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capacitance thfs method reference 111 reference I21 
Flm 

c (1, 1) 0. 9213E-10 0. 9165E-10 0. 9236e-10 
c II, 2) -0. 8302E-11 -0. 8ZZOE-11 -0. 8494E-11 
c (2, 1) -0. 8302E-11 -0.8220e-11 -0. 8494E-11 
c (2, 2) 0:9213E-10 0. 9165E-10 0. 9236E-10 

ty  

I I l o .  4 

X I I 
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Fig. 4. Two conductors in two different dielectric layers. 

TABLE I1 

capacitance t h i s  method r e f e r e n c e  I11 reference 141 
Flm 

C(1, 1) 0. 36913-10 0. 36513.10 0. 3701E-10 
c (1, 2) -0. 1584E-11 -0. 15623.11 -0. 1520E-11 
C ( 2 ,  1) -0. 1584E-11 - 0 .  15623.11 -0. 1520E-11 
c (2, 2) 0.  2134E-9 0. 2099E-10 0. 21083-9 

Example 2: There are two different rectangular conductors in two 
dielectric layers above a ground plane as shown in Fig. 4. The results 
using this method together with those of [ I ]  and [4] are shown in 
Table 11, and the computing speed of this method is also much faster 
than those of other methods. 

IV. CONCLUSION 

A new method for calculating the capacitance matrix of the multi- 
conductor interconnects is given. The computing speed is faster than 
that of other methods with the same accuracy, and the desired storage 
of the computer is also decreased, so this method is effective for 

computing the electrical parameters of the interconnects for high- 
speedhigh-complexity electronic systems. 
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Eigenmode Sequence for an Elliptical 
Waveguide with Arbitrary Ellipticity 

Shan-jie Zhang and Yao-chun Shen 

Aktmct-Eigenmode sequence for an elliptical waveguide with arbi- 
trary ellipticity is studied by directly calculating the parametric zeros of 
the modified Mathieu functions of the first kind and their derivatives. 
The normalized cutoff wavelength of the lowest 100 successive modes are 
presented, and the curvefitting expressions for the determination of the 
cutoff wavelength of the lowest 10 order modes are given, which are valid 
for the ellipticities ranging from 0.0 to 0.99. 

I. INTRODUCTION 
Elliptical waveguides have wide applications such as radar feed 

lines, multichannel communication and accelerator beam tubes. The 
determination of the cutoff wavelength of the elliptical waveguide is 
one of the most important problems for designing the waveguide or 
analyzing the wave propagation in the waveguide. In 1938, Chu [ l ]  
first presented the theory of the transmission of the electromagnetic 
waves in elliptical waveguide. Since then some more numerical 
results about the cutoff wavelengths in elliptical waveguide have 
been obtained [2]-[4]. In 1970, Kretzschmar [5] obtained the curves 
of the cutoff wavelengths for the 19 successive modes and the 
approximative formula for the eight lowest order modes. Recently 
Goldberg [6] calculated the cutoff wavelengths for the six lowest 
modes and gave a correction to the field pattern plotted in [l] .  
In fact, the determination of the cutoff wavelength of an elliptical 
waveguide is a problem of calculating the zeros of the modified 
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TABLE I 
NORMALIZED CUTOFF WAVELENGTHS FOR AN ELLIITIC WAVEGUIDE & / a  
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Mathieu functions of the first kind, i.e., Se,(E,q) and Ce,(E,q), 
and their derivatives, where the two separate parameters c and q, as 
will be discussed in the following section, are related to the dimension 
size and cutoff wavelength of the elliptical waveguide respectively. In 
most of the previous work, the cutoff wavelength were determined 
by calculating the zeros E for a given q since it is much easier to 
determine the zeros E than the parametric zeros q of the functions. 
However, it is not convenient to determine the eigenmode sequence 
for an elliptical waveguide with given ellipticity since a large number 
of calculations are required. Furthermore, it may also cause omission 
of the high order modes in eigenmode sequence since the succession 
of the various modes is a function of the ellipticity. Thus we need a 
more direct and convenient way to determine the eigenmode sequence 
for a given elliptical waveguide. 

In this paper, the cutoff wavelength sequence is determined by 
directly calculating the parametric zeros q of the modified Mathieu 
functions of the first kind and their derivatives. The calculation are 
made on an IBM PC-386 using Bessel functions series. The first 
100 successive modes are presented for eccentricities 0.1, 0.5 and 
0.9. The curve fitting expressions for the determination of the cutoff 
wavelength of the 10 lowest order modes are given. The accuracy is 

for main mode TE,11, 3 x  for other modes. 

11. OUTLINE OF THE THEORY 
Electromagnetic waves propagating in the elliptical waveguide are 

the combination of the TM and TE waves. For TM waves, the 
longitudinal components of the waves are: H ,  = 0, EZ = 4;  for 
TE waves, E, = 0, H ,  = 7 ) .  Where is the general solution of 
the following wave equation in the orthogonal elliptical coordinate 
system 

(1) 1 d2 [ & + d112 + 2q(cosh 2[ - COS 217) dl = 0. 
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The separate parameter q is defined as 

where a and e are the semi-major axis and ellipticity of the wave- 
guide, w and @ are the wave frequency and phase constant, respec- 
tively. Using the method of separation of variables we can obtain the 
following solution for the wave equation 

In these equations, ce, and se, are ordinary even and odd Mathieu 
functions, while Ce, and Se, are corresponding modified Mathieu 
functions of the first kind and order m. We can see from (3) that 
the longitudinal components E, and H ,  have two different forms 
corresponding to even and odd modes. Hence, there are four different 
mode types in an elliptical waveguide, denoted as TM,,, TM,,, 
TE,, and TE,,. Where the first subscript c (cos-type) and s (sin- 
type) represent even and odd modes, while the second subscript m is 
related to the order of the modified Mathieu functions of the first kind. 

The tangent components of the electric field, which can be obtained 
from longitudinal components by applying Maxwell's Equations [4], 
[5], should be zero on the wall E = (0, where Eo is the radial 
coordinate of the elliptical boundary. Thus the boundary conditions 
can be written as 

Ce,((o,q) = 0 for TM,, mode 
Se,,((O,q) = 0 for TM,, mode 
Ce',(Eo,q) = 0 for TE,, mode 
Se:,(Eo,d = 0 for TE,, mode 

(4) 
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TABLE I1 
CURVEFITTINC FORMULAS FOR DETERMINING THE CUTOFF WAVELENGTHS 

Mode Formula Interval of e 

TEc,l: Ac/a - 3.41257911-..0090l6~1-.010811761e'-.W155I~k'-.000196037~1 0. 1.0 ] 

'TE,,,: A,/a = 3.41257911-11.64946r1-..19315k'--1.26437c'+2.0N)8&1--1.671o1e'1 0. 0.9 1 
(0.9. 0.991 

[ 0,  0.9 ] 
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Ac/a - 1.5649UBI -72118(1 -e)*1u +9.5048(1 -e)"' + .148137(1 -e)- 
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TE,: & / a  = 2.057~291-.5IH)17e1+.301521c'+.2115292c'-.596669e'+368172e* 1 0. 1.0 1 

TE,,: & / a  - 2.05720298- .5Z5Z6ecl - .0980927e4 - 1.08694e' + 1.72239e1 - 1.43919eY 

A c / a  - 132921614-7~78(1-e)'"+ l3.37U(ll-e)"'-4.887fl(l-e)- 
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with coshto = 1/1=. As the parameter q is related to the cutoff 
wavelength by (2), and there are a series of q values satisfying above 
equations. To avoid ambiguity, a third subscript n, COrresPonding to 
the nth parametric root, is required in the mode designation. Thus 
the complete designation of the waves Propagating in an elliptical 
waveguide is TM,,,, TM,,,, T E c ~ ,  and TE,,,. The normalized 
cutoff wavelength can be obtained from Eq. (2) as 

B. Characteristic Value 

It is clear from (4), (5) that the exact computation of the modified 
Mathieu functions forms the main difficulty in the study of elliptical 
waveguides. These functions can be expanded by hyperbolic func- 
tions, Bessel functions and Bessel function products. The modified 
Mathieu function is the solution of the modified Mathieu equation 

y" - ( 3  - 2qcosh2E)y = 0 (6)  

if b equals to the characteristic value b,, which can be obtained by 
matrix method or following continued fractional method [4] 

( 5 )  
ire 

Xcla = 

qmn is the nth parametric zero of the modified Mathieu functions of 
the first kind of the order m or their derivatives. 

2 Y 2  
2 

b;k = . 
4 - b- 16 - b -  

111. METHOD AND RESULTS b l k = 4 - - - . . .  q2 Y 2  
16 - b- 36 - b- 

A. Eigenmode Sequence 
As mentioned above, there are four types of eigenmode sequence in 

an elliptical waveguide. For a given type TM,,,, there is following 
relationship among the zeros of the modified Mathieu functions. 
The value of the ( I&+ 1)th zero is larger than that of nth zero of 
the modified Mathieu functions, i.e., qm > qnL.,,; the value of 
the first zero of the modified Mathieu function of order (m+ I )  is 
larger than the zeros of modified Mathieu function of order m, i.e., 
~ , + I , I  > q m . l .  Thus only one initial value is needed for getting a 
type of eigenmode sequence. 

The other types of eigenmode sequence TM,,,,, TE,,, and 
TE,,, can be obtained through similar process. The eigenmode 
sequence of the elliptical waveguide with a given ellipticity can 
finally be determined by comparison. It is obvious from preceding 
discussions that no high order modes in the eigenmode sequence 
will be omitted by using this method. It should be pointed out 
that: the value of the parameter q will vary from lop3 to IO3 
when lowest 100 modes with different ellipticity are considered. 
Therefore, a combination of bi-section and Regula falsi methods 
together with step-variable search method is necessary in order to 
calculate effectively the zeros of the modified Mathieu functions and 
their derivatives. 

Y 2  Y 2  6 i k + l  = 1 + q - -___ 
9 - b- 25 - b- 

(7 )  

Once b,, has been determined, the expansion coefficients can be 
easily obtained from (6) [4] [ 5 ] .  Equation 7 is only valid for lower 
order m and larger value q. The instability of the conventional 
continued fractional method comes from the fact that one of the 
denominators of the continued fraction tends to be zero when 
q approaches to some special values. In order to get the exact 
characteristic values for larger m and smaller q, a modified continued 
fractional method is suggested as follow 

Y 2  Y 2  . . .) 
- ( ( 2 k  + p + 2j2 - 6- ( 2 k  + p  + 4)' - b- 

- ( ( 2 k + p  - Y 2  2)2 - 6- ( 2 k + p  - q2 4 ) 2  - b- .. 

q2 ). 
( 4  - p ) 2  - b - q2/13 
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where 
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p = O ,  B = 4 - b  for 
p = 0, B = 4 - b + 2 q 2 / b  for 
p = l ,  B = l + q - b  for 
p = l ,  B = l - q - b  for b;k+l 

The combination of (7) and (8) can provide exact characteristic 
values of the modified Mathieu functions with large range of m and 
Q .  

C. Numerical Results 

As a check of this method, we calculated 200 successive modes 
for elliptical waveguides with different ellipticities. Table. I lists 
the lowest 100 successive modes with ellipticities e = 0.1, 0.5 
and 0.9. It is obvious from Table. I that the eigenmode sequence 
is a function of ellipticity, i.e., elliptical waveguide with different 
ellipticity has different eigenmode sequence. However, the main 
mode of the waveguide is always TE,11. The first high order mode 
is T E s 1 1  when e < 0.8546001 while it becomes TEc21 when e > 
0.8546001. 

As a large number of numerical calculation are required to de- 
termine the cutoff wavelength for a given mode and ellipticity, we 
presented here the curvefitting expressions for the determination of 
the cutoff wavelength of the lowest 10 order modes. The formulas 
for the different modes and their ranges of validity are given in Table 
11. Compared with previous works [5], [7], the expressions presented 
here have higher accuracy and are valid for wider range of ellipticity. 

IV. CONCLUSION 
We can conclude from above discussion that: 1) the modified 

continued fractional method suggested in this paper is suitable to 
calculate the characteristic values of the modified Mathieu functions 
with arbitrary order m and value q.  2) directly calculating the 
parametric zeros of the modified Mathieu functions of the first kind 
and their derivatives is an effective and easy way to determine the 
cutoff wavelength for a given elliptical waveguide, and ensures no 
omission of high order modes in the eigenmode sequence. 3) The 
normalized cutoff wavelength for the lowest 100 successive modes 
are presented, and the curvefitting expressions for the determination 
of the cutoff wavelength of the lowest 10 order modes are given, 
which have higher accuracy than previous calculations and are valid 
for wider range of ellipticity. 
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A New Electric Field Integral Equation for 
Heterogeneous Dielectric Bodies of Revolution 

Mark S. Viola 

Abstroet-In this paper, a novel electric field integral equation (EFIE) 
is developed for rotationally-symmetric heterogeneous dielectric bodies. 
This EFIE has several attractive features. Firstly, the azimuthal field 
component has been eliminated in this formulation thereby reducing the 
number of scalar unknowns from three to two. Secondly, it is a pure- 
integral equation in which there are no terms involving derivatives of the 
field components. Finally, this description is devoid of any highly singular 
kernel which would require a principal-value evaluation of the associated 
integral. These attributes render this formulation advantageous for both 
computational and theoretical pursuits. 

I. INTRODUCTION 
Rigorous analysis of electromagnetic phenomena within hetero- 

geneous dielectric regions commonly proceeds from an integral or 
integro-differential equation for the electric field [ 11-[5]. Construction 
of such an EFIE relies upon the identification of an equivalent 
volume density of polarization current. Inherently, this formulation 
is a volume integral equation having three scalar unknowns. Thus, 
its solution potentially poses a computationally intensive problem. 
Additional complications arise when the EFIE is cast in the form 
involving the electric dyadic Green’s function [6]-[9]. However, 
the presence of certain symmetries allows the formulation of an 
alternative integral equation that provides both computational and 
theoretical advantages. 

In this paper, a novel electric field integral equation (EFIE) is 
developed for heterogeneous dielectric bodies of revolution. It is 
assumed that the permittivity profile is azimuthally invariant. By 
exploiting the prevailing symmetry, straightforward analysis yields 
an EFIE having several appealing attributes. Firstly, the azimuthal 
field component is eliminated from the formulation in favor of the 
remaining (transverse) components. This reduction in the number of 
scalar unknowns from three to two facilitates numerical solution via 
standard techniques (e.g., the method of moments). Secondly, it is a 
rigorous pure integral equation for the transverse field components as 
opposed to an integro-differential one; no terms involving derivatives 
of the field components appear. Finally, the singularhies of the 
kernels within this formulation are sufficiently weak, avoiding the 
necessitation of a principal-value integral and the corresponding 
depolarizing dyadic [7]. 

Throughout this paper, it shall be assumed that all media are 
linear, isotropic and magnetically homogeneous. Furthermore, the 
time dependence is harmonic ( e J w t )  and is suppressed. 

11. VOLUME-SURFACE INTEGRAL EQUATION DWCRIFTION 
Attention is focused on Fig. 1, which depicts a dielectric body of 

revolution immersed in a uniform surround. A coordinate system is 
established such that the z-axis coincides with the axis of revolution. 
Open domain V, having boundary surface S with outer unit normal 
ii, is the region for the dielectric and is electrically characterized 
through its permittivity profile E( F) . In orderto provide a well-posed 
problem, it is assumed that the closed region V is regular and that E is 
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