Nondestructive analysis of automotive paints with spectral domain optical coherence tomography

YUE DONG, 1,2 SAMUEL LAWMAN, 1,2 YALIN ZHENG, 2 DOMINIC WILLIAMS, 2 JINKE ZHANG, 1 and YAO-CHUN SHEN 1,*

1Department of Electrical Engineering & Electronics, University of Liverpool, Liverpool L69 3GJ, UK
2Department of Eye and Vision Science, University of Liverpool, Liverpool L7 8TX, UK
*Corresponding author: y.c.shen@liverpool.ac.uk

Received 22 January 2016; revised 7 April 2016; accepted 7 April 2016; posted 8 April 2016 (Doc. ID 258046); published 29 April 2016

We have demonstrated for the first time, to our knowledge, the use of optical coherence tomography (OCT) as an analytical tool for nondestructively characterizing the individual paint layer thickness of multiple layered automotive paints. A graph-based segmentation method was used for automatic analysis of the thickness distribution for the top layers of solid color paints. The thicknesses measured with OCT were in good agreement with the optical microscope and ultrasonic techniques that are the current standard in the automobile industry. Because of its high axial resolution (5.5 μm), the OCT technique was shown to be able to resolve the thickness of individual paint layers down to 11 μm. With its high lateral resolution (12.4 μm), the OCT system was also able to measure the cross-sectional area of the aluminum flakes in a metallic automotive paint. The range of values measured was 300–1850 μm². In summary, the proposed OCT is a noncontact, high-resolution technique that has the potential for inclusion as part of the quality assurance process in automobile coating.

OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (120.4290) Nondestructive testing; (110.4500) Optical coherence tomography.

http://dx.doi.org/10.1364/AO.55.003695

1. INTRODUCTION

The application of paint to a car body is a multistage process. The expensive auto body paint is usually applied in four coatings (Fig. 1): an electrocoat, a primer, a base coat, and finally a clear coat. The result of these successive paint layers is a surface that exhibits complex light interactions, giving the car a smooth, glossy, and, if a metallic base coat, sparkly finish. More importantly, these paint layers not only provide appealing color effects and waterproofing. It is hence of great interest to characterize car paint properties, including thickness and uniformity, for the purpose of quality control and quality assurance.

A number of techniques have been investigated as tools for the quality assurance of these coatings. In the automobile industry, the individual paint layer thickness is currently evaluated by the ultrasonic testing method [1]. Ultrasonic testing is a contact technique, and it only measures the thickness on a few sampling points. Hence, it is short of enough information to detect localized paint defects and thickness distribution. Recently, terahertz (THz) pulsed imaging (TPI) has been demonstrated as a powerful technique for quantitatively characterizing the individual paint layer thickness distribution and drying process nondestructively [2–4]. It has been shown that both the layer thickness and the refractive index can be determined by comparing the experimentally measured THz signal with the numerically simulated waveforms [3,4]. However, the numerical fitting method is a computationally intensive process to accurately extract all eight parameters (four thicknesses and four refractive indices) from the measured THz signal. Both the measurement accuracy and the speed could be significantly improved with prior knowledge about one or more of the eight unknown parameters.

Optical coherence tomography (OCT) [5] is another nondestructive imaging technique that has better performance in both axial and lateral resolutions. OCT has become a standard diagnostic instrument in ophthalmological diagnosis [6]. Recently, OCT has also found uses in many nonmedical fields [7], including thickness measurement of paper [8], fluttering foils [9], and pharmaceutical tablet coating [10,11]. In this paper, we demonstrate for the first time, to our knowledge, that spectral domain OCT (SD-OCT) [12] can be used to assess the top two layers of real-world automotive paints. While OCT has already been demonstrated as an effective tool for imaging paint layers and underdrawings of museum paintings [13–16], the complex and unknown structure of these objects generally requires skilled human qualitative assessment input to interpret. The application of OCT to quality control for automotive paints is quite different in the required output. The system needs to automatically return quantitative paint layers’ structural information. To achieve this automatic output, in this paper we first
apply image segmentation to quantitatively evaluate not only the overall paint layers thickness but also the thickness distribution and uniformity of the whole area under measurement. Second we use thresholding to recover the locations and sizes of metallic flakes within a paint layer. Owing to the relatively shorter wavelength and broadband nature of the light source, SD-OCT is shown to be able to measure with high precision the layer thickness of the top paint layers in the range from 11 to 100 μm without any numerically fitting method. Great consistency is shown between the results of SD-OCT measurements and two other reference techniques, ultrasonic testing and optical microscope. Moreover, the density (number of flakes per unit area) and dimensions of aluminum flakes in the base coat layer of a metallic colored paint sample are also determined using the SD-OCT system. These are the most important parameters for the sparkle effect of the automotive paints and are not able to be determined by any other active industry benchmarks techniques.

2. METHOD AND MATERIALS

A. SD-OCT System and Performance

All OCT measurements presented in this paper were performed by an in-house SD-OCT system [17]. Figure 2 shows its schematic diagram. A superluminescent diode light source (EXLOAS EXS210040-01) was used. The center wavelength is 840 nm, and the spectral full width at half-maximum (FWHM) is 47 nm. The collimated light beam was divided into a reference and sample beams using a broadband 50:50 beam splitter. Then the backscattered light from the sample was collected using an achromatic lens, and the collected light was subsequently recombined with the backreflected light from the reference reflector. The resultant spectral interferogram was recorded using a high-resolution spectrometer (HR2000+, Ocean Optics).

Theoretically, the spectral interferogram \(I(\lambda) \) between the sample and reference reflector can be expressed by

\[
I(\lambda) = S(\lambda) \left[R_r + \sum_{n=1}^{N} R_n + 2 \sum_{m \neq n} \sqrt{R_m R_n} \cos(2\pi \Delta \epsilon_{nn}/\lambda) \right. \\
\left. + 2 \sum_{n=1}^{N} \sqrt{R_n R_n} \cos(2\pi \Delta \epsilon_n/\lambda) \right],
\]

where \(S(\lambda) \) is the spectral power density of the light source; \(R_r \) and \(R_n \) are the reflectivity of the reference reflector and the \(n \)-th sample interface, respectively; \(\lambda \) is the wavelength; and \(\Delta \epsilon_m \) and \(\Delta \epsilon_n \) denote the optical path length difference (OPD) between sample interfaces \(n \) and \(m \) and the reference reflector and sample interface \(n \), respectively. Equation (1) contains four terms. The first two terms are the DC component, which produces a strong signal at the zero OPD position. The second term is the autocorrelation between the different interfaces of the sample, which can produce unwanted image ghosts. The last term, which contains the desired sample structure information, is the cross-correlation between the reference reflector and the sample interfaces. Apart from the cross-correlation term, the other three terms will contaminate the final OCT cross-sectional image. In order to minimize the contamination introduced by the mutual correlation component, the reference reflected light intensity can be set much stronger than the backscattered sample beam \((R_r \gg R_n) \). Alternatively, by taking two separate spectral interferograms with a phase shift of \(\pi \) on the same sampling point, the DC and mutual correlation components can be completely removed in their differential interferogram [18].

The recorded discrete spectral interferogram \(I(\lambda) \) is first interpolated into equal wavenumber spacing, \(I(k) \). It is then zero padded before applying a fast Fourier transform (FFT) algorithm to generate the depth profile. Assuming the DC and autocorrelation terms are removed by the abovementioned phase shift method, the OCT depth profile (A-scan) can be expressed as

\[
R(z) = \text{DFT}\{I(k)\} = \text{DFT}\{S(k)\} \otimes \left[2 \sum_{n=1}^{N} \sqrt{R_n R_n} \delta(z \pm \Delta \epsilon_n) \right],
\]

where \(\otimes \) stands for convolution and \(\delta \) stands for the Kronecker Delta function. The theoretical axial resolution is determined by the FWHM of the axial point spread function (PSF), which is given by Fourier transforming of the power spectral density of
the light source. To experimentally measure the axial resolution, we took the FWHM of the main peak in the depth profiles. The blue curve in Fig. 3(a) shows the spectral interferogram between a glass plate and a reference reflector. After the data interpolation, zero padding, and FFT, the depth profile is generated and shown by the blue waveform in Fig. 3(b). The sharp cutoff of the spectrum at 800 nm due to the range of the spectrometer used introduces additional ringing (side lobe) artifacts. These are removed by applying a Tukey window before the FFT. The red waveform shown in Fig. 3(b) is the OCT depth profile generated by first applying a Tukey window function on the original measurement spectral interferogram. The window function has no significant effect on the axial resolution but reduces the side lobes significantly. The axial resolution determined by the FWHM of the main peak in the depth profile is 5.5 μm in air, which is significantly better than the typical value for TPI (30 μm) method.

In order to determine the lateral resolution of the SD-OCT system, the USAF 1951 resolution target (Thorlabs, Germany) was scanned. As shown in Fig. 4, the smallest bars that the SD-OCT system cannot resolve on the resolution target are the third elements of the sixth bar group. This corresponds to a lateral resolution of about 12.4 μm.

B. Automobile Paint Samples
In this study, automotive paint samples with four different base coats were measured. The first three sets are solid color automotive samples with white, black, and onyx base coats. These three paint samples are nonmetallic. The fourth set of paint sample is a silver metallic color sample, which has a sparkle effect due to aluminum flakes in the base coat layer. Each set consists of two individual paint samples, one applied on a metal substrate and the other applied on a carbon fiber composite material substrate that is increasingly being used in the automobile industry due to its stiffness and lightweight nature. As shown in Fig. 1, all of these samples were prepared with four layers to be representative of real-world automotive paint layer structures. The individual thickness of each paint layer typically ranges from 10 to 100 μm, depending on the different function of each layer. The total thickness of all the four layers is in the range of 170 to 240 μm.

3. RESULTS AND DISCUSSION
A. Solid Color Paint Samples
In each experiment, the OCT took one B-scan consisting of 200 A-scans over a lateral range of 1 mm. Hence, the distance between each A-scan is 5 μm. Figure 5 shows the typical cross-sectional images of the solid color samples.

The light penetration depth in the sample depends on the scattering and absorption properties of different layers. For all samples the transparent clear coat can be seen in their cross-sectional image due to the low scattering and low absorption of this pigment free paint layer. For the black and onyx base coat samples shown in Figs. 5(a) and 5(b), the base coats appear almost as transparent as their clear coats. The absorption and scattering of the near infrared (NIR) light by these pigmented base coat layers are not sufficient to stop the OCT from being able to see through them. Below the base coat layers, the highly absorbing primer coat absorbs most of the incident light; hence, neither of the primer coat nor electrocoat could be resolved by the OCT system in this wavelength region (850 nm). The cross-sectional image of the white base coat sample shown in Fig. 5(c) demonstrates that it has a transparent clear coat layer as well. However, different from the black and onyx samples, the strongly multiple scattering property of the titanium dioxide in the white base coat limits the penetration depth of the incident light [19]. Light entering this layer is scattered many times within a short distance, meaning no structure
underneath it can be resolved. So far, for nonmetallic paints, this only appears to be an issue with white or near-white base coats with high titanium dioxide content. One method of increasing penetration in the white and highly reflective base coats is to select a wavelength of light where these are more transparent. Recently, both time-domain and Fourier-domain OCT have been developed that use 1960 nm infrared light [20,21], where titanium dioxide white paint layers have been shown to be transparent. [20].

The coating thickness of each paint layer is one of the most important parameters for characterizing the painting quality in automobile industry. Ideally, the individual coating thickness of a sampling point can be determined by finding the interface peaks in the OCT depth profile. In practice, it is actually difficult to distinguish the interface peaks with pigment-introduced peaks in a single OCT depth profile. By averaging the neighboring depth profiles of a sample, the interface peaks will be significantly enhanced, as shown in Figs. 5(d)–5(f). The average thickness of each paint layer can be worked out by the distance between the boundaries of each layer divided by their refractive indices [3] (1.56 for clear coat and 1.64 for base coat), respectively. However, the averaging of depth profiles/A-scans loses spatial information useful to access the distribution and uniformity of an individual paint layer.

Fig. 5. OCT cross-sectional images of automotive paint samples with (a) black, (b) onyx, and (c) white base coat. Averaged depth profile of automotive paint samples with (d) black, (e) onyx, and (f) white base coat. 1: surface; 2: clear coat–base coat interface; 3: base coat–primer coat interface. All the solid color samples have transparent clear coats. The base coat of black and onyx samples are transparent as well, but the white base coat is cloudy due to the strongly scattering of the titanium dioxide.

Fig. 6. Thickness distribution information of solid color automotive paint samples. Top row: black; bottom row: onyx. (a), (c), (e), (g) Surface and interfaces of paint samples extracted by graphic segmentation; black: surface; pink: interfaces. (b), (d), (f), (h) Thickness distribution of clear coat and base coat.
In this study, a graph-based segmentation algorithm was used to detect the position of surface and interfaces on all sampling points in an OCT cross-sectional B-scan image. More specifically, the image is represented as a graph, whereas each pixel of the image is regarded as a node of the graph. Now the surface/interface segmentation problem becomes finding the shortest path from the left to the right of the image according to an energy functional as defined by the gradient information of the image. The surface and interfaces will be detected one by one by repeatedly applying this segmentation approach. Hence, the coating thickness of all the sampling points can be worked out rather than an averaging value. As shown in Fig. 6, the black and pink lines in the images stand for the extracted surfaces and interfaces, respectively. The clear coat and base coat thickness distribution of the solid color paint samples were calculated by the distance between the extracted surface and interfaces and shown in the histograms at the right-hand sides of their corresponding images. The thinnest resolved base coat thickness is 11.8 μm. Furthermore, our OCT method also provides the standard deviations of each paint layer which can be used to evaluate its uniformity.

In order to validate the OCT measured thickness, two currently used reference techniques, optical microscope and ultrasonic testing (μP501A PELT multilayer thickness gauge), were applied independently on the samples to measure the thickness of individual paint layers. The mean OCT measured thicknesses, and the optical and ultrasonic measured thicknesses are listed in Table 1 for comparison. The OCT measured thickness shows a good agreement with the reference techniques. The maximum difference between the OCT measured thickness and the two reference techniques is less than 3.5 μm.

B. Metallic Base Coat Paint Samples

The effect of the sparkly finish of an automotive paint lies on the dimensions and the orientations of the aluminum flakes in the metallic base coat layer. In order to characterize the dimensions of the aluminum flakes in the metallic base coat paint samples, a lateral area of 1 mm × 0.1 mm is scanned with the OCT. As shown in Fig. 7(a), 10 B-scans were taken in this area and the distance between each B-scan was 10 μm. For each B-scan, OCT measured 200 spectral interferograms (A-scans) covering a length of 1 mm, which is the same as the solid base coat samples. Figure 7(b) shows the cross-sectional image generated from one of the measured B-scan data sets. As discussed above, the clear coat is transparent. In the base coat, there are high intensity reflections from the aluminum flakes. This high reflectance causes an image artifact, due to the multiple reflections between the flakes and surface of the clear coat, to be visible under the base coat in the cross-sectional image. Figure 7(c) shows the peak intensity map of the base coat. High intensity corresponds to reflection from flakes. In order to determine the boundary of the aluminum flakes, the simplest image method, namely thresholding, was applied on the intensity map. The thresholding parameter used in this work is an empirical value. Pixels located at the boundaries of clearly distinguished flakes were manually selected. The mean intensity of these boundary pixels was subsequently used as the thresholding parameter. After thresholding, 15 flakes were detected and are shown in Fig. 7(d). By counting the pixels for selected flakes, the biggest flake in the area contains 37 pixels that...
are equivalent to 1850 μm², and the smallest one contains six pixels equivalent to 300 μm². The mean area for the flakes is 930 μm². Therefore, the OCT technique reported here may provide a unique way for determining the size and orientation of the metal flakes within the automobile coatings. To the best of our knowledge, there is currently no other technique capable of doing this.

4. CONCLUSION

First, SD-OCT is a method to measure the upper layer thicknesses of automobile paints. The thickness of the clear coat is always resolvable. For nonmetallic and nonwhite samples the thickness of the base coat is also resolvable. The range of layer thicknesses of automobile paints. The thickness of the clear coat is 11.8 thickness or the range of layer thicknesses can be determined in real time.

Funding. Engineering and Physical Sciences Research Council (EPSRC) (EP/K023349/1, EP/L019787/1).

Acknowledgment. The authors would like to thank Dr. Su and Dr. Zeitler of Cambridge University for helpful discussions.

REFERENCES