Key concepts in Digestion...

‘Travellers Health’ module

Gut secretion and absorption

...physiology and pathology...

Professor Barry Campbell

Gastroenterology

e-mail: bjcampbl@liv.ac.uk

http://pcwww.liv.ac.uk/~bjcampbl

Gut secretion and absorption

Fluid and electrolyte transport are important functions of the gastrointestinal tract (even in the absence of food)

Epithelial cells may...

- **secrete water and electrolytes**
 i.e. transport from blood to gut lumen

- **absorb water and electrolytes**
 i.e. transport from gut lumen to blood

Overall daily gut fluid balance

<table>
<thead>
<tr>
<th>Ingest</th>
<th>Saliva</th>
<th>Small intestine absorbs</th>
<th>Gastric secretions</th>
<th>Pancreatic juices</th>
<th>Bile</th>
<th>Intestinal secretions</th>
<th>Colon absorbs</th>
<th>OUT 9 litres/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 L/day</td>
<td>1.5 L/day</td>
<td>8.5 L/day</td>
<td>2 L/day</td>
<td>1.5 L/day</td>
<td>0.5 L/day</td>
<td>1.5 L/day</td>
<td>0.4 L/day</td>
<td></td>
</tr>
</tbody>
</table>
Movement of water and solutes

- Water moves down osmotic gradients
- Electrolytes move down electrochemical gradients
- To move solutes against their concentration gradients requires energy
- Energy is supplied by sodium gradients (generated by the sodium pump) and by proton gradients

Membrane domains and transport routes

Absorption in the villus: secretion the crypt

net absorption

net secretion
Factors affecting absorption and secretion

- Nutrient intake
- Gastric motility
- Intestinal motility
- Blood & lymph flows
- Number and state of enterocytes
- Hormonal factors
- Paracrine factors
- Neural factors

Absorption

Secretion

Excretion

Luminal factors: Irritants, Bacterial toxins, Bile

Na⁺-coupled nutrient absorption

......energy-dependent transport

Na⁺,K⁺ ATPase

ATP → ADP + Pᵢ

Intestinal secretion

1. Na⁺/K⁺ ATPase
2. Na⁺/K⁺/2Cl⁻ cotransporter
3. K⁺ channel
4. Cl⁻ channel
5. Physiological control of secretion

Ach, VIP
Diarrhoeal disease

<table>
<thead>
<tr>
<th>TYPE OF DIARRHOEA</th>
<th>MECHANISM</th>
<th>CAUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypermotility</td>
<td>Transport too fast for absorption</td>
<td>High fibre diet Diabetes - adrenergic neuropathy</td>
</tr>
<tr>
<td>Osmotic</td>
<td>Non-solute absorption (enzyme deficiency/villous atrophy)</td>
<td>Lactase deficiency Coeliac (sprue) disease</td>
</tr>
<tr>
<td>Defective transport</td>
<td>Na⁺ or Cl⁻ transporters absent</td>
<td>Sodium/chloride diarrhoea (rare congenital defects)</td>
</tr>
<tr>
<td>Secretory</td>
<td>Inflammatory Blood hormones Tumours Enterotoxins Viruses/Parasites</td>
<td>Pancreas- VIP secreting Thyroid - calcitonin secreting V. cholerae, E.coli etc Rotavirus/Giardia sp. etc.</td>
</tr>
</tbody>
</table>

TRAVELLERS DIARRHOEA

<table>
<thead>
<tr>
<th>BACTERIA</th>
<th>VIRUSES</th>
<th>PARASITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrio cholerae (F)</td>
<td>Norwalk (F/W)</td>
<td>Entamoeba histolytica (F/W)</td>
</tr>
<tr>
<td>Campylobacter jejuni (W)</td>
<td>Hepatitis A (F)</td>
<td>Giardia intestinales (W)</td>
</tr>
<tr>
<td>Clostridium difficile (F)</td>
<td>Rotavirus (W)</td>
<td>Cryptosporidium sp. (W)</td>
</tr>
<tr>
<td>Clostridium botulinum (F)</td>
<td></td>
<td>Yersinia sp. (F)</td>
</tr>
<tr>
<td>Shigella sp. (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salmonella sp. (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.coli (F)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F = food bourne, W = water bourne

Cholera and cholera toxin

DNA sequence of both chromosomes of the cholera pathogen *Vibrio cholerae*

John F. Heidelberg et al., 3 August 2000 Nature 406, 477-482
Slide 13

Cholera toxin and transport into intestinal cells

Sandvig & van Deurs, FEBS Lett. 2002: 529; 49-53
Lencer & Tsai, TIBS: 2003; 28; 639-45

Slide 14

Cholera toxin-induced intestinal secretion

GTPase
Adenylate cyclase
β-subunit
α-subunit
NAD
H₂O
Cl⁻
HCO₃⁻
ATP
cAMP (↑)
GDP
GTP
X
ADP-ribose
cell surface
Gut lumen
Cholera toxin
α₁ subunit hydrolyses Nicotinamide
GM₁
α₁ subunit
GTPase
GTP
ADP-ribose
Adenylate cyclase
µاخت_ام_نا
*

Slide 15

Vibrio cholerae colonizing human epithelial cells

~2h, speeded up x300.

As more bacteria adhere to the host cell surface and secrete cholera toxin, the host cells begin to pump out water and salt due to constitutive activation of adenylate cyclase. In the intestine, the water is pumped into the intestinal lumen, resulting in watery diarrhoea.

Julie Theriot & Claudette Gardel

http://cmgm.stanford.edu/theriot/movies.html
Oral rehydration therapy *

* water, electrolytes and glucose: efficient use of available transporters