Step 1: Obtain sample survey microdata and small area constraints

Survey microdata			
Household	Characteristics		
	size	adults	children
(a)	2	2	0
(b)	2	1	1
(c)	4	2	2
(d)	1	1	0
(e)	3	2	1

Known small area constraints [Published small area census tabulations]

1. Household size
2. Age of occupants

Household size	Frequency
1	1
2	0
3	0
4	1
$5+$	0
Total	$\mathbf{2}$

Type of person	Frequency
adult	3
child	2

Step 2: Randomly select two households from survey sample [(a) \& (e)] to act as an initial small-area microdata estimate

Step 3: Tabulate selected households and calculate (absolute) difference from known small-area constraints

Household size	Estimated Frequency (i)	Observed Frequency (ii)	Absolute difference \mid (i)-(ii) \mid
1	0	1	1
2	1	0	1
3	1	0	1
4	0	1	1
$5+$	0	0	0
Sub-total:			

Age	Estimated Frequency (i)	Observed Frequency (ii)	Absolute difference \mid (i)-(ii) \mid
adult	4	3	1
child	1	2	1
	Sub-total:	2	

Total absolute difference $\quad=4+2=6$
Step 4: Randomly select one of selected households (a or e). Replace with another household selected at random from the survey sample, provided this leads to a reduced total absolute difference

Households selected: (d) \& (e) [Household (a) replaced]
Tabulate selection and calculate (absolute) difference from known constraints

Household size	Estimated Frequency (i)	Observed Frequency (ii)	Absolute difference \mid (i)-(ii) \mid
1	1	1	0
2	0	0	0
3	1	0	1
4	0	1	1
$5+$	0	0	0
Sub-total:			

Total absolute difference $\quad=2+1=\mathbf{3}$

Step 5: Repeat step 4 until no further reduction in total absolute difference is possible:
Result: Final selected households: (c) \& (d)

Household size	Estimated Frequency (i)	Observed Frequency (ii)	Absolute difference \mid (i)-(ii)
1	1	1	0
2	0	0	0
3	0	0	0
4	1	1	0
$5+$	0	0	0
Sub-total:			

Age	Estimated Frequency (i)	Observed Frequency (ii)	Absolute difference \mid (i)-(ii) \mid
adult	3	3	0
child	2	2	0
	Sub-total:	0	

Total absolute difference $\quad=0+0=\mathbf{0}$

Figure 1 A simplified combinatorial optimisation process

