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ABSTRACT 

 

The increasing risks of terrorist attacks have prompted more efforts in the materials community to 

develop materials for the protection of human bodies, buildings, vehicles and machineries against 

impact and blast. Al foams have attracted an increasing level of interest in both academia and 

industry as energy absorbing materials because of their good combinations of specific strength, 

stiffness, ductility, temperature capability and durability. More recently, Al matrix syntactic foams 

have attracted considerable attention because they potentially have high energy-absorption capacities 

over a wide range of impact velocities. This paper investigates the energy absorption behaviour of the 

Al and Al matrix syntactic foams, manufactured by the sintering and dissolution process and/or the 

melt infiltration method, under static and dynamic compressive conditions. The results show that the 

energy absorbed by an Al foam in the dynamic condition is normally less than half of that in the static 

condition at any given strain. The energy absorption capacity is mainly dependent upon the relative 

density but is also affected by the shape and size of the pores. The Al foams manufactured by SDP and 

melt infiltration are characteristic of fine and uniform pores and therefore have smooth stress-strain 

curves. For similar pore sizes and porosities, the Al foams manufactured by melt infiltration are 

stronger than the Al foams manufactured by SDP. Compared with the Al foams, the Al matrix syntactic 

foam is much stronger but has a lower porosity. The preliminary tests have indicated that Al matrix 

syntactic foams have potential for energy absorption applications. 
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1.0 INTRODUCTION 

 

The shocking images of the collapse of the Twin Towers on September 11th have demonstrated what 

huge physical damages and human losses an impact can bring about. Development of materials for the 

protection of human bodies, buildings, vehicles and machineries against impact and blast is therefore a 

constant challenge facing the materials community. 

 

Materials under impacts may be subject to intermediate (1 – 103 s-1) and high (>103 s-1) strain-rates 

[Macaulay, 1987; Gibson & Ashby, 1997; Ashby et al, 2000]. The energy absorption mechanisms in 

these two regimes are different. The impact velocities of free fall objects and travelling vehicles are 

typically 1 – 50 m s-1, with the strain rates within the intermediate range. Porous or cellular materials 

are good energy absorbers in this range, as large amounts of impact energy can be absorbed by the 

elastic buckling, plastic yielding or brittle crushing of the cell walls. The impact velocities of ballistic 

objects, such as bombs, bullets and shells, are typically 150 – 1500 m s-1, corresponding to high strain 

rates. The high velocity objects often cause penetration and perforation of the targets. Although porous 

materials can considerably attenuate the shock wave, strong solids are usually used as protective 

materials in order to provide a high resisting force against penetration.  

 

The capacity of a porous material in energy absorption can be characterised by its plateau strength and 

porosity [Gibson & Ashby, 1997; Ashby et al, 2000]. Plateau strength is the stress around which the 

porous material undergoes large deformation. It is an important parameter because it must not exceed 

the stress the subject under protection can withstand. The porosity determines its maximum 

deformation achievable without causing damage to the subject under protection. The maximum energy 

absorbed by per unit volume of the porous material before its densification can be approximately 

calculated as the product of the plateau strength and the porosity. For a particular matrix material, 

however, the plateau strength is also dependent on the porosity. The higher the porosity, the lower the 

plateau strength. Consequently, the maximum energy a porous material can absorb is more or less 

determined by the composition of the matrix.  

 

There is currently a wide range of porous materials available. Polymer foams have low plateau 

strength and are suitable for protecting human bodies and delicate objects from relatively low velocity 

and low energy impacts. Because of their relatively low strength, low stiffness, low temperature 

capability, high flammability and susceptibility to degradation in many environments, polymer foams 

cannot be used in more demanding structural applications. Porous ceramics alone are not good energy 

absorbers. Although ceramics have high strength, they are inherently brittle. Ceramics subject to 

impacts are immediately shattered and absorb little amounts of energy. 
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Metal foams have recently attracted an increasing level of interest in both academia and industry 

because of their good combinations of strength, stiffness, ductility, temperature capability and 

durability [Banhart, 2001]. Metal foams have much higher plateau strength than polymer based foams 

and are therefore suitable for protections against impacts of much higher energies. They can be used as 

lightweight panels for buildings against buckling and impact, crashboxes and passenger-door inserts in 

cars to improve the crashworthiness and passenger safety, and protective skins of military vehicles 

against explosives and projectiles. 

 

Metal matrix syntactic foams are a relatively new category of porous materials. Syntactic foams 

normally refer to the composite materials of a polymer matrix embedded with ceramic hollow sphere 

fillers. It is only recently that hollow ceramic or glass spheres are used for reinforcing metals. The 

resultant metal matrix syntactic foams are lightweight, homogeneous and inexpensive. By combining 

the good plasticity of metals, high strength of ceramics and high strain of pores, they can potentially 

provide high energy-absorption capacities over a wide range of impact velocities.  

 

The majority of the metal and metal matrix syntactic foams are Al based, because Al is light, relatively 

cheap and easy to be processed. The manufacturing methods for Al foams are mainly based on gas 

injection foaming, gas releasing foaming, investment casting, melt infiltration, or sintering [Banhart, 

2001]. The structures and mechanical properties of the foams vary considerably with the 

manufacturing methods. Broadly speaking, the gas injection and foaming routes have low production 

costs but poor controllability over pore size and distribution. The as-manufactured foams usually 

consist of large and inhomogeneous pores and therefore have limited applications. The investment 

casting method has excellent control over pore size and distribution but is characterised by high 

production cost. The as-manufactured foams are too expensive for large-scale applications.  

 

This paper studies the Al foams manufactured by the sintering and dissolution process (SDP) and the 

melt infiltration method and the Al matrix syntactic foam manufactured by the melt infiltration 

method. The structural characteristics of the foams are described. The energy absorption behaviour of 

the foams under static compression and impact conditions is investigated. 

 

2.0 Al FOAM MANUFACTURED BY SDP 

 

SDP is developed by Zhao et al for manufacturing open-celled Al foams [Zhao & Sun, 2001; Sun, 

Fung & Zhao, 2001; Sun & Zhao, 2003; Zhao, 2003; Zhao, Han & Fung, 2004]. In SDP, an Al powder 

is first mixed with a NaCl powder at a pre-specified volume ratio and then compacted into a preform. 
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The preform is normally sintered at 650-680°C, with the Al being in the solid or liquid state, for 

several hours. When a well-bonded Al network is formed, the compact is removed from the furnace 

and placed into a hot water bath. A net-shape Al foam is thus produced when the imbedded NaCl 

particles are fully dissolved in water.  

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Typical structure of Al foam manufactured by SDP [Zhao & Sun, 2001] 

 

Fig. 1 shows a typical structure of the Al foam manufactured by SDP. The pores in the Al foam are 

virtually negative replicas of the NaCl particles used. The shapes and sizes of the pores can therefore 

be controlled by selecting an appropriate NaCl powder. The pore size of the foam manufactured by 

SDP can range from 100 µm to several millimetres. The porosity of the foam can be controlled by the 

volume ratio between the NaCl and Al powders. The porosity can range from 60% to 85%. In other 

words, the relative density of the foam can range from 0.15 to 0.4. 
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Fig. 2 – Compressive stress-strain curves of Al foams with angular pores of ~3000 µm                     
and different relative densities 
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to a total impact energy of 20 J and an impact velocity of 3.1 m s-1. The energy absorbed by an 

Al foam in the dynamic condition is found to be about half of that in the static condition. The pore size 

also has some influence on the energy absorption [Sun & Zhao, 2003]. 
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Fig. 6 – Variations of (a) stress and (b) absorbed energy with strain in static (samples 1-3) and 

dynamic tests (samples 4-7) for Al foams with pore sizes and relative densities of: 
1: 250-425 µm, 0.42; 2: 710-1000 µm, 0.40; 3: 1000-1500 µm, 0.33; 

4: 425-710 µm, 0.30; 5: 425-710 µm, 0.22; 6: 710-1000 µm, 0.24; and 7: 1000-1500 µm, 0.23. 
 

Figs. 6(a) and (b) show the stress-strain curves and the corresponding variations of the amount of 

absorbed energy with strain of the Al foams in static and dynamic compressive tests. The pore sizes 

and relative densities of samples 1 – 7 are 250-425 µm, 0.42; 710-1000 µm, 0.40; 1000-1500 µm, 

0.33; 425-710 µm, 0.30; 425-710 µm, 0.22; 710-1000 µm, 0.24; and 1000-1500 µm, 0.23; in 

respective order. Samples 1 – 3 are tested in the static condition and samples 4 – 7 are tested in the 

dynamic condition with an impact velocity of 1 m s-1. The Al foams manufactured by melt infiltration 

and SDP have similar behaviour in that, at any given strain, the stress and thus the amount of energy 
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absorbed in the dynamic condition are less than half of those in the static condition. In the dynamic 

tests, the foams show long stress plateaus and distinctive densification points. The strength of the foam 

is mainly dependent upon the relative density and to a less extent upon the pore size. For similar pore 

sizes and porosities, the foams manufactured by the melt infiltration method are stronger than the 

foams manufactured by SDP. 

 

4.0 Al MATRIX SYNTACTIC FOAM 

 
Fig. 7 shows a typical cross-sectional structure of the Al matrix syntactic foam manufactured by the 

melt infiltration method. In this process, the molten Al is poured into a preheated mould packed with 

the particles of a porous ceramic powder. The Al melt infiltrates into the interstices of the particles and 

solidifies to form a continuous network. The syntactic foam is analogous to a composite of an Al 

matrix embedded with inter-contact porous ceramic particles. The porous ceramic powder used in the 

current work is E-spheres, composed mainly of SiO2 and Al2O3. The specific density of E-spheres is 

0.7 g cm-3 and the sizes of the majority of the particles are within 250 to 425 µm. The as-manufactured 

syntactic foam has a specific density of 1.55 g cm-3, with 42.5% Al and 57.5% E-spheres in volume. 

 

 

 

 

 

 

 

 

 

 

Fig. 7 – Typical cross-sectional structure 
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ceramic particles. Although Al matrix syntactic foams are expected to have very good energy 

absorption performance at high impact velocities, further investigations are needed to confirm this. 
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Fig. 8 –Variations of (a) stress and (b) absorbed energy with strain in static and dynamic tests for Al 

matrix syntactic foam 
 

5.0 SUMMARY 

 

Al and Al matrix syntactic foams have been manufactured by the SDP and/or the melt infiltration 

methods. The mechanical behaviour of the foams under static and dynamic compressive conditions 

has been investigated. The stress of and thus the energy absorbed by an Al foam in the dynamic 

condition is normally less than half of that in the static condition at any given strain. The stress-strain 
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curve of the syntactic foam, however, is not sensitive to the test condition. The strength and the energy 

absorption capacity of the Al foam are mainly dependent upon the relative density and to a less extent 

upon the pore size. The shape of the pores has a significant effect on the deformation mechanism. The 

foams with large angular pores are characteristic of flat plateaus in the stress-strain curves while those 

with small spherical pores are characteristic of steadily increasing plateaus. For similar pore sizes and 

porosities, the Al foams manufactured by the melt infiltration method are stronger than the Al foams 

manufactured by SDP. Compared with the Al foams, the Al matrix syntactic foam is much stronger 

but has a lower porosity. 
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