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The purpose of our research was to investigate efficient procedures for generating multivari-
ate prediction vectors for quantitative chemical analysis of solid dosage forms using terahertz
pulse imaging (TPI) reflection spectroscopy. A set of calibration development and validation
tablet samples was created following a ternary mixture of anhydrous theophylline, lactose
monohydrate, and microcrystalline cellulose (MCC). Spectral images of one side of each tab-
let were acquired over the range of 8 cm-1 to 60 cm-1. Calibration models were generated by
partial least-squares (PLS) type II regression of the TPI spectra and by generating a pure-
component projection (PCP) basis set using net analyte signal (NAS) processing. Following
generation of the calibration vectors, the performance of both methods at predicting the con-
centration of theophylline, lactose, and MCC was compared using the validation spectra and
by generating chemical images from samples with known composition patterns. Sensitivity
was observed for the PLS calibration over the range of all constituents for both the calibration
and the validation datasets; however, some of the calibration statistics indicate that PLS overfits
the spectra. Multicomponent prediction images verified the spatial and composition fidelity of
the system. The NAS–PCP calibration procedure yielded accurate linear predictions of theo-
phylline and lactose, whereas the results for MCC prediction were poor. The poor sensitivity
for MCC is assumed to be related to the relative lack of phonon absorption bands, which
concurs with the characterization of MCC as being semi-crystalline. The results of this study
demonstrate the use of TPI reflection spectroscopy and efficient NAS–PCP for the quantita-
tive analysis of crystalline pharmaceutical materials.
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Introduction
A confluence of analytical technologies and techniques has
opened new windows for pharmaceutical scientists and en-
gineers to observe rapidly and non-destructively the physi-
cal and chemical characteristics of pharmaceutical drug
products and solid dosage units. Spectroscopic technologies,
such as near infrared (NIR) and Raman, which were devel-
oped largely outside of the pharmaceutical industry, are
becoming relatively common solutions for drug development
and manufacturing process control (e.g., process analytical
technology [1]). More recently, however, pharmaceutical
applications have had a key role in the development of novel
instrumentation for terahertz (THz) spectroscopy and im-
aging [2].

The THz band gap is situated in the far-infrared (IR)
region of the electromagnetic spectrum, just before micro-
wave radiation, and covers the range from 10 cm–1

to 330 cm–1, or 300 GHz to 10 THz. Owing to the low-fre-
quency nature of the radiation, the solid-state optical reso-
nance phenomena detected in the THz range are largely
the result of large-mass intramolecular oscillations, inter-
molecular bond vibrations (e.g., hydrogen bonds), or phonon
lattice dynamics in crystalline materials [3-5]. Because
many of the polymers used as binders, fillers, coating
agents, and packaging materials during solid dosage manu-
facturing do not exhibit such dynamics, these materials
have extremely low THz absorptivity, and hence, are nearly
transparent in the THz region. However, active pharma-
ceutical ingredients, which are typically used in crystal-
line form, are expected to have intense THz spectral-ab-
sorption signatures. Intermolecular and phonon lattice vi-
brations are strongly related to the composition and geom-
etry of molecular crystals and are highly localized. Hence,
spectral features in the THz range can often be verified
using ab initio calculations, which is one of the reasons
why THz spectroscopy is a powerful tool for the verifica-
tion of crystal form [3-5] and is complementary to X-ray
diffraction and Raman spectroscopy. Furthermore, because
many packaging materials and excipients are semitrans-
parent, THz radiation can probe relatively deep within drug
tablets and directly through some containers [2,6].

Early studies of the far-IR region were performed using
traditional dispersive or Fourier transform optics with non-
coherent illumination sources. Illumination sources such as
glowbars have intensity in the THz region that is only
slightly greater than the level of background (e.g., black-
body) radiation. Moreover, a large fraction of light is lost to
the optical inefficiencies of traditional spectrometers. Hence,
far-IR analyses have, in most cases, been too slow and in-
sensitive for use beyond theoretical investigations. A new
form of instrumentation, THz pulse spectrometry (TPS), has
absolved these limitations.

Terahertz pulse spectroscopy
Terahertz pulse spectrometers use coherent generation and
detection of femtosecond THz pulses, based on the principles
of the Auston switch [7], to probe the far-IR region without
the need for dispersive or traditional Fourier interferomet-
ric optics for wavelength or frequency selection (Figure 1).
The TPS measurement process begins with the firing of a
pulsed Ti:sapphire laser, producing an ~80-fs pulse of 800-
nm radiation (~80-MHz repetition rate). A portion of the
NIR pulse (pump beam) is directed onto a voltage-biased
gallium arsenide (GaAs) substrate, which serves as the
Auston switch emitter, while the remainder of the pulse is
directed toward a variable time delay (probe beam). The
incident NIR radiation causes an acceleration of charge
across the gap, producing an ~500-fs pulse of broadband THz
radiation that propagates from the GaAs substrate by the
electro-optic effect (Figure 2). Focusing optics direct the pulse
onto the sample, where radiation is transmitted, reflected
(or scattered), or absorbed. Only reflected and absorbed ra-
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Figure 1. Schematic view of the TeraView coating scan optical path.

Figure 2. Schematic of an Auston-switch-gated THz emitter and de-
tector. Emitter is shown in (a) and detector is shown in (b).
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diation will be considered in this study. Subsequently, col-
lection optics direct reflected radiation to a second Auston
switch, where it is coincident with the time-delayed probe
beam. When the reflected THz radiation and NIR probe
beams simultaneously strike the detector switch, a transient
current that is proportional to the THz reflection is gener-
ated and measured by readout electronics.

Time-domain THz spectra are generated by measuring
the intensity of THz reflections over a range of probe beam
delays (Figure 3). The features in TPS time-domain spectra
correspond to relatively intense reflection events that occur
when the incident THz plane wave meets an interface be-
tween two materials with different refractive indices. Typi-
cally, a positive peak indicates a transition from lower to
higher refractive index [8]. If the sample refractive index is
known, the time delay of the probe beam can be converted
to distance. The time-domain TPS signal can be considered
analogous to an ultrasound B-scan, whereby the depth and
thickness of interfaces can be estimated with finite accu-
racy. By raster-scanning across the surface of a sample, a
2D map or image of TPS signals can be generated. Hence,
time-domain TPS and THz pulse imaging (TPI) have been
used to determine accurately and non-destructively the
thickness and uniformity of many solid objects such as tab-
let coatings and active layers within laminated tablets (e.g.,
multiple layers of distinct compositions) [9].

Frequency-domain THz spectra are generated from the
time-domain signals by fast Fourier transformation (FFT),
followed by normalization using a reference spectrum. The
reference spectrum for reflection TPS is collected by scan-
ning the surface of a metallic mirror. A ratio of the time-
domain FFT power spectra for the sample (Es) and 100%-
reflectance mirror reference (Er) channels yields a complex
conjugate pair for each discrete optical frequency (v), from
which the absorption coefficient (a) and refractive index (n)
intensities can be calculated [6] (Equation 1).

a(v) 1 – Es(v)/Er(v)
√ε ≡ n(v) + j __________ = _____________________ (Eqn 1)

4πv 1 + Es(v)/Er(v)

Previous research has demonstrated frequency-domain
transmission TPS for both qualitative and quantitative
analyses [4,5,9]. Intuitively, one can envision how a com-
bination of the 3D spatial measurement capabilities of TPI
and the quantitative power of TPS would produce a power-
ful comprehensive platform for the non-destructive analy-
sis of solid dosage form. At this time, however, the quanti-
tative capabilities of TPS and TPI in the reflection mode
remain to be explored. Indeed, to the best of our knowl-
edge, this is the first work to demonstrate the quantitative
capabilities of reflection THz-pulsed spectroscopy and im-
aging.

Objectives
The objectives of this work were to:

(i) investigate the quantitative capability of reflection TPS
using typical pharmaceutical materials

(ii) demonstrate the combination of TPI and chemometrics
for non-destructive 2D chemical mapping

(iii) compare the relative merits of quantitative reflection-TPS
calibration for absorption and refractive index spectra

(iv) determine the feasibility of using pure-component pro-
jection (PCP) efficient calibration techniques for rapid
quantitative TPS-method development.

Experimental
Three-component tablet production
A ternary-mixture design was chosen to provide a moderate
chemometric challenge. Anhydrous theophylline powder (lot
no. 92577, Knoll, Ludwigshafen, Germany) was chosen as
the model compound because its crystal form has absorp-
tion features in the THz region. Lactose 316 Fast Flo® NF
monohydrate (lot no. 8502113061, Hansen Laboratories,
New Berlin, WI, USA) and microcrystalline cellulose (MCC,
Avicel® PH 200, lot no. M427C, FMC BioPolymer,
Mechanicsburgh, PA, USA) were chosen as compression
excipients. The approximate mean particle sizes of the theo-
phylline, lactose, and MCC (reported by documentation from
their respective suppliers) were ~90, ~100, and ~180 μm,
respectively. All ingredients were used ‘as is’, with no addi-
tional characterization or modification of particle size. In
all, 24 design points were selected for tablet production (Fig-
ure 4); 16 mixtures were used for THz calibration and eight
mixtures were reserved for validation testing. A single tab-

Figure 3. Example THz time-domain intensity scan of a solid compact
of theophylline, lactose and MCC, and a 100%-reflectance mirror ref-
erence signal. Horizontal axis describes the distance traveled by the
optical delay line and is proportional to photon time of flight.
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let was produced for each mixture on a parts-by-weight (w/
w) basis, each having a theoretical weight of 1000 g; the
complete mixture design is shown in Table 1. Tablet mate-
rials were individually dispensed onto weighing paper dur-
ing weight determination (Data Range, model no. AX504DR,
Mettler Toledo, Columbus, OH, USA) and placed directly
into 15 × 45-mm glass scintillation vials (Fisher Scientific
International, Hampton, NH, USA). After all constituents
were dispensed, the nominal mixture concentrations were
updated using the observed mass data.

The constituent mixtures were agitated manually and
by slowly rotating on a jar mill (US Stoneware, East Pales-
tine, OH, USA). After ~15 min of continuous rotation, an
NIR reflectance spectrum was acquired for each mixture by
scanning through the bottom of the scintillation vial (FOSS
NIR Systems 5000). An ad hoc calibration model was cre-
ated after each blending run, using the acquired spectra and
nominal constituent concentrations for all mixtures to esti-
mate blend uniformity. The mixtures were assumed to be
effectively homogenous when further mixing failed to yield
an increase in the coefficient of determination of the cali-
bration model.

Once mixed, the contents of each scintillation vial were
transferred to a 13-mm die for tablet compression. All tab-
lets were compacted using a flat-faced punch with 6000 lb
of compression force over a 10-second dwell time (Carver

Automatic Tablet Press, model 3887.1SD0A00, Wabash, IN,
USA). Three mixture design points (nos 22, 23, and 24) were
mixed using sufficient material to create two additional ‘split’
tablets for verification of dynamic range and resolution of
THz chemical imaging. The split tablets were made by in-
serting a thin rigid divider into the tablet die. With the di-
vider in place, approximately the same volume of material
from one of the three design points (22, 23, or 24) was placed
on each side of the partition. Immediately before inserting
the tablet punch, the divider was gently removed, taking
care to avoid disturbing the powder bed. After gently tamp-
ing the punch to stabilize the split-sided wad, the tablets
were compressed using the procedure described earlier. An
additional split tablet was created that consisted of pure
lactose and pure MCC.

Data acquisition, instrumentation, and software
Following compaction, a THz scan from one side of each tab-
let was acquired in reflection mode using a TPI coating scan
(TeraView, Cambridge, UK). The flat-face punches used to
compress the test tablets created a sharp edge around the
circumference of the tablet, which was expected to affect
the reflection signature adversely. Hence, a spot with a di-
ameter of ~6 mm near the center of each tablet was scanned
(a larger spot was scanned for the split tablets used for im-
age analysis). Depending on the size and geometry of the

Figure 4. Ternary diagram of the balanced mixture design used for calibration. The validation samples are not balanced and were chosen with
emphasis on the range of theophylline tested. Twenty-four design points were selected for tablet production; 16 mixtures were used for THz
calibration and eight mixtures were reserved for validation testing.
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tablet area to be scanned, ~750–1250 scans were collected
for each side of a tablet, requiring ~10 min of scan time. A
single tablet (no. 10) was scanned 10 times to estimate the
error of short-term repeatability. The spectral range of in-
terest was ~8–60 cm–1. The scanning parameters were con-
stant for all tablets analyzed.

Conversion of the time-domain TPI waveforms to fre-
quency-domain spectra was handled by batch software pro-
vided by TeraView. Both refractive index and optical absorp-
tion spectra were calculated and subjected to all subsequent
data analyses. Chemometric analyses were performed in the
MATLAB programming environment (v7.1, MathWorks,
Natick, MA, USA) using the PLS_Toolbox (v3.0, Eigenvector
Research, Manson, WA, USA), together with many analysis
routines developed in-house (Duquesne University Center for
Pharmaceutical Technology, Pittsburgh, PA, USA).

Data analysis
To simplify the data analysis process, only the mean spec-
trum for each tablet was used for calibration and validation.
Using a subset of the thousands of available spectra for each
tablet image might have improved the generality of the cali-
bration to a degree, but such objectives were not a focus of
this research. Based on the experiences of other researchers,
it was anticipated that some pretreatment of the frequency-
domain spectra would be required to reduce baseline effects
related to physical sample interactions. Typical spectroscopic
preprocessing operations such as scatter correction,
detrending, and derivatives, in addition to combinations of
procedures [10], were tested. The preprocessing method cho-
sen for further method development would be selected based
on simplicity and reduction of leave-one-out cross-validation
error. The standard errors (SE) of calibration (SEC), cross-
validation (SECV), and validation (SEP) were calculated ac-
cording to the following formula (Equation 2):

∧Σ (y – y)2

SE = _______________ (Eqn 2)
√ n – 1

∧where y, y and n are the measured and predicted concentra-
tions and the number of samples for the associated dataset,
respectively. In addition to the error statistics, the calibra-
tion limit of detection (LOD) was estimated using the stan-
dard deviation of prediction (σ) for a series of 10 repeat scans
of a single tablet and the International Union of Pure and
Applied Chemistry (IUPAC: http://www.iupac.org/
dhtml_home.html) formula for LOD [11] (Equation 3):

kσ
LOD = __________ (Eqn 3)

m

where m is the slope of a univariate classical least-squares
fit of the predicted and reference data, and k is the confi-
dence factor (for this work, k = 3.0). It is important to note
that, for inverse least-squares (ILS) univariate correlation,
m is in the numerator of the LOD calculation.

Empirical modeling of the TPS frequency spectra and
concentration data was performed using partial least-
squares (PLS) type II, whereby the regression coefficient
vectors for each of the tablet constituents were estimated
simultaneously from the same orthogonal basis set [12]. The
ideal number of PLS latent variables for regression was es-
timated by minimizing the SEC and the SECV. Between
two and six PLS factors were expected to be required for
adequate model complexity, based on the number of chemi-
cal constituents and physical factors expected to affect the
shape of spectra. Whereas high-rank models can be used
successfully, calibrations involving significantly more fac-
tors than the number of chemical constituents should be
approached with caution.

One of the objectives of this research was to investigate
the feasibility of applying efficient PCP-method development
[13] to reduce the time and expense of future TPS calibra-

Sample Theophylline Lactose MCC
no. (wt/wt) (wt/wt) (wt/wt)

1 0.20 0.59 0.21
2 0.39 0.39 0.21
3 0.60 0.20 0.20
4 0.40 0.20 0.40
5 0.21 0.40 0.40
6 0.20 0.20 0.60
7 0.11 0.45 0.44
8 0.30 0.35 0.35
9 0.40 0.30 0.30
10 0.50 0.25 0.25
11 0.33 0.33 0.34
12 0.25 0.25 0.50
13 0.03 0.49 0.49
14 0.25 0.50 0.25
15 0.40 0.00 0.60
16 0.00 0.40 0.60
17 0.60 0.00 0.40
18 0.00 0.60 0.40
19 0.60 0.40 0.00
20 0.40 0.60 0.00
21 0.05 0.47 0.48
22 0.50 0.30 0.20
23 0.30 0.20 0.50
24 0.30 0.50 0.20

aShaded rows indicate validation samples.

Table 1. Three-component sample mixture plan.a

Continued on page 68.
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tion efforts. The analysis of most pharmaceutical solids for
process development or control offers a uniquely rich collec-
tion of a priori information relative to the types of multi-
variate calibration problem for which most chemometric
methods, such as PLS, were developed. The use of
chemometric methods based on ILS is largely reflective of
their early applications in food, agriculture and petrochemi-
cal analysis, in which there might be many constituents that
exhibit natural variation over wide ranges [14]. Hence, by
necessity, calibration models were often built using hun-
dreds of samples with extremely diverse concentrations.

However, pharmaceutical solids consist of relatively few
constituents for which spectral profiles can be acquired eas-
ily. Because chemical reactions in drug tablets are typically
eschewed, the shape of pure-component spectra in the com-
pacted tablet can be expected to remain extremely similar to
the pure spectrum of the raw component. The remaining in-
teracting factors such as matrix hardness and distribution of
ingredient particle size affect the spectra in predictable ways.
Finally, because the scale of observed composition variation
for the analysis of pharmaceutical solids is rather narrow,
nonlinearity related to prediction over wide ranges of compo-
sition is minimal. Therefore, a linearly additive model of pre-
processed optical spectra should be a reasonable assumption.
The foundation of efficient spectroscopic calibration is based
on the application of a priori information such as pure-com-
ponent spectra, knowledge of relevant constraints, and as-
sumption of a spectral model (i.e., Beer’s law) [13].

Two alternative techniques for efficient multivariate
calibration using pure-component spectra have been de-
scribed in the literature: generalized least-squares (GLS)
and net analyte signal (NAS). Both techniques are based on
a linearly additive model for the observed spectral intensi-
ties. Although we can expect the THz frequency-domain re-
flection spectra to deviate from the linearly additive model
to some extent, it is important to realize that the purpose of
efficient calibration is to obtain a method that is useful
within the expected bounds of the task with as few resources
as possible. Hence, until more-complicated models are
proven to be of greater value, the simplest methods that can
reach our objectives will be applied.

Generalized least-squares techniques have most often
been applied in conjunction with ILS methods as a means
to attenuate the variance–covariance matrix of predictor
variables when confidence is relatively low [13,15-18]. The
adjustment is carried out by effectively normalizing the pre-
dictor covariance matrix by the inverse of the covariance
matrix for known errors such as variance in repeatability or
residual predictor variance. By making the assumption that
the pure-component spectrum of a tablet component is the
maximum-likelihood predictor of that component in a noise-
free system, it should follow intuitively that multiplicative
attenuation of the pure-component vector by GLS weight-

ing will yield the maximum-likelihood predictor in the pres-
ence of structured noise in the predictor variables, given
the available training data.

Thus, the GLS–PCP prediction filter [13,19] can be es-
timated using nothing more than the pure-component spec-
trum for the component of interest and an estimate of the
various spectral noise sources (Equation 4):

'BGLS = P((TnTn)–1 (Gt P)') (Eqn 4)

where G is a matrix of pure-component spectra, and Tn and
P are the principal component scores and loadings, respec-
tively, for a matrix of noise spectra; BGLS is the estimated
prediction filter. Given sufficient spectral sensitivity, the
projection of sample spectra onto a single GLS–PCP predic-
tion vector will yield a univariate output response that is
linear with respect to concentration in the component of in-
terest. The GLS–PCP method did not perform well using
the data generated from this experiment and will not be
discussed further; based on the GLS–PCP formulation, it
seems that the algorithm requires extensive characteriza-
tion of the noise matrix. Otherwise, if the noise matrix is
nearly singular, the GLS–PCP results are unstable.

In contrast to GLS–PCP, NAS processing is an additive
(or, more intuitively, subtractive) adjustment of the pure-
component spectrum for generating a prediction filter. There
are (at least) two methods of generating NAS prediction
vectors; the first is a generalization of ILS that requires a
complete calibration dataset for implementation, and the
second involves reducing the rank of the hyperspace spanned
by the pure-component vectors. This work is concerned with
the second type, whereby the pure-component spectrum for
a component of interest is modified by projection into the
null space spanned by the pure-component vectors of the
other constituents [20] (Equation 5):

BNAS,k = [I – Gt
–k (G–k)+]Gk (Eqn 5)

where Gk is the pure-component spectrum for the constitu-
ent of interest, G–k is the matrix of pure-component spectra
for the other components, I is the identity matrix, + is the
Moore–Penrose pseudo-inverse, and BNAS,k is the estimated
NAS–PCP prediction filter for the constituent of interest.

Rather than limiting the null-space projection to the
pure-component spectra, the significant principal compo-
nents of interference spectra generated from repeat scans
of one of the tablets were added to the projection basis (G–k).
The number of principal components included was deter-
mined in the same way that the number of PLS factors was
chosen. Although this deviates from Lorber’s NAS deriva-
tion [20], it has the beneficial effect of suppressing spectral
noise with structured covariance. It is expected that some
analytical signal is lost by including additional interference
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components in the G–k matrix; however, such portions of the
NAS hyperspace are unreliable for prediction because they
cannot be separated from noise signals. The separation of
reliable and unreliable analyte signal is the primary ad-
vantage of NAS methods. Because few samples were cre-
ated for this work, repeat spectra from only a single tablet
were included in the orthogonalization. For practical appli-
cations of NAS–PCP, in which production-scale samples are
relatively plentiful, spectral noise matrices can be created
to model the effect of many targeted variances (e.g., batch-
to-batch, long- and short-term instrument drift) [21].

Once the NAS–PCP filter coefficient matrix was gener-
ated, scans of the pure-component material were projected
into the basis to produce concentration scores that were use-
ful for normalizing the filter response. Each coefficient vec-
tor was offset and scaled such that the response for the cor-
responding constituent was unity and the mean response
for the other constituents was zero. Although this would por-
tend a rather crude means of calibration to an absolute scale,
it ensured at least that NAS–PCP predictions would be on a
scale similar to the PLS results. Indeed, under ideal condi-
tions, this might prove to be an effective means of establish-
ing a NAS–PCP calibration that is sufficiently accurate on
an absolute basis for deployment in certain applications.
Finally, because there were no parameters to optimize for
NAS–PCP method development, the entire sample dataset
can be considered as validation.

Results and discussion
Analysis of spectra
The raw THz refractive index and absorption spectra ex-
tracted from the calibration and validation images are shown
in Figures 5,6. The dominant feature of both types of spec-
trum is the intense baseline variation observed. No
univariate or multivariate correlation was observed between
the tablet compositional factors and the baseline shape.
Furthermore, because tablet compression force and powder
particle size were not controlled and assumed to be constant,
the source of the baseline variation was probably not re-
lated to physical or compositional characteristics of the
samples. Time-series analysis of the baseline revealed that
an abrupt change in baseline occurred between sample sets
1–10 and 11–24. The tablets were created and scanned in
two groups (each group being scanned during a period of
one or two days), which corresponds with the baseline shift.
It is apparent that an intermediate instrument drift was
responsible for the aberrant signals. Further research is
required to determine the long-term magnitude of instru-
ment variability.

A comparison of the raw refractive-index sample spec-
tra and scaled pure-component spectra illustrates the high
level of sensitivity for crystalline lactose and, to a lesser
extent, theophylline in the THz region (Figure 5). In con-

trast to lactose and theophylline, which have visually dis-
tinct features in the refractive index spectra, the MCC spec-
trum appears as a featureless curving baseline. This is not
unexpected because many pharmaceutical polymers are
mainly transparent in the THz region. Such a lack of phonon
resonance features indicates that MCC is more aptly de-
scribed as amorphous, having insufficient long-range order
to sustain lattice vibrations. The raw-sample and pure-com-

Figure 5. Raw refractive-index reflection spectra for the calibration
and validation samples, and the constituent pure-component spectra.
A frequency-domain transmission spectrum of lactose has been in-
cluded for comparison (broken line). All pure-component spectra have
been scaled and offset to facilitate plotting.
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ponent absorption spectra also have many similar features
(Figure 6). Indeed, assigning bands observed in the sample
spectrum to pure components seems to be more direct for
the absorption spectra. As with the refractive index spec-
tra, the MCC absorption spectrum is virtually featureless.

The lactose THz transmission spectrum has been docu-
mented in earlier studies [22]; comparison of the lactose
reflection and transmission spectra (unrelated samples) il-
lustrated a strong correlation between the measurement
modes. Although a slight shift is observed, recent findings
of other researchers indicate that spectroscopic phase shifts
between TPS transmission and reflection spectra can be
attributed to the alignment of the 100%-reflectance mirror
reference [23]. Further work is required to determine the
root of any differences in frequency-domain spectra between
the two measurement modes. Transmission spectra of theo-
phylline and MCC were unavailable at the time of these
experiments.

Some similarities can be observed between the refrac-
tive index and absorption spectra; qualitatively, the refrac-
tive index spectra look similar to a first-derivative profile of
the absorption spectra. This correspondence is typical of the
anomalous dispersion patterns that are expected to be ob-
served near absorption bands and is described by the classi-
cal Kramers–Kronig relation [24-26]. However, it is impor-
tant to keep in mind that the reflection measurement of com-
pacted tablets presents many significant deviations from the
thin-film-type assumptions for which these relations have
been developed. At the moment, there is much to be learned
regarding the ideal transform between the time and fre-
quency domain and the absolute validity of the refractive
index and absorption signals measured by diffuse-reflection
TPS of compacted dosage forms [23]. For the objectives of

this work, however, it is most important to determine
whether sensitive repeatable measurements of composition
can be extracted from TPS data.

The spectral-preprocessing treatment was optimized
using visual analysis of the spectra and cross-validation in
conjunction with PLS type II regression. Ultimately,
Savitzky–Golay 1st-derivative (2nd-order polynomial, 9pt
filter) pretreatment [10,27] was selected for the refractive
index data, and Savitzky–Golay 2nd-derivative (2nd-order
polynomial, 9pt filter) was chosen for the absorption spec-
tra. The spectral derivative operations are apparently effec-
tive at mitigating the baseline shift (Figure 7). Smoothing
derivatives are also efficient at amplifying useful features
in the spectra; in a signal-processing sense, Savitzky–Golay
filtering is similar to a midband filter.

It is important to keep in mind that preprocessing op-
erations are not necessary to generate useful calibration
models in conjunction with PLS regression because the ba-
sis-set estimation process is often effective at isolating fea-
tures of interest from a background of structured noise. In
most cases, calibration models for similar data types (i.e.,
NIR) estimated without preprocessing require one or more
additional latent variables to achieve accurate results. How-
ever, the advantage of preprocessing is that operations such
as scatter correction and derivatives are invariant filters,
whereas approximations of the structured noise using addi-
tional latent variables can be over-specific to the noise
sources present in the calibration data. In the event that
the instrumental drift profile changes, the noise model might
no longer apply, whereas invariant preprocessing operations
might continue to be effective at mitigating the baseline
variation. Thus, whether latent variable ILS or PCP mod-
els are used for method development, a finite amount of data
preprocessing is necessary to maximize calibration robust-
ness [10].

Partial least-squares calibration
The optimization and performance statistics for the PLS and
NAS–PCP calibrations are summarized in Tables 2,3. Five
PLS latent variables were used to model both the refractive
index and the absorption spectra. The performance statis-
tics for both datasets were acceptable with fewer latent vari-
ables (not shown); however, this would be discovered only
after validation. The performance results for refractive in-
dex and absorption spectra were essentially the same over-
all. It is crucial during chemometric-method development
that the independence of the validation dataset be main-
tained. Hence, the optimal PLS rank was chosen based on
interpretation of the SECV scree plot (illustrating the trend
of SECV as related to the model rank); the PLS rank after
which SECV failed to improve significantly was selected [28].
Whereas the calibration and cross-validation performance
was very good for all constituents, the validation results for

Figure 7. Preprocessed optical absorption and refractive index reflec-
tion spectra for the three-component calibration and validation tablets.
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lactose and MCC were not as good. When prediction error is
significantly greater than error of calibration or cross-vali-
dation, overfit of the calibration data should be suspected.
However, based on the prediction plots (Figure 8), it is rea-
sonable to assume that the poor validation statistics were
related to the limited number of available samples and the
narrow span of variance in the validation reference chemis-
try for these constituents. Furthermore, predictions for the
same two validation samples were outlying in lactose and
MCC, thereby off-setting one another. Because the predicted
mass balance for the calibration and validation samples was
essentially constant across all samples, one of two conclu-
sions can be made: (i) some material was not accounted for
when the tablets were created, causing the concentrations
to deviate from the design; or (ii) MCC predictions using the
PLS calibration were based on concentration closure, thereby

forcing all predicted MCC concentrations to equal the mass
balance remaining after prediction of theophylline and lac-
tose. Because the spectral features of MCC are extremely
subtle (relative to theophylline and lactose), the latter con-
clusion seems more probable. However, further results are
required to prove whether or not MCC can be independently
predicted from TPS reflection spectra.

Limit of detection was calculated independently for each
of the constituents, using all of the available predictions (i.e.,
the calibration and validation predictions were pooled) to cal-
culate the slope variable, and 10 repeat scans of a single tablet
(no. 10) to calculate the error of repeatability (σ). Because the
slope of the PLS predictions was unity, however, the LOD was
essentially three times the error of repeatability. The LOD
results for theophylline and lactose were consistent, whereas
the LOD for MCC was nearly twice as much. The LOD results

Data type Optical absorbance

Method PLS NAS–PCP
Preprocessing 2nd derivative (9, 2, 2)
Latent variables 5 3
Constituent Theophylline Lactose MCC Theophylline Lactose MCC
SEC (wt/wt) 0.024 0.017 0.024 0.046 0.089 0.400
SECV (wt/wt) 0.048 0.029 0.055 NA NA NA
SEP (wt/wt) 0.040 0.111 0.108 0.055 0.158 0.331
R2

cal 0.984 0.992 0.984 0.960 0.945 0.477
R2

cval 0.937 0.977 0.918 NA NA NA
R2

val 0.959 0.517 0.479 0.926 0.523 0.593
Mass bal.cal (μ, σσσσσ) 1.00, 3.82E-16 NA
Mass bal.val (μ, σσσσσ) 1.00, 2.41E-16 NA
LOD (wt/wt) 0.11 0.14 0.23 0.05 0.01 NA

aAbbreviation: NA, not applicable.

Table 2. PLS and NAS–PCP calibration and validation performance statistics using optical absorption spectra.a

Table 3. PLS and NAS–PCP calibration and validation performance statistics using refractive index spectra.

Data type Refractive index

Method PLS NAS–PCP
Preprocessing 1st derivative (9, 2, 1)
Latent variables 5 3
Constituent Theophylline Lactose MCC Theophylline Lactose MCC
SEC (wt/wt) 0.022 0.012 0.019 0.045 0.105 0.451
SECV (wt/wt) 0.037 0.036 0.054 NA NA NA
SEP (wt/wt) 0.028 0.109 0.116 0.030 0.136 0.636
R2

cal 0.986 0.996 0.990 0.973 0.962 0.125
R2

cval 0.963 0.965 0.923 NA NA NA
R2

val 0.981 0.488 0.581 0.974 0.555 0.069
Mass bal.cal (μ, σσσσσ) 1.00, 2.2E-16 NA
Mass bal.val (μ, σσσσσ) 1.00, 2.18E-16 NA
LOD (wt/wt) 0.08 0.08 0.14 0.01 0.05 NA

Continued on page 72.
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for all components seem to be acceptable for most applications.
Moreover, if additional spectra were added to the model, a bet-
ter approximation of the noise structure could be developed
that would tend to reduce the LOD over time.

The calibration coefficient vectors for all models are
shown superimposed with the associated preprocessed pure-
component spectra in Figure 9. The PLS regression vectors
for both theophylline and lactose were highly correlated to
the pure-component spectra with no major uncorrelated
peaks. This indicated that there was ample sensitivity for
these constituents and that the pure-component sensitivity
vectors were essentially mutually orthogonal. The MCC re-
gression vector had little correlation with the MCC pure-
component spectrum, which indicated that the MCC cali-
bration was based on closure. Superimposition of the PLS
regression vectors demonstrates that the MCC regression
vector is a linear combination of the theophylline and lac-
tose vectors (not shown). Furthermore, although the abso-
lute value of the correlation coefficients between pure-com-
ponent spectra is dependent on the type of preprocessing

applied, the correlation coefficients between theophylline
and lactose were consistently low (<< 0.5). However, the cor-
relation between either theophylline or lactose and MCC
was much higher (>0.75), which also supports the supposi-
tion that the MCC regression correlated to linear combina-
tions of the other two components. Finally, because the pure-
component sensitivities of theophylline and lactose are es-
sentially orthogonal, these components are extremely ame-
nable to the NAS adjustment; in these cases, the bulk of
spectral NAS adjustment is related to the suppression of
structured noise factors, leaving a large part of the original
NAS intact for prediction.

Three-component prediction images for the split tab-
lets are shown in Figure 10. The lactose–MCC split-tablet
image illustrates the spatial resolution in a maximal-con-
trast situation. Within the split-mixture tablets, the divid-
ing line is less visible. The presence of individual red, green,
and blue spots indicates that the scale of spatial resolution
is sufficiently fine to detect individual constituent domains.
There seem to be some larger-scale patterns of distortion; it

Figure 8. Prediction plots for optical absorption spectra. Optical absorption (a–c) and refractive index (d–f) spectra of calibration (circles) and
validation (crosses) PLS predictions for theophylline (a,d), lactose (b,e), and MCC (c,f). The panels have been scaled to be nearly equal; the solid
line in each plot represents the ideal (unity slope) prediction line.
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is unknown whether these artifacts were related to the physi-
cal properties of the tablets, the limitations of the algorithms
used to generate the image hypercubes from the raster-scan
data, or the limitations of the instrumentation. Ultimately,
given the present optical configuration, the instrument is
limited by the diffraction of THz radiation, which – accord-
ing to Rayleigh criteria – is limited to no better than half
the wavelength of incident radiation. Hence, over the range
of 8 cm–1 to 60 cm–1, the minimum size range of truly
discernable features is ~625–83 μm.

NAS–PCP calibration
In general, the performance of NAS–PCP at predicting theo-
phylline and lactose was somewhat worse than that observed
for PLS although the results were very good considering that
no regression (or reference chemistry) was involved. Indeed,
the linearity of both the PLS and NAS–PCP results is re-
markable given the extremely wide range of concentrations
sampled for all constituents. However, the NAS–PCP pre-
dictions of MCC were completely uncorrelated with MCC
concentration (Figure 11). This supports the view that the
PLS model for MCC was based on concentration closure
rather than on spectroscopic sensitivity. The LOD results
for NAS–PCP were uniformly better than those for PLS
(without considering MCC). One possible explanation is that,
because the NAS–PCP prediction filters are ‘smoother’, the
solution is more ‘generalized’ and less influenced by small
spectral variation; alternatively, the PLS regression vectors
might have been overfitted, which tends to reduce generali-
zation. Finally, the NAS–PCP algorithm might have had an
inherent advantage because repeatability error is explicitly
suppressed during filter estimation, rather than implicitly
modeled by regression. Mass-balance predictions were not
analyzed for the NAS–PCP calibration because the MCC
predictions were of no value.

Figure 9. Pure-component and calibration coefficient vectors. PLS regression coefficient vectors (thick red lines), NAS–PCP prediction filters
(thin blue lines), and pure-component spectra (broken lines) for optical absorption (upper curves) and refractive index (lower curves) data.
Vectors for theophylline (a), lactose (b), and MCC (c) are shown. All vectors and spectra have been scaled for plotting.
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Figure 10. Pseudocolor prediction images of split tablets. Images
scaled so that red, green, and blue intensities are proportional to the
concentration of theophylline, lactose, and MCC, respectively. Tablet
compositions are (left–right): (a) (0-0-1:0-1-0), (b) (3-5-2:5-3-2), and
(c) (3-2-5:5-3-2). Off-color domains in the lactose–MCC tablet (a) can
be attributed to spectral noise and/or prediction error. Non-primary
colored domains (e.g., yellow, orange, and purple) indicate region of
uniform mixtures in which domain size for individual constituents is
below the diffraction limit or spatial resolution.

(a) (b) (c)

3-5-2 5-3-2 3-2-5 5-3-20-0-1 0-1-0

As would be expected, the NAS–PCP coefficient vectors
were highly correlated with the pure-component spectra (Fig-
ure 9). The theophylline and lactose vectors were modified
only slightly: again, probably because the components were
nearly mutually orthogonal to begin with. The MCC predic-
tion filter was completely uncorrelated with the pure-com-
ponent spectrum. Because the pure-component spectrum
was essentially a curving baseline with some minor features,
orthogonalization to the other components might have re-
sulted in a linear combination of the converse of each of the
vectors. An objective of future research projects will be to
determine whether such dissimilarity between the pure-com-
ponent and NAS–PCP vectors is a reliable indicator that
prediction results will be unreliable.

Continued on page 74.
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Concluding remarks
The results of this study illustrate a procedure by which
TPS can be used in conjunction with multiple chemometric
tools for the quantitative chemical mapping of crystalline
pharmaceutical materials. Although the observed perfor-
mance of TPS for the quantitative analysis of such common
pharmaceutical solids was probably no better than the re-
sults that might be obtained using techniques such as NIR
or NIR imaging spectroscopy, the objectives of this study
were to investigate the analytical capability of TPS at the
most basic level. Ultimately, the advantages of TPS (over
techniques such as NIR and Raman) will be explored using
more-complicated solid-state characterization problems for
which there are currently few viable options in terms of
analytical instrumentation.

Based on the observations, there is no apparent advan-
tage to using either optical absorption or refractive index
for method development. Additional intensive studies are
required to determine whether either method of spectral
transformation is of greater use than the other. The perfor-
mance of the NAS–PCP technique at predicting theophyl-
line and lactose, without the need for regression or chemi-
cal reference data, is extremely encouraging because, ulti-
mately, PCP methods will greatly reduce the time and ex-
pense of method development. Additionally, the results dem-
onstrate that NAS–PCP can be used as a validation tool
with which to determine the specificity of a multivariate
calibration model. Further research studies will focus on
higher-order mixture designs in an effort to break the con-
centration closure, thereby, resolving more accurately the
quantitative limits of TPS for pharmaceutical analysis.

Figure 11. Prediction plots for refractive index spectra. Optical absorption (a–c) and refractive index (d–f) spectra of calibration (circles) and
validation (crosses) NAS–PCP predictions for theophylline (a,d), lactose (b,e), and MCC (c,f). The panels have been scaled to be nearly equal;
the solid line in each plot represents the ideal (unity slope) prediction line. The MCC prediction panes contain fewer data points because many of
the predicted values were outside the range of feasible composition; the plots have been included to demonstrate that there is a total lack of
sensitivity, rather than simple slope or bias error.
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