
1. General Theory

1.1. Surveys.

• [Nee21b] is an in-depth survey of the theory. Section 9 could be supplemented with the survey
[Nee20].

• [Nee20] is a survey of just [Nee18c].
• [Nee23] is another survey—it focuses on the analogy with Fourier analysis. This survey is less in-
depth than [Nee21b]+[Nee20], but it contains a lot of open problems and suggested areas of research.

1.2. Papers.

• [Nee21a] shows Dperf(X) and Db
coh(X) are strongly generated under relatively weak assumptions. It

was the paper that started approximable categories.
• [Nee18a] shows a bunch of natural triangulated categories are approximable (e.g. Dqc(X) when X is

quasicompact and separated, the homotopy category of spectra, and D(R) where R is a negatively
graded DG-algebra).

• [Nee18b] shows any homological functor (with some reasonable assumptions), Hi : Db
coh(X) →

Mod(R) is represented by a perfect complex over X.
• [Nee18c] shows Dperf(X) and Db

coh(X) determine each other (or more generally T c and T b
c determine

each other).
• [BNP23] shows a recollement of two approximable categories is also approximable.

2. Calculating Completions of Triangulated Categories

2.1. Papers.

• [Nee18c] calculates a bunch of completions
• [Mat24] calculates all possible completions of Db(Mod(A)) where A is a finite dimensional hereditary

k-algebra.
• [CG24] calculates completions with respect to the “aisle” metric.

3. Obstructions to Bounded t-Structures

3.1. Surveys.

• [Nee22b] is a survey, but it is out of date.

3.2. Papers.

• [Nee22a] proves the following:

Theorem 3.1. Suppose X is a finite-dimensional, Noetherian scheme and Z ⊆ X is a closed subset.

The category Dperf
Z (X)—of perfect complexes on X whose cohomology is supported on Z—admits a

bounded t-structure if and only if Z is contained in the regular locus of X. In particular, Dperf(X)
admits a bounded t-structure if and only if X is regular.

• [BCR+23] generalizes Theorem 3.1 to

Theorem 3.2. Suppose T = ⟨X⟩ is an essentially small, classically generated triangulated category.
Assume T op has finite finitistic dimension (see [BCR+23, Definition 1.3]). T admits a bounded
t-structure if and only if T is complete with respect to X.

[BCR+23] also shows that in the setting of Theorem 3.2 all bounded t-structures are equivalent.
• [Nee18d] gives a criterion for when a “complete aisle” is part of a t-structure.

4. Intrinsic Subcategories

4.1. Surveys.

• [CNSb] is a survey. I think it is up-to-date (as of September 2024).
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4.2. Papers.

• [Nee18c] shows Dperf(X) and Db
coh(X) determine each other.

• [CNSa] shows the categories T , T ±, T b, T c, T −
c , T b

c , and T c,b all determine each other (and are
all intrinsically defined). I think a very cool corollary is that the singularity category is a derived
invariant. I don’t think it was even known that regularity was a derived invariant, but I would need
to spend more time looking into this.

5. Strong Generation

5.1. Surveys.

• [Min20] is a survey. I think it is out-of-date. The survey is also really difficult to read if you’re not
a homotopy theorist.

5.2. Papers.

• [Nee21a] is the main result in this direction. It shows

Theorem 5.1. Suppose X is a quasicompact, separate scheme. The category Dperf(X) is strongly
generated if and only if X admits an open affine cover, U = Spec(Ri), where each Ri has finite global
dimension.

and

Theorem 5.2. Suppose X is a Noetherian, separated scheme such that every closed subscheme
admits a regular alteration (e.g. X is essentially of finite type over a field). The category Db

coh(X)
is strongly generated.

• [Aok21] removes the technical assumption on alterations in Theorem 5.2:

Theorem 5.3. If X is a quasicompact separated quasiexcellent scheme of finite dimension then
Db

coh(X) is strongly generated.

• [DDLR24] considers the noncommutative analogue of Theorem 5.1.

6. GAGA Theorems

6.1. Surveys.

• The main idea is contained in [Nee23, Section 6].

6.2. Papers.

• [Hal23] proves a categorical GAGA theorem, but he did not have approximable categories at his
disposal.

• [Nee18b] is supposed to bypass most of the technical material in [Hal23]. [Nee18a, Appendix A]
shows how to do this.
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