = (−1)m
∫ ∞

0

e−xttm dµ(t) = (−1)m
q∑

n=m

µn

(n−m)!
(−x)n−m

+ (f − Sq)
(m)(x), x > 0,

where, using a finite section of the Taylor series expansion of h(x) = e−xt with
integral remainder term, we have that

(f − Sq)
(m)(x) = f (m)(x) − S(m)

q (x)

= (−1)m
∫ ∞

0

{
e−xt −

q−m∑

n=0

(−xt)n
n!

}
tm dµ(t)

=
(−1)q+1

(q −m)!

∫ ∞

0

{∫ x

0

e−ut (x− u)
q−m

du

}
tq+1 dµ(t), x > 0.

For x > 0 we have the following bound:
∣∣∣(f − Sq)

(m)(x)
∣∣∣ ≤ xq+1−m

(q + 1−m)!

∫ ∞

0

tq+1 d|µ|(t), m = 0, 1, . . . , q.

Since S
(q+1)
q (x) = 0 for all x, it is immediate that the last estimate also holds

for m = q + 1. It follows that f is admissible in the sense of Definition 4 with
q = 2p, δ = 1. The result follows from Theorem 5, after observing that

Vf (Γ) =
2

|Γ|

∫ |Γ|/2

0

f(x) dx =
2

|Γ|

∫ |Γ|/2

0

∫ ∞

0

e−xt dµ(t) dx.

�

In the case that f is a completely monotonic function on (0,∞) (that is, µ is a
positive measure), it is possible to improve the estimate for Rp(Γ, f ;N) in (21c).

P r o o f o f T h e o r e m 8. Let f be analytic in a disc with radius |Γ|/2 + ε
(ε > 0) centered at the origin. Then f(z) =

∑∞
n=0 anz

n for |z| < |Γ|/2+ ε and f
is admissible in the sense of Definition 4 for any positive integers p and q = 2p,

where S2p(z) =
∑2p

n=0 anz
n and δ = 1. The asymptotic expansion follows from

Theorem 5 on observing that with sn = −n (n = 0, . . . , 2p), one has

Vf (Γ) =
2

|Γ|

2p∑

n=0

an

∫ |Γ|/2

0

xn dx+
2

|Γ|

∫ |Γ|/2

0

(
f−S2p

)
(x) dx =

2

|Γ|

∫ |Γ|/2

0

f(x) dx.

Moreover, since sq =−2p and δ=1, it follows that Rp(Γ, f ;N)=Op,|Γ|,f (N
1−2p)

as N → ∞. �
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P r o o f o f T h e o r e m 10. Suppose f has a pole of integer orderK ≥ 1 at zero
and is analytic in the annulus 0 < |z| < |Γ|/2 + ε (ε > 0) with series expansion
f(z) =

∑∞
n=−K anz

n. Then f is admissible in the sense of Definition 4 for any

positive integers p and q = 2p with S2p(z) =
∑2p

n=−K anz
n and δ = 1. In the

case (i) Theorem 5 is applied and in the case (ii) Theorem 6 is applied. The
expressions for Vf (Γ) follow from termwise integration in (7) and (8). Since
1 − δ + sq = −2p, the remainder terms are Rp(Γ, f ;N) = Op,|Γ|,f (N

1−2p) as
N → ∞. �

P r o o f o f E x am p l e s 11 a n d 12. If f has an essential singularity at 0 and
is analytic in the annulus 0 < |z| < |Γ|/2 + ε (ε > 0), then for positive integers
p one has f(z) = S2p(z) + F2p(z), where

S2p(z) : =

2p∑

n=−∞

anz
n, F2p(z) : =

∞∑

n=2p+1

anz
n = O(z2p+1) as z → 0.

Clearly, the function f(z) satisfies Item (i) of Definition 4 and both functions
f(z) and S2p(z) satisfy an extended version of item (ii) of Definition 4 suitable
for an infinite series S2p(z). Since termwise integration and differentiation of
S2p(z) are justified by the theory for Laurent series, Theorems 5 and 6 can be
extended for such kernel functions f . In this case all formulas in Theorems 5 and
6 still hold provided the index n starts with −∞. In particular, we note that the

infinite series
∑2p

n=−∞,n6=−1 an ζ(−n) |Γ|
n
N1−n appearing in the asymptotics of

M(Γ, f ;N) converges for every N , since ζ(m) ≤ ζ(2) for all integers m ≥ 2.

Example 11 follows from the extended version of Theorem 6.

To justify Example 12 let λ be a zero of the Bessel function J−1. The extended
version of Theorem 5 with an = Jn(λ) gives that for integers p ≥ 2 and m ≥ 2

M(Γ, f ;N) = Vf (Γ)N
2 + 2

∞∑

n=−2p,
n6=±1

J−n(λ) ζ(n) |Γ|−n
N1+n

+ Bp(Γ, f ;N) +O(N1−2p)

= 2N
∞∑

n=m

J−n(λ) ζ(n)(N/ |Γ|)n + 2
m−1∑

n=2

J−n(λ) ζ(n) |Γ|−nN1+n

+ Vf (Γ)N
2 + |Γ|B2(

κ

2
)f ′(

|Γ|
2
) + 2

2p∑

k=2

Jk(λ) ζ(−k) |Γ|kN1−k

+

p∑

n=2

2B2n(κ/2)

(2n)! |Γ|1−2n f
(2n−1)(|Γ| /2)N2−2n +O(N1−2p),
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where

Vf (Γ) =
2

|Γ|

∞∑

n=−∞,
n6=±1

Jn(λ)
(|Γ| /2)1+n

1 + n
.

In the above we used relation (5). Observe that ζ(−k) = 0 for k = 2, 4, 6, . . . . �

P r o o f o f T h e o r e m 13. The asymptotics and the remainder estimates fol-
low from Theorem 5 on observing that fw

s (x) has derivatives of all orders in
(0, |Γ|/2 + ε), Sq(x) =

∑q
n=0 anx

n−s, and δ = 1. The constraints on sq = s − q
imply that the positive integers q, p and s ∈ C satisfy q − 2p < Re s < 2 + q or
s = q − 2p. For 0 < s < 1 we have (see (7))

Vfw
s
(Γ) =

2

|Γ|

∫ |Γ|/2

0

fw
s (x) dx =

2

|Γ|

∞∑

n=0

an
(|Γ| /2)1+n−s

1 + n− s

and the right-hand side as a function of s is analytic in C except for poles at
s = 1 + n (n = 0, 1, 2, . . . ) provided an 6= 0. �

Using the same method of proof as in [21] for the Hurwitz zeta function,
we obtain the following two propositions, which will be used in the proofs of
Theorems 16 and 17.Proposition 24. Let q ≥ 1 and α = 1/2 or α = 1. For x > 0 and s ∈ C with
s 6= 1 and Re s + 2q + 1 > 0 the Hurwitz zeta function defined by the series
ζ(s, a) : =

∑∞
k=0(k + a)−s for Re s > 1 and a 6= 0,−1,−2, . . . has the following

representation

ζ(s, x+ α) =
x1−s

s− 1
−B1(α)x

−s +

q∑

n=1

B2n(α)

(2n)!
(s)2n−1x

1−s−2n + ρq(s, x, α).

The remainder term is given by

ρq(s, x, α) =
1

2πi

∫ γq+i∞

γq−i∞

Γ(−w) Γ(s+ w)

Γ(s)
ζ(s+w,α)xw dw = Os,q(x

−1−Re s−2q)

as N → ∞, where −1− Re s− 2q < γq < −Re s− 2q.

By the well-known relation log[Γ(x+α)/
√
2π] = ∂

∂s ζ(s, x+α)|s=0 one obtains
the next result from Proposition 24.Proposition 25. Let q ≥ 1 and α = 1/2 or α = 1. For x > 0

log
Γ(x+ α)√

2π
= (x+ α− 1/2) log x− x+

q∑

n=1

B2n(α)

(2n− 1) 2n
x1−2n + ρq(x, α).
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The remainder term is given by

ρq(x, α) =
1

2πi

∫ γq+i∞

γq−i∞

Γ(−w) Γ(w) ζ(w,α)xw dw = Oq(x
−1−2q)

as N → ∞, where −1− 2q < γq < −2q.

In the proofs of Theorems 16 and 17 we make use of the observation that for
N = 2M + κ with M ≥ 1 and κ = 0, 1 formula (4) simplifies to

Ms(Γ;N) =
2

|Γ|sN
1+s

⌊N/2⌋∑

k=1

1

ks
− 1− κ

(|Γ| /2)sN, (24)

which involves the generalized harmonic numbers H
(s)
n : =

∑n
k=1 k

−s.

P r o o f o f T h e o r e m 16. Differentiating (24) with respect to s and taking
the limit s→ 0 yields

Mlog(Γ;N) = N (N − κ) log
N

|Γ| − 2N log Γ(⌊N/2⌋+ 1)− (1− κ)N log(N/2).

The asymptotic expansion of the theorem now follows by applying Proposition 25
with x = N/2, α = (2−κ)/2. Note that B2n(α) = B2n(1−κ/2) = B2n(κ/2). �

P r o o f o f T h e o r e m 17. Starting with Theorem 5, we obtain an asymptotic
formula of the form (14) but with error estimate O(N1−2q).‡‡ On the other hand,
substitution of the identity

∑n
k=1 k

−s = ζ(s) − ζ(s, n + 1) into (24) gives the
exact formula

Ms(Γ;N) =
2 ζ(s)

|Γ|s N1+s − 2

|Γ|sN
1+s ζ(s, ⌊N/2⌋+ 1)− 1− κ

(|Γ| /2)sN.

Then the asymptotic relation (14) with error term of order O(N−2q) follows by
applying Proposition 24 with x = N/2, α = (2− κ)/2. This expansion holds for
s with Re s+ 2q + 1 > 0, q ≥ 1. �

P r o o f o f P r o p o s i t i o n 18. Using Jacob Bernoulli’s celebrated summation
formula ([1, Eq. (23.1.4)]) 1p + 2p + · · ·+ np = (Bp+1(n+ 1)−Bp+1)/(p+ 1) in
(24), one gets

M−p(Γ;N) = 2 |Γ|p Bp+1((N + κ)/2)−Bp+1

p+ 1
N1−p + (1− κ) (|Γ| /2)pN.

Use of the addition theorem for Bernoulli polynomials (see [1, Eq. (23.1.7)])
yields the result. �

‡‡If Re s = −2q and s 6= 2q, then a factor logN must be included.
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P r o o f o f T h e o r e m 19. An asymptotic formula with error boundO(N1−2p)
follows from Theorem 6; see also the second remark after Theorem 6. However,
by substituting into (24) with ω = κ/2 (κ = 0, 1) the following relation

Hn =

n∑

k=1

1

k
= log(n+ ω) + γ − B1(ω)

n+ ω
−

q∑

k=1

B2k(ω)/(2k)

(n+ ω)
2k

± θq,N,κ
B2q+2(ω)/(2q + 2)

(n+ ω)2q+2 ,

(25)

where 0 < θq,N,κ < 1, and collecting terms we get the asymptotic formula (16)
with improved error estimate. The plus sign in (25) is taken if ω = 1/2 and the
negative sign corresponds to ω = 0. We remark that the representation (25) is
given in [12] if ω = 1/2 and can be obtained as an application of the Euler-
MacLaurin summation formula if ω = 0 (see, for example, [3]). We leave the
details to the reader. �

Acknowledgment. We are grateful to Prof. A. Sidi for pointing out that
[10, Eqs. (1.19) and (1.20)] hold only for N sufficiently large. Sidi’s article [29],
which was motivated, in part, by our article [10], provides some alternative tools
that can be used for deriving asymptotic expansions for certain f -energies of
equally spaced points.
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