(19) \(\text{EP 1 755 809 B1} \)

(11) \(\text{EP 1 755 809 B1} \)

(12) \(\text{EUROPEAN PATENT SPECIFICATION} \)

(45) Date of publication and mention of the grant of the patent:
13.08.2008 Bulletin 2008/33

(21) Application number: 05744854.0

(22) Date of filing: 19.05.2005

(51) Int Cl:
B22F 3/00 (2006.01)

(86) International application number:
PCT/GB2005/001951

(87) International publication number:

(54) METHOD OF PRODUCTION OF POROUS METALLIC MATERIALS
HERSTELLUNGSVERFAHREN FÜR PORÖSE SINTERMATERIALIEN
PROCEDE DE PRODUCTION DE MATRIAUX METALLIQUES POREUX

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

(30) Priority: 29.05.2004 GB 0412125

(43) Date of publication of application:
28.02.2007 Bulletin 2007/09

(73) Proprietor: THE UNIVERSITY OF LIVERPOOL
Liverpool L69 3BX (GB)

(72) Inventor: ZHAO, Yuyuan
Liverpool L69 3GH (GB)

(74) Representative: McCaul, John Douglas
W.P. THOMPSON & CO.
Coopers Building
Church Street
Liverpool L1 3AB (GB)

(56) References cited:
WO-A-2004039748

- DATABASE WPI Section Ch, Week 197735
 Derwent Publications Ltd., London, GB; Class
 M22, AN 1977-61766 Y XP002368276 - & JP 52
 085006 A (TANAKA PRECIOUS METAL IND) 15
 July 1977 (1977-07-15)
- ZHAO Y Y ET AL: "Novel sintering-dissolution
 process for manufacturing Al foams" SCRIPTA
 MATER; SCRIPTA MATERIALIA JAN 2001
 ELSEVIER SCIENCE LTD, EXETER, ENGL., vol.
 44, no. 1, January 2001 (2001-01), pages 105-110,
 XP002368268
- LAPTEV A ET AL: "Study of production route for
 titanium parts combining very high porosity and
 complex shape" POWDER METALL; POWDER
 METALLURGY MARCH 2004, vol. 47, no. 1, March
 in the application

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)
In accordance with the present invention, there is provided a process for producing porous metallic materials having interconnecting pores. Porous metals, which are also called cellular metals or metal foams, can be used for lightweight and sandwich structures, energy absorption, mechanical damping, thermal management, sound absorption, filtration, electrical screening, catalyst supports, and combinations of these functions. Examples of their applications include lightweight panels for building and transport against buckling and impact, non-flammable ceiling and wall panels for thermal and sound insulation, heat exchangers, filters, catalyst carriers and scaffolds for tissue regeneration. There currently exist a wide range of manufacturing methods for cellular metals. The main methods can generally be grouped into several categories according to the forms of the precursory metals and the types of the pore-forming agents. By the melt-gas injection route, air or an inert gas is blown into the molten metal and dispersed by an impeller. The generated liquid foam floats to the surface of the melt and is gradually pulled off by a conveyor and solidifies to form a continuous sheet of metal foam. This route is characterised by a low production cost. The controllability over the size and distribution of the pores, however, is very poor. The foams usually consist of large and inhomogeneous pores and are only suitable for limited applications. In the melt-foaming agent process, a foaming agent (usually TiH₂) is added to the molten metal. The gas released from the decomposition of the agent blows up the melt, which subsequently solidifies to form a porous structure. This route may be used to produce net shape foam structures with a relatively low cost. However, poor control over the size and distribution of the pores remains a problem. To obtain a reasonably homogeneous pore structure, additional agents have to be added to the melt to increase the viscosity or other more sophisticated procedures have to be adopted. In the powder-foaming agent process, a compact of the mixture of metal and hydride powders is processed into a semi-finished product by a conventional deformation technique, which is then heated to near or above the melting point of the metal, which expands into a cellular structure under the pressure of the released gas. The pore sizes and distribution can be controlled to some extent but the controllability is still poor. In the investment casting route, a polymer foam with open cells is first filled with a slurry of heat resistant materials and the coating formed is allowed to dry. The polymer is then removed, forming a ceramic mould. Molten metal is cast into the mould and allowed to solidify. After removal of the mould material, a metal foam is obtained which represents exactly the original structure of the polymer foam. The investment casting route can produce metal foams of the highest quality, but the production cost is extremely high. A porous metal structure can also be produced by melt infiltration, which relies upon molten metal being infiltrated into a preform, which is usually a compact of sodium chloride particles or other filler materials. After the liquid metal solidifies, the preform is dissolved in water or other solvents, leaving a porous foam structure. Melt infiltration is a low cost method but the porosity range attainable is relatively narrow. A sintering and dissolution process has also been developed for manufacturing net-shape, open-celled aluminium foams. In this process, an Al powder is first mixed thoroughly with a NaCl powder at a pre-specified volume ratio. The resultant Al-NaCl powder mixture is compacted into a net-shape preform under an appropriate pressure. The preform is then sintered at a temperature either above or below the melting point of Al (660°C) but far below that of NaCl (801°C). After the Al in the preform forms a well-bonded networked structure, the preform is cooled to room temperature. The imbedded NaCl particles are finally dissolved in water, leaving behind an open-celled Al foam with the same chemical composition as that of the original Al powder. JP-A-5 2085006 discloses the production of Au porous bodies by mixing Au with K₂CO₃, pressing, sintering and leaching. The method of metal deposition relies upon the metal being deposited onto a polymer foam precursor via physical vapour or electrochemical deposition. The polymer foam is then burned off to produce a porous metal. This route is characterised by low productivity and high cost. Porous metal materials can also be produced by sintering hollow metal spheres to form a close-celled cellular metal. This route is limited by the availability of hollow spheres and is also limited to close cells. A metal-gas eutectic method of producing porous metal materials is also known which utilises a liquid metal that is solidified with a eutectic gas. This route has very limited applications because only a few metals can form eutectics with gases under conditions suitable to achieve in production. Recently, highly porous titanium parts that have a complex shape have been described which enhances the strength of the unsintered compacts allowing machining in the green state (Laptev, A. et al., (2004) Powder Metallurgy, 47, (1), 85-92). In producing the parts, titanium and ammonium bicarbonate/carbonate are mixed together prior to sintering in a vacuum at a temperature in the range of 1200°C and 1300°C. As both carbamide and ammonium bicarbonate dissociate at 200°C, they are soft and it is hard to control pore shape in addition to disassociating into non-environmental.
friendly gases.

[0016] There are a number of problems associated with the existing processes for producing porous metal materials, such as being labour intensive and/or costly. The liquid state routes generally have lower costs but are only suitable for low melting-point metals such as aluminium and magnesium. The solid and gas state routes are more expensive but can be used for a wide range of metals and their alloys, such as copper, steel, nickel cobalt, chromium, molybdenum or tin. Additionally, it would be advantageous for a process to be able to produce a porous material whose interconnected pores are open without the need to tool the material first as is the case with a number of materials produced by the prior art processes. It is also difficult to control both the pore size and the porosity of the material produced in prior art methods and therefore it would be most desirable to be able to control pore structure itself, such as pore size for example.

[0017] In accordance with the present invention, there is provided a process for producing porous metallic materials comprising the steps in the following order:

(a) mixing metallic particles with a carbonate additive and a binder, wherein the quantity of carbonate additive in the mixture is in the range of 40 to 90 vol % and compressing the mixture in a mould beyond the yield strength of the metallic particles, so as to bring about a plastic strain of at least 0.0002 and plastic deformation of the metallic particles;
(b) heating the mixture to a first temperature sufficient to evaporate the binder;
(c) heating and maintaining the temperature of the mixture to a second temperature sufficient to sinter the metallic particles but insufficient to decompose or melt the carbonate additive;
(d) removing the carbonate additive from the sintered porous metallic material; and
(e) heating and maintaining the temperature of the porous metallic material to a third temperature greater than the second temperature so as to enhance the sintering.

[0018] The present invention therefore provides a process for producing porous metals or metal alloys (or cellular metals, or metal foams), the pores of which are open and interconnected. The process also provides the ability to control pore size, porosity and pore distribution.

[0019] The temperature of the mixture in step (b) may be attained slowly at a temperature typically lower than 500°C to allow for the gradual evaporation and complete removal of the binder. Although, the exact temperature will depend largely upon the temperature at which the binder evaporates.

[0020] Should the metallic particles have a lower melting point than the carbonate additive, the second temperature may be chosen as that normally used for the sintering of the metallic material. Preferably, the second temperature is 10-100°C below the melting point of the metallic material. More preferably, the temperature is 10-20°C below the melting point of the metallic material. The second temperature can be 10-20°C above the melting point of the metallic material in order to enhance the sintering by operating in the liquid or semi-liquid state.

[0021] The yield strength should be understood to mean the stress required to produce a very slight yet specified amount of plastic deformation, typically a strain of 0.0002. It will be obvious to one skilled in the art that the yield strength of the metallic particles will be largely determined by the composition of the metallic particles themselves. For example, the yield strengths of a few common metals and typical alloys are listed below:

Aluminium: 35 MPa;
Copper: 69 MPa;
Iron: 130 MPa;
Nickel: 138 MPa;
Titanium (commercially pure, annealed): 170 MPa;
Aluminium alloy (2024, annealed): 75 MPa;
Steel (1020): 180 MPa;
Stainless steel 316 (hot finished and annealed): 205 MPa;
Brass (70Cu-30Zn): 75 MPa; and
Titanium alloy (Ti-6Al-4V annealed): 830 MPa.

[0022] It will be apparent to one skilled in the art that the temperature used for the sintering of metals and alloys is not a specific temperature, but a range of temperatures in which sintering of the metal and alloys will occur (depending on compactness of performs and particle size etc.).

[0023] Should the metallic particles have a higher melting point than the carbonate additive, the second temperature is preferably 10-100°C below the melting or decomposition point of the carbonate. More preferably, the temperature is 10-20°C below the melting or decomposition point of the carbonate. The second temperature will preferably be at the higher area of the sintering temperature range, without the carbonate being melted or decomposed, and therefore permit sintering to proceed more effectively.
[0024] Step (d) may comprise the steps of: (f) allowing the material to cool; and (g) dissolving and removing the carbonate in an aqueous solution. Such an aqueous solution may be water or any other solution in which the carbonate additive may dissolve and such a solution will depend upon the carbonate used. After the carbonate additive has been dissolved, the porous metallic material may also be allowed to dry under normal conditions or heated gently to assist in the drying of the material.

[0025] Should the metallic particles have a higher melting point than the carbonate additive, step (d) may also comprise the step of: (h) increasing the temperature of the material to a temperature sufficient to melt the carbonate additive, or may further comprise the step of: (i) increasing the temperature of the material to a temperature sufficient to decompose the carbonate into a gas and/or an ash.

[0026] The step (e) is useful if the melting point of the metallic particles have a higher melting point than the carbonate additive and the sintering at the second temperature is deemed insufficient. In the sintering of metals, the sintering temperature and time need to be sufficient to ensure a strong bonding between the metal particles. Usually, the higher the temperature the better, and the higher the temperature the shorter the time needed for sintering to take place. As the second temperature is limited by the melting point of the carbonate additive, heating the mixture to a higher temperature (the third temperature) can considerably shorten the overall sintering time. The second temperature can be used to form initial bonding between the metal particles to prevent the structure from collapsing after the carbonate is removed. The third temperature can be used to achieve full bonding of the metallic particles. The introduction of step (e) can improve the bonding between the metallic particles and shorten the production time.

[0027] The process can be used to produce materials having interconnected pores and these pores can have a rough structure. Commonly, the porosity of the material will be in the region of 50 - 90%, and the porosity can be varied depending upon the ratio of carbonate additive to metallic particles. The porosity of the final product is roughly equal to the volume percentage of the carbonate in the mixture.

[0028] The metallic particles may comprise any metal or metal alloy. Preferably, the metallic particles comprise a metal or an alloy of one or more of the following group: titanium, copper, aluminium, magnesium, iron or nickel. The term "carbonate" includes a number of carbonates, such as calcium carbonate, magnesium carbonate, potassium carbonate and sodium carbonates, but does not include carbamides or bicarbonates. The carbonate additive is the pore forming agent. It is preferred that widely available and inexpensive carbonates are employed in the process such as one or a mixture selected from the following group: potassium carbonate (melting point 891°C) or sodium carbonate (melting point 851°C).

[0029] Preferably, the metallic particles are in the size range of 5 to 500 microns, however, particles up to 1.5mm could also be employed depending upon the application that the material is to be used for and the pore size required. The metallic particles can be in any shapes or sizes. However, spherical or near spherical particles are compacted and sintered more readily and are therefore preferable. Best results have been obtained when the majority of the metallic particles are smaller than the carbonate particles so that the metallic particles can fill easily into the interstices between the carbonate particles. Thus, the shapes of the pores in the final porous product closely match those of the carbonate particles. The carbonate additive may be in a granular or powder form and may have a like for like size of the metallic particles, but may alternatively be of a different size. The shapes and sizes of the carbonate powder particles can be selected according to the intended shapes and sizes of the pores in the porous material. The particles can be spherical or irregular. The ratio of the metallic particles to carbonate additive may be used to determine or engineer the characteristics of the pores (such as porosity and pore size for example).

[0030] Preferably, the quantity of carbonate additive in the mixture is in the range of 40 to 90 vol % and this will approximately relate to the production of a material with a porosity of 40 to 90%. Of course, the precise porosity will not be exactly the same as the volume percentage of carbonate additive in the mixture and will vary depending upon the compaction and sintering conditions. This is because there is always a small amount of porosity in the compacted performs, typically in the region of 5-10%, which will be decreased to below 5% during sintering due to shrinkage.

[0031] Preferably, the metallic particles are mixed with a carbonate powder at a pre-specified volume ratio. The addition of the binder helps to prevent the powders from segregation and to ensure homogeneous mixing. Any organic liquid that does not react with the carbonate can be used as the binder. The binder may be an organic liquid (which may be volatile) and may comprise one or a mixture chosen from the following group: methanol, ethanol, kerosene, glycol, glycerine and polyvinyl alcohol. Preferably, the quantity of the binder in the mixture is in the range of 0.1 to 5%. More preferably, the quantity of the binder in the mixture is in the range of 0.5 to 2.5%. The preferred quantity of the binder is approximately 1% of the mixture.

[0032] It will be apparent to one skilled in the art that the mixture may be used to produce a preform prior to heating. Preferably, the mixture is compacted into a preform in a mould or die and is then heated in a furnace or similar heating apparatus. After the metallic particles have been bonded and the carbonate additive has been removed, a porous metallic component is produced. A near-net-shape porous material can be produced by using a proper mould or dies in the compaction stage. The compression pressure may be higher than the yield strength of the metal or alloy so that the metal or alloy particles undergo substantial plastic deformation and the porosity in the metal-carbonate preform is
reduced. A lower compression pressure will also work however. The preform may be sintered in a vacuum or under a protective atmosphere in a normal electrical furnace or similar heating apparatus. The exact sintering process will depend on the metal, or alloy, and the carbonate used.

[0033] In an embodiment of the present invention, a copper-potassium carbonate preform may be sintered at 850°C. In another embodiment of the present invention, a copper-potassium carbonate preform may be sintered at 850°C and then at 950°C. In yet another embodiment of the present invention, a steel-potassium carbonate preform may be sintered at 850°C and then at 950°C. The sintering time will be selected according to the geometry and size of the preform. The porosity of the material may be in the range of 40 to 90% and the porosity will depend upon the ratio of the carbonate additive to metallic particles. The pores are open in the fact that most of the carbonate particles are networked and can therefore be removed after the sintering. Blockage of the underside of the preform should also normally be avoided so that the molten carbonate can flow freely out of the preform if appropriate. Furthermore, a container may be placed below the preform to collect the molten carbonate. Any residual ashes (if present) in the material can be blown off by compressed air. The pores may also have a rough structure.

[0035] The metallic porous material may be used to produce a wide range of products in a number of different fields and this will be appreciated by one skilled in the art. In particular, the material may be used to produce medical implants such as synthetic bones and structures and it will be apparent that the use of titanium in such an implant would be most beneficial as tissue can bond with the titanium in addition to cellular titanium having similar weight and strength properties of bone. The material may also be used as a sound absorbing material for musical studios and mechanical installations, in addition to structural members for the aerospace and automotive industries to name a few (using an aluminium porous material for example). The material would also provide a heat sink material for cooling apparatus such as a computer or a piece of machinery (using a porous copper material for example) and this may be in conjunction with a cooling liquid. Screening material could also be produced from the material for screening from electromagnetic radiation for example (using a porous steel material). It can also be envisaged that the porous materials can also be used in catalyst reactions for a substrate on which the catalyst can be bonded or held or even the material itself acting as the catalyst if appropriate.

[0036] The present invention will now be described by example only with reference to the following examples and figures.

Figure 1 is a scanning electron micrograph of a sample of the copper porous material produced in Example 1;

Figure 2 is a second scanning electron micrograph of a sample of the copper porous material as produced in Example 1;

Figure 3 is a scanning electron micrograph of a sample of the copper porous material as produced in Example 2; and

Figure 4 is a scanning electron micrograph of a sample of the steel porous material produced in Example 3.

[0037] The following process allows for considerable variability within the exact protocol to accommodate for different metals or alloys (including alloys of the same metal) in addition to different pore sizes and particle sizes of metal/alloy and carbonate additives.

Example 1

[0038] An experiment was conducted to produce a copper porous material having interconnected pores. Table 1 below shows the quantities of the ingredients of the mixture prior the mixture being compacted into a preform and heated.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Copper Powder</th>
<th>Potassium Carbonate Powder</th>
<th>Binder (Ethanol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size range (µm)</td>
<td>20-53</td>
<td>53-125</td>
<td>1</td>
</tr>
<tr>
<td>Volume percentage (%)</td>
<td>Balance</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

[0039] The mixture was placed in a mould and compacted under a pressure of 250 MPa. The preform was heated to 300°C for 30 minutes to allow the binder to evaporate and then sintered at a temperature of 850°C for 4 hours for a maximum section thickness of 20 mm. The sintered preform was allowed to cool to room temperature and the potassium carbonate was dissolved in flowing water at room temperature for 4 hours.

[0040] The interconnected pores of the material as produced in this experiment can be seen in Figures 1 and 2.
Example 2

[0041] An experiment was conducted to produce a copper porous material having interconnected pores. Table 2 below shows the quantities of the ingredients of the mixture prior the mixture being compacted into a preform and heated.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Copper Powder</th>
<th>Potassium Carbonate Powder</th>
<th>Binder (Ethanol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size range (µm)</td>
<td>20-53</td>
<td>425-710</td>
<td></td>
</tr>
<tr>
<td>Volume percentage (%)</td>
<td>Balance</td>
<td>70</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2

[0042] The mixture was placed in a mould and compacted under a pressure of 200 MPa. The preform was partially sintered at a temperature of 850°C for 1 hour to allow the formation of initial bonding between the metal particles. The preform was then sintered at a higher temperature of 1000°C for 3 hours for a maximum section thickness of 20 mm.

[0043] The interconnected pores of the material as produced in this experiment can be seen in Figure 3.

EXAMPLE 3

[0044] An experiment was conducted to produce a steel porous material having interconnected pores. Table 3 below shows the quantities of the ingredients in the mixture prior the mixture being compacted into a preform and heated.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Steel Powder</th>
<th>Potassium Carbonate Powder</th>
<th>Binder (Ethanol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size range (µm)</td>
<td>20-75</td>
<td>53-125</td>
<td></td>
</tr>
<tr>
<td>Volume percentage (%)</td>
<td>balance</td>
<td>80</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3

[0045] The powder mixture was compacted into a preform at a pressure of 250 MPa and partially sintered at 850°C for 2 hours for a maximum section thickness of 20 mm. The partially sintering allowed a basic bonded structure to be produced. The preform was then subjected to a higher sintering temperature of 950°C to completely sinter the metal powder for 2 hours for a maximum section thickness of 20 mm.

[0046] The interconnected pores of the material as produced in this experiment can be seen in Figure 4.

Example 4

[0047] An experiment was conducted to produce an aluminium porous material having interconnected pores. Table 4 below shows the quantities of the ingredients of the mixture prior the mixture being compacted into a preform and heated.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Aluminium Powder</th>
<th>Potassium Carbonate Powder</th>
<th>Binder (Ethanol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle size range (µm)</td>
<td>20-53</td>
<td>1000-2000</td>
<td></td>
</tr>
<tr>
<td>Volume percentage (%)</td>
<td>Balance</td>
<td>70</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4

[0048] The mixture was placed in a mould and compacted under a pressure of 200 MPa. The mixture was sealed by a thin layer of iron powder compressed at a pressure of 150 MPa. The perform, still in the mould, was heated to 690°C at a heating rate of 10°C per minute and maintained at 690°C for 20 minutes to allow the aluminium particles to be bonded by liquid sintering. The sintered preform was allowed to cool to room temperature and the potassium carbonate was dissolved in flowing water at room temperature for 4 hours.

[0049] In all examples, a number of binders could be used in place of ethanol, such as kerosene, glycol, glycerine and polyvinyl alcohol.
Claims

1. A process for producing porous metallic materials comprising the steps in the following order:

(a) mixing metallic particles with a carbonate additive and a binder, wherein the quantity of carbonate additive in the mixture is in the range of 40 to 90 vol % and compressing the mixture in a mould beyond the yield strength of the metallic particles, so as to bring about a plastic strain of at least 0.0002 and plastic deformation of the metallic particles;
(b) heating the mixture to a first temperature sufficient to evaporate the binder;
(c) heating and maintaining the temperature of the mixture to a second temperature sufficient to sinter the metallic particles but insufficient to decompose or melt the carbonate additive;
(d) removing the carbonate additive from the sintered porous metallic material; and
(e) heating and maintaining the temperature of the porous metallic material to a third temperature greater than the second temperature so as to enhance the sintering.

2. A process as claimed in claim 1, wherein the first temperature is less than or equal to 500°C.

3. A process as claimed in either claim 1 or 2, wherein step (d) comprises the steps of:

(f) allowing the material to cool; and
(g) dissolving and removing the carbonate in an aqueous solution.

4. A process as claimed in claim 3, wherein the aqueous solution comprises water.

5. A process as claimed in any of claim 1 or 2, wherein if the metallic particles have a higher melting point than the carbonate additive, step (d) comprises the step of:

(h) increasing the temperature of the material to a temperature sufficient to melt the carbonate additive.

6. A process as claimed in claims 1, 2 and 5, wherein if the metallic particles have a higher melting point than the carbonate additive, step (d) comprises, or further comprises the step of:

(i) increasing the temperature of the material to a temperature sufficient to decompose the carbonate into a gas and/or an ash.

7. A process as claimed in any preceding claim, wherein the materials have interconnected pores.

8. A process as claimed in any preceding claim, wherein the metallic particles comprise metal or metal alloy particles.

9. A process as claimed in any preceding claim, wherein the metallic particles comprise a metal or an alloy of one or more of the following group: titanium, copper, aluminium, magnesium, iron, cobalt, chromium, molybdenum, tin or nickel.

10. A process as claimed in any preceding claim, wherein the carbonate comprises one or a mixture selected from the following group: potassium carbonate, sodium carbonate, magnesium carbonate or calcium carbonate.

11. A process as claimed in any preceding claim, wherein the metallic particles are in the size range of 5 to 500 microns.

12. A process as claimed in any preceding claim, wherein the carbonate additive is in a granular or powder form.

13. A process as claimed in any preceding claim, wherein the ratio of the metallic particles to carbonate additive is used to determine the characteristics of the pores.

14. A process as claimed in any preceding claim, wherein the binder is organic.

15. A process as claimed in any preceding claim, wherein the binder comprises one or a mixture chosen from the following group: methanol, ethanol, kerosene, glycol, glycerine and polyvinyl alcohol.
16. A process as claimed in any preceding claim, wherein the quantity of the binder in the mixture is in the range of 0.1 to 5%.

17. A process as claimed in any preceding claim, wherein the mixture is used in a preform, mould or die prior to heating.

18. A process as claimed in claim 17, wherein the mixture is compacted into a preform, mould or die prior to heating.

19. A process as claimed in any preceding claim, wherein the mixture is heated under pressure.

20. A process as claimed in any preceding claim, wherein the mixture is heated in a vacuum.

21. A process as claimed in any preceding claim, wherein the porous metallic material has a porosity in the range of 40 to 90%.

22. A process as claimed in any preceding claim, wherein the porous metallic material has pores which are open.

23. A process as claimed in claim 22, wherein the pores have a rough structure.

24. A process as claimed in any preceding claim, wherein the process is used to produce medical implants, sound absorption material, structural members, heat sink material, screening material or catalytic structures.

Patentansprüche

1. Verfahren zum Herstellen poröser metallischer Materialien, umfassend die Schritte in der folgenden Reihenfolge:

(a) Mischen von metallischen Partikeln mit einem Karbonatadditiv und einem Bindemittel, wobei die Menge des Karbonatadditivs in dem Gemisch im Bereich von 40 bis 90 Vol.-% liegt und Zusammendrücken des Gemischs in einer Form über die Fließgrenze der metallischen Partikel hinaus, um eine plastische Dehnung von mindestens 0,0002 und die plastische Verformung der metallischen Partikel zu bewirken;

(b) Erwärmen des Gemischs auf eine erste Temperatur, die ausreicht, um das Bindemittel zu verdunsten;

(c) Erwärmen und Halten der Temperatur des Gemischs auf eine zweite Temperatur, die ausreicht, um die metallischen Partikel zu sintern, aber nicht ausreicht, um das Karbonatadditiv zu zersetzen oder zu schmelzen;

(d) Entfernen des Karbonatadditivs aus dem gebrühten porösen metallischen Material; und

(e) Erwärmen und Halten der Temperatur des porösen metallischen Materials auf eine dritte Temperatur, die höher ist als die zweite Temperatur, um das Sintern zu verstärken.

2. Verfahren nach Anspruch 1, wobei die erste Temperatur niedriger als oder gleich 500 °C ist.

3. Verfahren nach Anspruch 1 oder 2, wobei Schritt (d) folgende Schritte umfasst:

(f) Abkühlenlassen des Materials; und

(g) Auflösen und Entfernen des Karbonats in einer wässrigen Lösung.

4. Verfahren nach Anspruch 3, wobei die wässrige Lösung Wasser umfasst.

5. Verfahren nach Anspruch 1 oder 2, wobei, wenn die metallischen Partikel einen höheren Schmelzpunkt haben als das Karbonatadditiv, Schritt (d) folgenden Schritt umfasst:

(h) Erhöhen der Temperatur des Materials auf eine Temperatur, die ausreicht, um das Karbonatadditiv zu schmelzen.

6. Verfahren nach Anspruch 1, 2 und 5, wobei, wenn die metallischen Partikel einen höheren Schmelzpunkt haben als das Karbonatadditiv, Schritt (d) folgenden Schritt umfasst oder weiter umfasst:

(i) Erhöhen der Temperatur des Materials auf eine Temperatur, die ausreicht, um das Karbonat zu einem Gas und/oder einer Asche zu zersetzen.
7. Verfahren nach einem der vorangehenden Ansprüche, wobei die Materialien miteinander verbundene Poren haben.

8. Verfahren nach einem der vorangehenden Ansprüche, wobei die metallischen Partikel Metall- oder Metalllegierungs- partikel umfassen.

10. Verfahren nach einem der vorangehenden Ansprüche, wobei das Karbonat eines oder ein Gemisch, das aus der folgenden Gruppe gewählt wird, umfasst: Kaliumkarbonat, Natriumkarbonat, Magnesiumkarbonat oder Kalziumkarbonat.

11. Verfahren nach einem der vorangehenden Ansprüche, wobei die metallischen Partikel im Größenbereich von 5 bis 500 Mikrometer sind.

13. Verfahren nach einem der vorangehenden Ansprüche, wobei das Verhältnis der metallischen Partikel zum Karbonatadditiv verwendet wird, um die Eigenschaften der Poren zu bestimmen.

14. Verfahren nach einem der vorangehenden Ansprüche, wobei das Bindemittel organisch ist.

15. Verfahren nach einem der vorangehenden Ansprüche, wobei das Bindemittel eines oder ein Gemisch, das aus der folgenden Gruppe gewählt wird, umfasst: Methanol, Ethanol, Petroleum, Glykol, Glycerin und Polyvinylalkohol.

16. Verfahren nach einem der vorangehenden Ansprüche, wobei die Menge des Bindemittels im Gemisch im Bereich von 0,1 bis 5% liegt.

17. Verfahren nach einem der vorangehenden Ansprüche, wobei das Gemisch vor dem Erwärmen in einer Vormisch, einer Form oder einem Formwerkzeug verwendet wird.

18. Verfahren nach Anspruch 17, wobei das Gemisch vor dem Erwärmen in eine Vormisch, eine Form oder ein Formwerkzeug gepreßt wird.

19. Verfahren nach einem der vorangehenden Ansprüche, wobei das Gemisch unter Druck erwärmt wird.

20. Verfahren nach einem der vorangehenden Ansprüche, wobei das Gemisch in einem Vakuum erwärmt wird.

21. Verfahren nach einem der vorangehenden Ansprüche, wobei das poröse metallische Material eine Porosität im Bereich von 40% bis 90% hat.

22. Verfahren nach einem der vorangehenden Ansprüche, wobei das poröse metallische Material Poren hat, die offen sind.

23. Verfahren nach Anspruch 22, wobei die Poren eine grobe Struktur haben.

24. Verfahren nach einem der vorangehenden Ansprüche, wobei das Verfahren verwendet wird, um medizinische Implantate, Schalldämmungs- material, tragende Elemente, Wärmeableitungsmaterial, Abschirmmaterial oder katalytische Strukturen herzustellen.

Revendications

1. Processus de production de matières métalliques poreuses comprenant les étapes dans l'ordre suivant :

(a) mélange de particules métalliques avec un additif de carbonate et un liant, dans lequel la quantité d'additif
de carbonate dans le mélange est comprise dans la gamme de 40 à 90 % en volume et compression du mélange dans un moule au-delà de la limite d’élasticité des particules métalliques, de façon à occasionner une contrainte plastique d’au moins 0,0002 et une déformation plastique des particules métalliques ;
(b) chauffage du mélange à une première température suffisante pour évaporer le liant ;
(c) chauffage et maintien de la température du mélange à une deuxième température suffisante pour friter les particules métalliques mais insuffisante pour décomposer ou faire fondre l’additif de carbonate ;
(d) élimination de l’additif de carbonate de la matière métallique poreuse fritte ; et
(e) chauffage et maintien de la température de la matière métallique poreuse à une troisième température supérieure à la deuxième température de façon à rehausser le frittage.

2. Processus selon la revendication 1, dans lequel la première température est inférieure ou égale à 500°C.

3. Processus selon la revendication 1 ou 2, dans lequel l’étape (d) comprend les étapes suivantes :

(f) refroidissement naturel de la matière ; et
(g) dissolution et élimination du carbonate dans une solution aqueuse.

4. Processus selon la revendication 3, dans lequel la solution aqueuse comprend de l’eau.

5. Processus selon la revendication 1 ou 2, dans lequel si les particules métalliques ont un point de fusion supérieur à celui de l’additif de carbonate, l’étape (d) comprend l’étape suivante :

(h) augmentation de la température de la matière à une température suffisante pour faire fondre l’additif de carbonate.

6. Processus selon la revendication 1, 2 et 5, dans lequel si les particules métalliques ont un point de fusion supérieur à celui de l’additif de carbonate, l’étape (d) comprend, ou comprend en outre l’étape suivante :

(i) augmentation de la température de la matière à une température suffisante pour décomposer le carbonate en un gaz et/ou une cendre.

7. Processus selon l’une quelconque des revendications précédentes, dans lequel les matières ont des pores interconnectés.

8. Processus selon l’une quelconque des revendications précédentes, dans lequel les particules métalliques comprennent des particules de métal ou d’alliage métallique.

10. Processus selon l’une quelconque des revendications précédentes, dans lequel le carbonate comprend un produit ou un mélange de produits sélectionné du groupe suivant : carbonate de potassium, carbonate de sodium, carbonate de magnésium ou carbonate de calcium.

11. Processus selon l’une quelconque des revendications précédentes, dans lequel la taille des particules métalliques est comprise dans la gamme de 5 à 500 microns.

12. Processus selon l’une quelconque des revendications précédentes, dans lequel l’additif de carbonate se présente sous forme granulaire ou pulvérulente.

13. Processus selon l’une quelconque des revendications précédentes, dans lequel le rapport particules métalliques/ additif de carbonate sert à déterminer les caractéristiques des pores.

14. Processus selon l’une quelconque des revendications précédentes, dans lequel le liant est organique.

15. Processus selon l’une quelconque des revendications précédentes, dans lequel le liant comprend un produit ou un mélange de produits choisi du groupe suivant : méthanol, éthanol, kérosène, glycol, glycérine et alcool polyvinylique.
16. Processus selon l'une quelconque des revendications précédentes, dans lequel la quantité du liant dans le mélange est comprise dans la gamme de 0,1 à 5%.

17. Processus selon l'une quelconque des revendications précédentes, dans lequel le mélange est utilisé dans une préforme, un moule ou une matrice avant le chauffage.

18. Processus selon la revendication 17, dans lequel le mélange est compacté dans une préforme, un moule ou une matrice avant le chauffage.

19. Processus selon l'une quelconque des revendications précédentes, dans lequel le mélange est chauffé souspression.

20. Processus selon l'une quelconque des revendications précédentes, dans lequel le mélange est chauffé dans un vide.

21. Processus selon l'une quelconque des revendications précédentes, dans lequel la matière métallique poreuse a une porosité comprise dans la gamme de 40 à 90%.

22. Processus selon l'une quelconque des revendications précédentes, dans lequel la matière poreuse métallique a des pores qui sont ouverts.

23. Processus selon la revendication 22, dans lequel les pores ont une structure rugueuse.

24. Processus selon l'une quelconque des revendications précédentes, dans lequel le processus sert à produire des implants médicaux, une matière d’absorption de bruit, des éléments structurels, une matière dissipatrice de chaleur, une matière de filtrage ou des structures catalytiques.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

Non-patent literature cited in the description