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SUM OF DIVISORS OF FIBONACCI NUMBERS

Sergei V. Konyagin — Florian Luca — Pantelimon Stănică

ABSTRACT. In this note, we prove an estimate on the count of Fibonacci num-
bers whose sum of divisors is also a Fibonacci number. As a corollary, we find
that the series of reciprocals of indices of such Fibonacci numbers is convergent.

Communicated by Jean-Paul Allouche

1. Introduction

For a positive integer n, we write σ(n) for the sum of divisors function of
n. Recall that a number n is called multiply perfect if n | σ(n). If σ(n) = 2n,
then n is called perfect. Let (Fn)n≥1 be the sequence of Fibonacci numbers.
In [4], it was shown that there are only finitely many multiply perfect Fibonacci
numbers, and in [5], it was shown that no Fibonacci number is perfect. For
a positive integer n, the value ϕ(n) of the Euler function is defined to be the
number of natural numbers less than or equal to n and coprime to n. In [6], it
was shown that if ϕ(Fn) = Fm then n ∈ {1, 2, 3, 4}.

In [7], Fibonacci numbers Fn with the property that the sum of their aliquot
parts is also a Fibonacci number were investigated. This reduces to studying
those positive integers n such that σ(Fn) = Fn + Fm holds with some posi-
tive integers m. In [7], it was shown that such positive integers form a set of
asymptotic density zero.

Here, we search for Fibonacci numbers Fn such that σ(Fn) is a Fibonacci
number. We put

A = {n : σ(Fn) = Fm for some positive integer m}.
For a positive real number x and a subset B of the positive integers, we write
B(x) = B ∩ [1, x]. In this note, we prove the following result.
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Theorem 1. There are constants c0 and C0 such that inequality

#A(x) <
C0x log log log x

(log x)2

holds for all x > c0.

By partial summation, Theorem 1 immediately implies that

Corollary 1.1. The series
∑

n∈A

1
n

is convergent.

We remark that it is quite possible that A \ {1, 2, 3} is empty, as computer
searches for n ≤ 5 · 103 failed to find any other element of A. The presumably
larger set B = {n : σ(n) = Fm for some positive integer m} contains the inte-
gers 1, 2, 7, 9, 66, 70, 94, 115, 119, 2479. It is likely that B is infinite, but this is
probably hard to prove.

Throughout this paper, we use the Vinogradov symbolsÀ,¿ and the Landau
symbols O, ³ and o with their usual meanings. We recall that A ¿ B, B À A
and A = O(B) are all equivalent and mean that |A| < cB holds with some
constant c, while A ³ B means that both A ¿ B and B ¿ A hold. For
a positive real number x we write log x for the maximum between 1 and the
natural logarithm of x. We use p, q, P and Q to denote prime numbers.
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in part by Grants 08-01-00208 from the Russian Foundation for Basic Research
and NSh-3233.2008.1 from the Program Supporting Leading Scientific Schools,
F. L. was supported in part by projects PAPIIT 100508, SEP-CONACyT 79685,
and P.S. was supported in part by the NPS RIP grant.

2. The Proof

Let x be a large positive real number and assume that n ≤ x. We also assume
that n > x/(log x)2, since there are at most x/(log x)2 positive integers failing
this property.
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2.1. The size of m in terms of n

It is known that σ(n)/n ¿ log log n (see Theorem 323 in Chapter 18 of [3]).
Let γ = (1 +

√
5)/2 be the golden section. Since Fn ³ γn, we get that

γm−n ¿ Fm

Fn
=

σ(Fn)
Fn

¿ log log Fn ¿ log n ≤ log x,

therefore
m− n < c1 log log x

holds for all sufficiently large values of x, where we can take c1 = 3. From now
on, we write m = n + k, where k < K = bc1 log log xc.
2.2. Discarding smooth integers

Let P (n) be the largest prime factor of n. Let

y = exp
(

log x log log log x

3 log log x

)
.

Let
A1(x) = {n ≤ x : P (n) ≤ y}. (1)

The elements of the set A1(x) are refereed to as y-smooth numbers. By known
results from the distribution of smooth numbers (see, for example, Chapter III.5
from [8]),

#A1(x) ≤ x exp (−(1 + o(1))u log u) ,

where u = log x/ log y. In our case, we have u = 3 log log x/ log log log x, there-
fore u log u = 3(1 + o(1)) log log x, leading to

#A1(x) ≤ x

(log x)3+o(1)
<

x

(log x)2
, (2)

once x is sufficiently large.

2.3. The order of apparition of σ(FP (n))

For every positive integer n we write z(n) for the order of apparition of n in
the Fibonacci sequence which is defined as the smallest positive integer u such
that n | Fu. It is known [2] that if n | Ft, then z(n) | t, and that z(n) À log n.

Let n ≤ x be not in A1(x). Let p = P (n) be its largest prime factor. Then
Fp | Fn. We now show that Fp and Fn/Fp are coprime. It is known [1, Prop.
2.1] that

gcd
(

Fp,
Fn

Fp

) ∣∣∣ n

p
.

If the greatest common divisor appearing above were not 1, then there would
exist a prime Q | Fp such that Q | n/p. However, for large y (hence, for
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large x), Q ≡ ±1 (mod p), therefore Q ≥ 2p − 1 > p, and so it cannot divide
n/p which is a p-smooth number. Thus, Fp and Fn/Fp are coprime, and by
the multiplicative property of σ we get that σ(Fp) | σ(Fn). Hence, σ(Fp) | Fm,
leading to z(σ(Fp)) | m.

Fix p and k = m − n. Then p | n and z(σ(Fp)) | n + k. Further, note that
p cannot divide z(σ(Fp)), for if this were the case, then the above congruences
would lead to p | k, which is impossible for large x since 0 < k ≤ K < y < p.
Thus, we can apply the Chinese Remainder Lemma and conclude that n is in a
certain arithmetic progression modulo pz(σ(Fp)). Let nk,p be the least positive
term of this progression, and let

Ak,p(x) = {nk,p + pz(σ(Fp))λ : λ > 0} ∩ [1, x].

It is clear that #Ak,p(x) ≤ bx/pz(σ(Fp))c ≤ x/pz(σ(Fp)), therefore if we write

A2(x) =
⋃

0<k≤K
y≤p≤x

Ak,p(x), (3)

then we have the bound

#A2(x) ≤
∑

0<k≤K

∑

y≤p≤x

x

pz(σ(Fp))
¿ xK

∑

y≤p

1
p2
¿ x log log x

y
, (4)

where in the above estimate we used the fact that

z(σ(Fp)) À log(σ(Fp)) ≥ log(Fp) À p.

We put
A3(x) = {nk,p : k ∈ [1,K] and p ∈ [y, x]} (5)

and study A3(x). Let L1 = (log x)2, L = (log x)/2 put z1 = x/L1, z = x/L, and
write

A3(x) = A4(x) ∪ A5(x) ∪ A6(x),

where

A4(x) = A3(x) ∩ {n ≤ x : P (n) < z1},
A5(x) = A3(x) ∩ {n ≤ x : z1 ≤ P (n) < z},
A6(x) = A3(x) ∩ {n ≤ x : z ≤ P (n)}.

Since elements of A4(x) are uniquely determined by their largest prime factor
(at most z1) and k ∈ [1, K], we get that

#A4(x) ≤ Kπ(z1) ≤ x(log log x)2

(log x)3
(6)
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once x is sufficiently large. We will show that

#A5(x) ¿ x log log log x

(log x)2
(7)

and that A6(x) is empty for large values of x which, together with estimates (2),
(4) and (6), will complete the proof of the theorem.

2.4. The end of the proof

From now on until the end of the proof, n is a positive integer inA5(x)∪A6(x).
Then n = pa, where a ≤ L1. Thus, Fa | Fn. Put A = Fn/Fa and note that
every prime factor P of A has the property that p | z(P ). In what follows, we
will estimate σ(A)/A. First of all

σ(A)
A

≤ A

ϕ(A)
=

∏

P |A

(
1 +

1
P − 1

)
≤

∏

d|a

∏

z(P )=pd

(
1 +

1
P − 1

)
. (8)

For each fixed d | a, we have

∏

z(P )=pd

(
1 +

1
P − 1

)
≤ exp


 ∑

z(P )=pd

1
P − 1


 .

It is known (see, for example, [7]), that for each fixed positive integer t we have
∑

z(P )=t

1
P − 1

¿ log log t

ϕ(t)
.

Hence,
∏

z(P )=pd

(
1 +

1
P − 1

)
≤ exp

(
O

(
log log(pd)

pϕ(d)

))
= exp

(
O

(
log log x

pϕ(d)

))
. (9)

Thus, multiplying estimates (9) over all the divisors d of a and using (8), we get

1 ≤ σ(A)
A

≤ exp


O


 log log x

p

∑

d|a

1
ϕ(d)





 < exp

(
(log log x)2

p

)

for large x, where we used the fact that
∑

d|a

1
ϕ(d)

¿ log log a
∑

d|a

1
d
≤ σ(a) log log L1

a
¿ (log log L1)2 = o(log log x)

as x →∞. Hence,

0 <
σ(A)

A
− 1 < exp

(
(log log x)2

p

)
− 1 ≤ 2(log log x)2

p
≤ 2(log log x)2

z1
, (10)
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where in the last inequality we used the fact that

(log log x)2

p
≤ (log log x)2

z1
= o(1)

as x → ∞ together with the fact that the inequality et − 1 < 2t holds for all
sufficiently small positive values of t.

We will use that σ(Fn)/Fn is close to σ(Fa)/Fa since

σ(Fa)
Fa

<
σ(Fn)

Fn
≤ σ(Fa)

Fa

σ(A)
A

. (11)

In particular,
σ(Fn)

Fn
¿ σ(Fa)

Fa
.

Therefore,

k = m− n ¿ log
(

σ(Fn)
Fn

)
¿ log

(
σ(Fa)

Fa

)
¿ log log a ¿ log log log x.

Now we are ready to estimate #A5(x):

#A5(x) ¿ π(L) log log log x.

This completes the proof of (7).
We now turn to the study of A6(x). We have to show that A6(x) = ∅. Assume

that n ∈ A6(x). By (11),

σ(A)
A

− 1 ≥ Fm

Aσ(Fa)
− 1 =

FmFa

Fnσ(Fa)
− 1.

Writing Ft = (γt− δt)/(γ− δ), where δ = (1−√5)/2 = −1/γ, we get easily that

FmFa

Fnσ(Fa)
− 1 =

γm−nFa − σ(Fa)
σ(Fa)

+ O
(
γ−2n

)
. (12)

Since γ is quadratic irrational, it follows that the inequality

|Uγ − V | > c3

U

holds for all positive integers U and V with some positive constant c3. Since
γm−n = Fm−nγ + Fm−n−1, it follows that

|γm−nFa − σ(Fa)| = |(Fm−nFa)γ − (σ(Fa)− FaFm−n+1)|
À 1

Fm−nFa
À 1

γm−n+a
À 1

γ2L
. (13)
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Since n > x/(log x)2, it follows from estimates (12) and (13) that the lower
bound

σ(A)
A

− 1 >
1

γ4L
(14)

holds for large x. Combining estimates (10) and (14), we get
x

(log x)2
≤ 2(log log x)2γ4L = 2(log log x)2x2 log γ .

which is impossible for large x because 2 log γ < 1. This completes the proof of
the fact that A6(x) is empty for large x.

3. Further Remarks

In this note, we proved that for almost all positive integers n, σ(Fn) is not
a Fibonacci number, and by the result from [7] the same is true for σ(Fn) −
Fn. Recall that the Zeckendorf decomposition of the positive integer n is its
representation

n = Fm1 + · · ·+ Fmt ,

where 0 < mt < · · · < m1 and mi+1−mi ≥ 2 for all i = 1, . . . , t− 1. It is known
[9] that such a representation always exists and up to identifying F2 with F1, it
is also unique. Let `(n) = t be the length of the Zeckendorf decomposition of
n. We conjecture that `(σ(Fn)) tends to infinity with n on a set of asymptotic
density 1 and we would like to leave this question for the reader. Note that our
main result shows that `(σ(Fn)) ≥ 2 holds for almost all n.
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