
Reductive Transamination of Pyridinium Salts to N‑Aryl Piperidines
Zhenyu Chen, Geyang Song, Leiming Qi, Ramachandran Gunasekar, Christophe Aïssa, Craig Robertson,
Alexander Steiner, Dong Xue, and Jianliang Xiao*

Cite This: https://doi.org/10.1021/acs.joc.4c00493 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Saturated N-heterocycles are found in numerous bioactive natural
products and are prevalent in pharmaceuticals and agrochemicals. While there are
many methods for their synthesis, each has its limitations, such as scope and
functional group tolerance. Herein, we describe a rhodium-catalyzed transfer
hydrogenation of pyridinium salts to access N-(hetero)aryl piperidines. The
reaction proceeds via a reductive transamination process, involving the initial
formation of a dihydropyridine intermediate via reduction of the pyridinium ion with HCOOH, which is intercepted by water and
then hydrolyzed. Subsequent reductive amination with an exogenous (hetero)aryl amine affords an N-(hetero)aryl piperidine. This
reductive transamination method thus allows for access of N-(hetero)aryl piperidines from readily available pyridine derivatives,
expanding the toolbox of dearomatization and skeletal editing.

■ INTRODUCTION
Saturated nitrogen heterocycles, like piperidines, are significant
structural motifs in natural products and pharmaceuticals.1 In
fact, around 60% of the US Food and Drug Administration
(FDA)-approved drugs contain at least one N-heterocyclic
structural unit, of which piperidines are the most frequently
seen ring systems.1c The N-arylated piperidines are also
attractive structures due to their prevalence as scaffolds in
approved and potential drug molecules (Figure 1a).2 The most
versatile methods to access such compounds are the palladium-
catalyzed Buchwald−Hartwig3 and copper-mediated Ull-
mann−Goldberg C−N coupling reactions.4 Although well-
developed and widely used, these amination methods may
encounter some difficulties with less-reactive electron-rich aryl
chlorides,4e,5 heteroaryl substrates,6 and the use of strong
bases,7 which could render the reaction incompatible with
functional groups (Figure 1b). Base-promoted nucleophilic
aromatic substitution (SNAr) reactions provide another
popular approach to N-aryl piperidines.8 However, the
approach is hampered by the necessity for highly electron-
deficient aryl halides. More recently, examples of aromatic C−
H amination with aliphatic amines have been reported.1f,9

Alternatively, N-aryl piperidines can be accessed via the
reaction of aryl amines with 1,5-difunctionalized compounds
via SN2 substitution, reductive amination, or “borrowing
hydrogen” strategies (Figure 1b).6b,10 A notable recent
example is from Merck researchers, who devised a novel
reductive amination/aza-Michael cyclization strategy that
enables the synthesis of challenging N-(hetero)aryl piperidines
from 2-methylene-5-oxohexanoates (Figure 1b).6b However,
1,5-difunctionalized substrates with additional functionalities
in the chain are limited in commercial availability or
challenging to prepare in general.11

The importance of N-aryl piperidines and the problems in
accessing them prompted us to search for an alternative
method for their preparation. We recently reported a new
catalytic approach to produce chiral piperidines via asymmetric
reductive transamination (ART) of pyridinium salts with a
chiral aliphatic amine.12 Building on this work, we herein
present a reductive transamination synthesis of functionalized
N-aryl piperidines from easily available pyridinium salts,
including particularly those that may be difficult to access by
conventional methods (Figure 1c).

■ RESULTS AND DISCUSSION
The reported ART reaction converts a pyridinium salt into a
chiral piperidine (Scheme 1). Under reducing conditions in the
presence of water, a chiral amine introduced undergoes
transamination to replace the original nitrogen moiety in the
pyridinium ion, thereby affording a piperidine with high
diastereoselectivity. The reaction proceeds via a pathway that
involves two key intermediates. As shown in Scheme 1, a Rh-
catalyzed transfer hydrogenation with formic acid first
produces a dihydropyridine intermediate, which is hydrolyzed
in situ by water, affording a dicarbonyl intermediate.
Subsequent reductive amination with an exogenous chiral
amine under Rh catalysis leads to the cyclized product, an
enantiomerically enriched piperidine.12
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Given the prominence of N-(hetero)aryl heterocycles in
drug development, we thought that it should be beneficial to
replace the aliphatic amine used in the ART with an aryl, albeit
less nucleophilic, variant, ArNH2, thus affording an N-aryl
piperidine (Scheme 1). In a previous study,12 we obtained
chiral piperidines using a mixture of an aliphatic amine (10
equiv) and formic acid (24 equiv) as the amine and hydrogen
source, respectively, and a catalyst generated in situ from
[Cp*RhCl2]2 in CH2Cl2/H2O. We commenced our explora-
tion of transamination of pyridinium salts with p-anisidine,
starting with this condition (Table 1). Delightfully, after
optimization, the target N-aryl piperidine 1 was obtained with
a remarkable yield of 86% using 10 equiv of the aryl amine.
This was achieved by performing the reaction in a mixture
solvent of MeOH/H2O (entry 1), and we found that the
choice of solvent is critical to the success of the reaction. Thus,
a much lower yield was noted when the reaction was
performed in CH2Cl2/H2O (entry 4), the solvent of choice

in the original ART reaction, while significantly increased
yields were obtained in polar, protic solvents, with MeOH/
H2O (15:1 v/v) being the most effective (see the Supporting
Information for more details). We also found that triethyl-
amine (NEt3) could be used to balance the basicity of the
reaction system and, thus, replace part of the aryl amine
without affecting the product yield (entry 2). Under such
conditions, the reaction is feasible even with only 1 equiv of p-

Figure 1. Bioactive N-(hetero)aryl piperidines and strategies for their synthesis. (a) Examples of FDA-approved drugs containing N-(hetero)aryl
piperidines. (b) Examples of known synthetic approaches to N-aryl piperidines. (c) This work: rhodium-catalyzed reductive transamination leading
to N-(hetero)aryl piperidines.

Scheme 1. Simplified Pathway of the ART and Proposed
Arylation Reactions Catalyzed by the Precatalyst
[Cp*RhCl2]2

Table 1. Optimization of Reaction Conditionsa

entry X, R conditions
yield
(%)b

1 I, Me MeOH/H2O 86
2 I, Me MeOH/H2O p-anisidine (5 equiv) + NEt3

(5 equiv)
84c

3 I, Me MeOH/H2O p-anisidine (1 equiv) + NEt3
(9 equiv)

55

4 I, Me CH2Cl2/H2O 11
5 I, Me MeOH/H2O, N2 85
6 Br, Ph MeOH/H2O 51
7 PF6, Me MeOH/H2O NAd

8 BF4, Me MeOH/H2O NAd

aReaction conditions: 0.5 mmol of pyridinium salt, 10 equiv of p-
anisidine, 24 equiv of HCO2H, CH2Cl2/H2O = 15:1 (4.0 mL), 1 mol
% [Cp*RhCl2]2, 40 °C, 16 h, in air, unless otherwise indicated.
bIsolated yields using flash column chromatography. cOptimized
(standard) condition. dNo reaction observed.
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anisidine, albeit with a significantly decreased yield of 1 (entry
3). This should particularly benefit reactions where expensive
aryl amines are used. The reaction became sluggish at low
temperatures, with the yield decreasing to 30% when run at
ambient temperature. However, little change was observed
when the temperature was increased to 60 °C. All of the
reagents, including the Rh(III) catalyst, are stable to air and
moisture in solution, leading to reproducible results under
either an air or N2 atmosphere (entries 5 vs 1). Changing the
counteranion to bromide and ethyl to a benzyl substituent was
found to decrease the yield (entry 6). Notably, switching to the
noncoordinating anions, PF6

− and BF4
−, led to no reaction

(entries 7−8). This is in line with what we found in the
previous studies, which showed that the iodide anion plays an
important role in promoting the transfer hydrogenation.13

With the optimized reaction conditions in hand, we first
explored the scope of pyridinium salts in the reaction with p-
anisidine (Table 2). The substrates were readily prepared from
bromopyridines via the Suzuki−Miyaura coupling followed by
quaternization, which activates pyridines toward nucleophilic
attack by a metal hydride.14 The reductive transamination
worked well for a wide range of 2-aryl and 2-alkyl substituted
pyridinium salts, affording the N-arylated piperidines in good
yields in general. The N-arylated piperidine 1 was isolated with
a yield of 84% under standard conditions. A slightly lower
yield, 75%, was recorded when the same reaction was
performed on a gram scale (1.09 g) for 24 h. Substrates
bearing electron-withdrawing groups appear to afford slightly
lower yields compared with those bearing electron-donating
ones, e.g., 5 vs 9. The steric effect is more pronounced, as seen
in 14 and 15, where the sterically more demanding pyridinium
precursor to 15 furnished a much lower yield. Furthermore,
when the 2-aryl group is 2,6-dimethoxyphenyl, no reaction was
observed, most likely due to a high energy barrier in the ring
closure step (vide infra). In the reaction of a nitrile-bearing
pyridinium, the piperidine product 7 reacted further with p-
anisidine, leading to the formation of a secondary amine
byproduct (see the Supporting Information). To avoid the
nucleophilic addition of excessive amines to the nitrile group,
the amount of p-anisidine was reduced to 1.2 equiv. This
improved the yield of 7 from 35 to 58%, while again indicating
the reaction to be feasible even with near-stoichiometric aryl
amines. Notably, potentially reactive functional groups were
well-tolerated, such as halides (2, 3, 4, 17, 33, 37), nitro (6),
ketone (13), and ester (25), some of which might not survive
common C−N coupling conditions. The preservation of the
functionalities in these piperidine products opens the
possibility of further functionalization.

The reductive transamination also worked for some
disubstituted pyridinium salts. Thus, 2-methylpiperidines 26
with a 3-phenyl motif and 27 with 3-carboxylate were obtained
in moderate to good yields, demonstrating the tolerance of the
reaction to different substituents at the C3 position of the
pyridinium ring. These compounds were isolated as single cis
products; however, they were formed as a pair of cis and trans
diastereomers, with the diastereomeric ratios (d.r.) being 5:1
for 26 and 3:1 for 27 according to the 1H NMR measurement
of the crude product (vide infra). Surprisingly somehow,
moving the methyl group from the C2 to C6 position resulted
in the formation of the tetrahydropyridine 28. This partial
hydrogenated product is likely to be stabilized by the extensive
conjugation involving the nitrogen lone pair, the C�C bond,
the carboxylate group, and the aromatic ring.15 When the

Table 2. Reductive Transamination of Pyridinium Salts with
p-Anisidinea
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reaction time was prolonged to 48 h, the olefin moiety
remained mostly intact, with only ca. 20% conversion to the
fully hydrogenated piperidine. Similarly, the 2-cyano sub-
stituted product 29 could be obtained in a good yield. The
reduction of the C�C bond in the precursors to 26 and 27
may be attributed to easier enamine and iminium isomer-
ization; the final product results from the reduction of the
latter.

Fluorine-containing molecules exhibit unique properties in
material science and pharmaceuticals.16 In particular, around
20% of all approved medicines contain fluorine atoms.17

However, the direct synthesis of fluoropiperidines via the
hydrogenation of fluoropyridine precursors remains rare,
largely due to the hydrodefluorination side reaction.18 The
mild conditions of the reductive transamination reaction make
one-step access to N-aryl fluorinated piperidines possible. As
shown in Table 2, a range of 2-aryl-3-fluoropiperidines and the
5-fluoro analogues were obtained in good yields under the
standard conditions (30−37). These compounds were isolated
as single cis diastereomers; however, as in the cases of 26 and
27, they were formed as a mixture of two diastereomers, with
the cis isomer accounting for the major products. The X-ray
structures of 31 and 35 were determined and are consistent
with the NMR analysis, showing the aryl and fluorine to be cis,
with the latter being axial (Figure 2a).

The formation of the cis isomers as the major products may
be attributed to the reduced allylic strain and/or favored
electrostatic interactions when the hydride adds to the C�N
bond, as illustrated in Figure 2b. In the case of a phenyl or an
ester group at position 3 of the pyridine, minimization of the
allylic strain would favor the conformer F1 to give the cis
isomer of 26 preferentially. When a fluorine atom is present at
position 3 or 5, Coulombic attraction favors conformers F2
and F3, which leads to the dominant formation of the cis
isomer of 30−33 and 34−37, respectively.16g Finally, it is
noted that the reaction worked well for a nonsubstituted
pyridinium substrate, affording 38.

We next extended this approach to other aniline derivatives.
As shown in Table 3, various amines, including those that are
very electron-rich and hence rarely featured in C−N coupling
reactions, can be brought into the reductive transamination
reaction to afford the corresponding N-aryl piperidines.
Notably, phenylamines bearing para-bromine and iodine
substituents were tolerated in this catalytic system to give
piperidines 40 and 41 accordingly, albeit in lower yields,
possibly due to the lower nucleophilicity of the halogenated
anilines. Such amines are prone to undergoing homocoupling
in the conventional C−N coupling reactions.3d Delightfully,
the highly electron-donating 4-amino (σ = 0.57) and 4-
hydroxy (σ = 0.38) substituted anilines went through the
reaction smoothly to give amine products 43 and 44 in good
yields, so did the electron-rich 2,4-dimethoxyaniline that gave
rise to 51. 2-Naphthylamine also worked well (54, 77%);

however, the sterically more demanding 1-naphthylamine
showed no reaction, as was the case for 2,6-dimethoxyaniline.
As may be expected, there appears to be a correlation between
the pKa of the attacking amines and their reactivity, with those
of higher pKa being more active, although the pKa values of
amines do not necessarily correlate with their nucleophilicity
(see the Supporting Information for more details).19 The
sluggishness of benzene-1,4-diamine in forming 43 is likely due
to the protonation of one of the amines (pKa: 6.3 c.f. pKa: 3.7
formic acid).

N-Heteroarylation of piperidine has become an essential
strategy for the preparation of potential drug molecules.2,20

However, engaging heterocycles in C−N coupling reactions
can be challenging.6 Delightfully, a range of N-, O-, and S-
containing heteroaromatics underwent the reductive amination
with 2-aryl and 2-alkylpyridinium salts, affording N-hetero-
arylated piperidines 55−69. The yields of these products
varied, again with those with higher pKa generally affording
higher yields (see the Supporting Information). The N-
heteroaryl piperidine 55 was obtained only in 18% yield under
the standard conditions (24 equiv of formic acid); the yield
increased to 45% when 12, instead of 24, equiv of formic acid
was used. A lower concentration of acid is expected to give rise

Table 2. continued

aReaction conditions: 0.5 mmol of pyridinium salt, 5 equiv of p-
anisidine, 5 equiv of NEt3, 24 equiv of HCO2H, MeOH/H2O = 15:1
(4.0 mL), 1 mol % [Cp*RhCl2]2, 40 °C, 16 h, in air. Isolated yields
are reported. bReaction was performed on a 3.5 mmol (1.09 g) scale
for 24 h. c1.2 equiv of p-anisidine was used. dYields of the isolated
major cis diastereomers are reported. The d.r. (cis/trans) was
determined by analysis of the 1H NMR spectra of crude mixtures.

Figure 2. (a) Axial orientation of the fluorine substituent in the X-ray
structures of 31 and 35. (The structures are disordered; see the
Supporting Information for details. Thermal ellipsoids are shown at
the 50% probability level.) (b) Illustration of steric and stereo-
electronic effects in directing the formation of the cis product (the
cyclic iminium ion results from the reaction of a dicarbonyl
intermediate with an aryl amine; see Scheme 2).
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to a higher concentration of neutral, attacking amines.
However, there are N-heterocyclic amines that showed very
low reactivities under the current conditions, likely due to their
low nucleophilicity (see the Supporting Information).

Based on the previous mechanistic studies of the asymmetric
reduction of pyridinium salts13b,21 and our recent research on
ART,12 a plausible mechanism is proposed and shown in
Scheme 2. The Rh-catalyzed transfer hydrogenation of
pyridinium A first affords a dihydropyridine B, which is
intercepted by water, leading to its ring-opening to give C.
Reductive amination of the dicarbonyl intermediate with the
exogenous amine then follows, affording the amino ketone E

via reduction of the iminium ion D. Finally, an intramolecular
reductive amination occurs, converting E to the N-aryl
piperidine product G via the tetrahydropyridinium ion F.
Interestingly, a recent study has shown that F can be exploited
for accessing functionalized N-(hetero)aryl piperidines.22

■ CONCLUSIONS
In conclusion, a reductive transamination-based catalytic
approach for the preparation of N-(hetero)aryl piperidines
from readily available pyridinium salts has been established.
The method demonstrates broad substrate tolerance, partic-
ularly toward substrates that feature functionalities that may

Table 3. Reductive Transamination with Various (Hetero)aryl Aminesa

aReaction conditions were the same as in Table 2. Isolated yields are reported. bReaction was carried out for 30 h. c12 equiv of HCO2H was used.
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interfere with other catalytic processes and operate under
simple reaction conditions, requiring neither elaborate ligands
nor inert gas protection. The reductive transamination is
triggered by rhodium-catalyzed transfer hydrogenation of the
pyridinium ring with formic acid with the intermediate
dihydropyridine intercepted by water and an exogenous
amine. Subsequent ring closure leads to an N-arylated
piperidine. Offering a new pathway for converting pyridines
to piperidines, the reaction should be of value to synthetic
chemistry and enrich the toolbox of dearomatization and
skeletal editing.23
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