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DISCREPANCY BETWEEN QMC AND RQMC, II

Shu Tezuka

ABSTRACT. There are two types of randomization for (t,m, d)-nets: Owen
scrambling and random digital shift. In the previous paper [Uniform Distribution
Theory, 2 (2007), 93-105], we introduced a class of functions for which any Sobol’
points have zero integration error, whereas Owen scrambling of Sobol’ points has
the same variance of integration error as that of simple Monte Carlo methods.

In this paper, by using the same functions as the paper mentioned above, we con-
struct an example of functions for which any Sobol’ points have zero integration
error, whereas not only Owen scrambling but also random digital shift of Sobol’
points have variance of integration error no smaller than that of simple Monte
Carlo methods.

Communicated by Oto Strauch

1. Introduction

In this paper, we study the difference between the integration errors of quasi-
Monte Carlo (QMC) and randomized quasi-Monte Carlo (RQMC). In QMC,
(t,m, d)-nets and (t, d)-sequences are one of the most popular methods for pro-
ducing low-discrepancy points [4, 5, 9, 10], and among them it is widely accepted
that Sobol’ sequences with judiciously chosen direction numbers perform best
for real practical applications (see, e.g., Jäckel [2]). As for RQMC [3], there are
two major techniques for randomization of (t,m, d)-nets: Owen scrambling [6, 7]
and random digital shift. Historically, random shift was considered by Cranley
and Patterson [1] for good lattice rules. Random digital shift is an analogue
of random shift for (t,m, d)-nets so as to preserve the net property with the
same t-value.

In the previous paper [12], we introduced a class of functions for which
Sobol’ points with any direction numbers have zero integration error, whereas
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Owen scrambling of Sobol’ points has the same variance of integration error as
that of simple Monte Carlo methods. This result implies that the error of nu-
merical integration based on Sobol’ points with randomization can be totally
different from the one without it. The focus of the present paper is on the
other type of randomization, i.e., random digital shift. The organization of the
paper is as follows: Section 2 summarizes necessary definitions and notations,
and reminds us of a class of functions introduced in [12]. In Section 3, we first
give the variance of integration error of random digital shift for a function in
L2[0, 1]

d in general, then derive a much simpler formula of the variance for the
class of functions introduced in Section 2. Section 4 presents our main result,
that is to say, an example of functions for which any Sobol’ points have zero
integration error, whereas not only Owen scrambling but also random digital
shift of Sobol’ points have variance of integration error no smaller than that
of simple Monte Carlo methods. In the last section, we discuss the significance
of this result and future research directions.

2. Definitions and notations

First, we recall the definition of Walsh functions:

wal0(x) = 1 for x ∈ [0, 1),

and for a nonnegative integer m ≥ 1,

walk(x) = (−1)k
(1)x(1)+k(2)x(2)+ ··· = (−1)(K,X) for x ∈ [0, 1),

where k = k(1) + k(2)2 + · · · , and x = x(1)2−1 + x(2)2−2 + · · · in their canonical
base 2 representations, and K = (k(1), k(2), . . .) and X = (x(1), x(2), . . .) are the
binary vector representations of k and x, respectively. (K,X) denotes the inner
product over GF(2) of K and X. The Rademacher functions are the subclass
of the Walsh functions for which k is a power of 2.

Let tℓ be an integer with 2ℓ−1 ≤ tℓ < 2ℓ for ℓ = 1, 2, . . . , and denote its

binary representation by tℓ = t
(1)
ℓ + t

(2)
ℓ 2+ · · ·+ t

(ℓ)
ℓ 2ℓ−1 with t

(ℓ)
ℓ = 1. We define

a nonsingular lower triangular infinite matrix T, where its (ℓ, j)-element for j ≤ ℓ

is equal to t
(j)
ℓ . Hereafter, we denote

r
(T )
0 (x) = wal0(x), for x ∈ [0, 1),

and for ℓ = 1, 2, . . . ,
r
(T )
ℓ (x) = waltℓ(x). (1)
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Note that the matrix T specifies uniquely a subclass of the Walsh functions, and
that the identity matrix I corresponds to the Rademacher functions.

From now on, we fix d matrices T1, . . . , Td which specify d subclasses of the
Walsh functions. In the previous paper [12], we considered linear combination of
∏

i∈u r
(Ti)
ℓ (xi), where u ⊆ {1, . . . , d}. In this paper, by using the same functions

we define a class Fm of functions in d dimensions as follows:Definition 1. For m ≥ 1 and d ≥ 1, we define an L2 function on [0, 1]d by

f(x1, . . . , xd) = c0 +

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ... , d}

cu,ℓ
∏

i∈u

r
(Ti)
ℓ (xi),

where c0 is constant and the coefficients cu,ℓ satisfy the following condition:

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ... , d}

cu,ℓ = 0. (2)

In this paper, we consider a class of (t, d)-sequences in base b = 2 whose
generator matrices are written as (Ti)

−1Ui, i = 1, . . . , d, where Ti, i = 1, . . . , d,
are matrices specifying subclasses of the Walsh functions, and Ui, i = 1, . . . , d,
are arbitrary nonsingular upper-triangular matrices. Hereafter, we denote this
class by Sd. By definition [10], generalized Sobol’ sequences with lower triangu-
lar matrices (Ti)

−1, i = 1, . . . , d, are a subset of Sd, where Ui, i = 1, . . . , d, are
constructed based on irreducible polynomials with the so-called direction num-
bers. Note that Sobol’ sequences [8] are the special case of generalized Sobol’
sequences with Ti = I, i = 1, . . . , d.

3. Integration error for random digital shift of Sobol’

points

First, we give the variance of integration error with respect to random digital
shift for any function f(x) in L2[0, 1]

d. Denote d-dimensional integral by

I(f) =

∫

[0,1]d
f(x)dx

and an equal weight cubature by

QN (f) = N−1
N−1
∑

n=0

f(xn),
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where xn, n = 0, 1, . . . , N − 1 are d-dimensional cubature points. Then the inte-
gration error is given by

Er(f) =
∣

∣I(f)− QN (f)
∣

∣.

Hereafter, we denote d-dimensional Walsh functions by

walk(x) =

d
∏

i=1

walki
(xi),

where k = (k1, . . . , kd) and x = (x1, . . . , xd).Lemma 1. Denote the d-dimensional Walsh series expansion of an L2 function

on [0, 1]d by

f(x) =
∑

k∈Nd

wkwalk(x).

Then the variance of integration error with respect to random digital shift for a

function f(x) in L2[0, 1]
d is given by

V
(

ErN (f)
)

=
∑

k∈Nd\{0}

w2
k Q2

N (walk).

P r o o f. Note that I(f) = w0. Thus, the integration error is written as

ErN (f) =
∣

∣ I(f)− QN (f)
∣

∣ =

∣

∣

∣

∣

∣

∣

∑

k∈Nd\{0}

wk QN (walk)

∣

∣

∣

∣

∣

∣

.

Since QN (f) with respect to random digital shift is an unbiased estimator to
I(f), the variance of ErN (f) with respect to random digital shift is given by

V
(

ErN (f)
)

= E
(

ErN (f)2
)

= E











∑

k∈Nd\{0}

wk QN (walk; s)





2





,

where

QN (walk; s) =
1

N

N−1
∑

n=0

walk(xn ⊕ s),

and the expectation is taken over all s which are uniformly distributed in [0, 1)d.
Here, the operation ⊕ means the bit-wise exclusive-or. Since

walk(x⊕ s) = walk(x)walk(s),
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we have

V
(

ErN (f)
)

= E





∑

k,h∈Nd\{0}

wkwhwalk(s)walh(s) QN (walk) QN (walh)





=
∑

k,h∈Nd\{0}

wkwh E
(

walk(s)walh(s)
)

QN (walk) QN (walh)

=
∑

k∈Nd\{0}

w2
k Q2

N (walk).

Note that E(walk(s)walh(s)) = 1 if k = h; otherwise 0. The proof is complete.
�

We prove our main result.Theorem 1. If the first N points of a generalized Sobol’ sequence with any

direction numbers are used for the cubature QN , then for any function f in Fm,

the variance of integration error with respect to random digital shift is given by

V
(

ErN (f)
)

=

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ..., d}

c2u,ℓ ,

where N = 2m.

P r o o f. The equation (1) implies that
∏

i∈u r
(Ti)
ℓ (xi) is equivalent to walk(x)

such that

r
(Ti)
ℓ (xi) =

{

walki
(xi) if i ∈ u,

wal0(xi) = 1, otherwise,

where we denote the (ℓ, j)-element of Ti by t
(j)
i,ℓ and ki= t

(1)
i,ℓ+t

(2)
i,ℓ 2+ · · ·+t

(ℓ)
i,ℓ2

ℓ−1.

From Lemma 4 of [11] and the fact that the first point of generalized Sobol’
sequences is (0, . . . , 0), we have

QN

(

∏

i∈u

r
(Ti)
ℓ (xi)

)

= 1 (3)

for ℓ > m. Hence, Lemma 1 and Definition 1 give us that

V
(

ErN (f)
)

=

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ...,d}

c2u,ℓ ,

since we have different Walsh functions
∏

i∈u r
(Ti)
ℓ (xi) for different (u, ℓ). �

The following result is concerned with the integrations using Sobol’ points
with and without Owen scrambling.
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SHU TEZUKATheorem 2. Let N = 2m. For any function f in Fm, the integration error using

the first N points of a generalized Sobol’ sequence with any direction numbers is

zero, and the variance of integration error with respect to Owen scrambling of

the first N points of a generalized Sobol’ sequence with any direction numbers is

V
(

ErN (f)
)

=
1

N

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ...,d}

c2u,ℓ .

P r o o f. From Definition 1, we have

ErN (f) =

∣

∣

∣

∣

∣

∣

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ...,d}

cu,ℓ QN

(

∏

i∈u

r
(Ti)
ℓ (xi)

)

∣

∣

∣

∣

∣

∣

.

If we use the first N points of a generalized Sobol’ sequence with any direction
numbers, we obtain ErN (f) = 0 because of the condition (2) of Definition 1 and
the equation (3).

For the second part, first we should notice that if ℓ > m, then the gain
coefficient Γu,κ = 1 for the first N = 2m points of a generalized Sobol’ sequence,
where κ = (ℓ− 1, . . . , ℓ− 1). Therefore, from Lemmas 2 and 3 of [12], we obtain
the variance of integration error with respect to Owen scrambling as

V
(

ErN (f)
)

=
1

N

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ..., d}

Γu,κσ
2
u,κ

=
1

N

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ...,d}

c2u,ℓ ,

where σ2
u,κ indicates the variance of a function cu,ℓ

∏

i∈u r
(Ti)
ℓ (xi). �

Note that we have the variance of integration error,

V
(

ErN (f)
)

=
1

N

∞
∑

ℓ=m+1

∑

∅6=u⊆{1, ...,d}

c2u,ℓ ,

for simple Monte Carlo methods with N samples. Therefore, we can conclude
that for any function f in Fm, any Sobol’ points have zero integration error,
whereas not only Owen scrambling but also random digital shift of Sobol’ points
have variance of integration error no smaller than that of simple Monte Carlo
methods.
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4. Discussion

Originally, RQMC was introduced to give a more realistic estimate of the
integration error, because the Koksma-Hlawka bound for QMC provides loose
error estimates for many practical applications. However, this paper as well as
the previous paper [12] showed that the consistency is not always guaranteed
between QMC errors and RQMC errors. As pointed out in [12], the functions
Fm considered in this paper are artificial, but very simple. For example, in
two dimensions, they contain chess-board functions and their linear combina-
tions. Even for such simple functions, the integration errors of QMC and RQMC
(not only Owen scrambling but also random digital shift) are shown to be totally
different. It is reasonable to think that there exist some practical applications in
which similar results can happen.A
knowledgments. The author thanks the anonymous referee for valuable
suggestions.
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