SDC Direct Impacts

Software Manual v1.0
 Software for assessing the impact of statistical disclosure controls on end-user analyses

Paul Williamson

June 2005

Contents

Introduction for first time users 1
Quick Start Guide 1
SDC_Direct_Impacts 3
Program Limits 4
PRogram Inputs 4
Program Pathnames 4
Pre-perturbation counts 4
Post-perturbation counts 6
Table mappings 6
User-definable Parameters 9
Input counts 11
Report types 11
Cell-based measures 17
Table-based measures 18
'Table’ and 'cell' types 20
Listing input tables (counts) 20
Listing input tables (percentages) 21
Percentage mappings 21
Chi-square data 22
Program Outputs 22
FULL DESCRIPTION OF CELLULAR AND TABULAR MEASURES 23
Cellular measures for count data 23
Tabular measures for count data 24
Cross-table measures for count data 25
Measures for use with percentages 26
Distributional measures 26

Introduction for first time users

SDC-i is a software suite aimed at helping to assess the impact of statistical disclosure control on end-user analyses. Figure 1 (p.4) illustrates the logic flow of the program suite. However, each main element can also be run as stand-alone module. For example, users with their own set of preand post-adjustment cell counts can use the SDC_Direct_Impacts module to measure the impacts of adjustment without having to run any of the other modules.

Quick Start Guide

To get the most out of SDC_Direct_Impacts it will be necessary to read the full manual. However, the basic functionality of the program can be mastered will less effort:
(1) Download zipped executable version
(2) Unzip package (includes executable code, default program parameters, example benchmark data and copy of user manual)
(3) Double click on program to run (to check program works on system) (run-time c. 2-4 mins)
(4) Examine files in folder SDCi Input Counts containing example pre- and post-perturbation counts; use as template for formatting own input data. Name each file using the convention <table name>_vn.fmt, where $n=0$ if pre-perturbation of counts and $n=1$ for post-perturbation variant. (e.g. UserTable_v0.fmt)
(5) Read pages 6-9 of manual, explaining steps necessary for creation of table mappings.
(6) In the Parameters folder edit the file SDC_Direct_Impacts_Count_input_tables to list instead user supplied table(s) (see pages 20-21 (section 6) of user manual for details.)
(7) Run program; results of comparison will be placed in file SDC_Direct_Impacts_results.txt
(8) Change user parameters to request alternative summary measures as required and re-run program (see pages 9-20 of user manual for details.)

Data Extraction

Data extraction process will be user-specific, but an account is provided of how $S D C-i$ compatible benchmark cell counts were extracted from IJK Census

Perturb_v3

Creates perturbed variants of input cell counts. Also offers calculation of user-defined pre- and post-adjustment percentages derived from these counts.

Create_Aggregates_v2
Aggregates counts from multiple input areas to produce a series of new output zones (clusters), using one of a variety of sampling strategies

SDC_Direct_Impacts_v11

Assesses the difference between two sets of input counts and/or percentages using a wide variety of user-selected measures

SDC_Indirect_Impacts_v10

Measures the impact of disclosure control upon ecological analyses (correlation and regression)
[This module is currently unavailable for public use due to software licensing restrictions]

Figure 1 Linkage between SDC-i modules

SDC_Direct_Impacts

SDC_Direct_Impacts measures the direct impact of disclosure control measures on tabular outputs.
A typical tabular output comprises both interior and marginal counts. In this guide:

- A marginal is any table cell whose value, prior to the application of disclosure control measures, equals the sum of two or more counts present elsewhere in the same table.
- A count is any table cell that is not a marginal.

The main input to SDC_Direct_Impacts is a set of pre- and post-perturbation table counts and marginals (and/or percentages based upon these counts).

The main output is a set of statistics summarising the difference between the pre- and postperturbation table counts and/or percentages. These outputs include a range of cellular and tabular measures, as well as an optional assessment of differences in pre- and post-adjustment area rankings.

SDC_Direct_Impacts can also summarise the average impact of disclosure control across multiple table layouts (e.g. tables with: differing numbers of counts; focus on more or less rare population sub-groups; marginals based on summation across differing numbers of cells).

SDC_Direct_Impacts, if used in conjunction with the outputs from Create_Aggregates, is also capable of summarising the average impact of disclosure control across multiple versions of the same table generated by alternative sampling strategies (e.g. inputs based upon differing sized aggregates of input areas; inputs drawn from different strata, such as urban vs. rural or 'rich' vs. 'poor').

SDC_Direct_Impacts optionally allows for assessment of the impact of 'indirect perturbation'. Indirect perturbation occurs when a table marginal is derived from summation of perturbed table counts, rather than from direct perturbation of the original marginal count, even if the original input marginal counts were independently perturbed.

Program limits

Input tables: 20
Samples/areas per table: 1000
Rows / columns/ cells per table: $\quad 40$ / 20 /800
Total cells in all tables: 16000
Cell types ${ }^{1}$ (count + marginal(s)) per table): 50
Cell types ${ }^{1}$ across all input tables: 200
Marginal mappings per table: 30
${ }^{1}$ A cell's 'type' is defined by the number of counts upon which its original value depends. 'Cell types' is the number of unique cell types in an input table/dataset (including interior cell counts of type ' 1 ').

Program Run time

Increases with both the number of measures of fit requested and the number of pre/post adjustment cell counts to be evaluated. Using the default settings with the supplied benchmark data (11,410 cell counts) program run-time is 4 minutes on a Pentium IV 3 GHz desktop PC with 0.5 Gb RAM. Execution speed will slow dramatically if adequate RAM is not provided.

Program Inputs

1) Program pathnames

(a) Program path

If running SDC_Direct_Impacts direct from its compiled executable version, the root folder (Program path) is automatically assigned as the folder in which the executable code is located.

If compiling and running SDC_Direct_Impacts via VisualBasic change the line of code
ProgramPath $=$ " $\mathrm{C}: \backslash$ Temp \backslash Test SDCi"
to point to the folder a root folder of your own choice (e.g. "C: \Program Files\SDCi"). Note that this pathname should NOT end with a slash.

Alternatively, to compile and run the code as an executable, comment out the above line of code, and comment in the preceding line: ProgramPath $=$ CurDir()

(b) Input_and_output_paths.txt

SDC_Direct_Impacts requires a number of data inputs. To allow maximum flexibility, users are able to specify the locations for four types of input data:

InputCounts: Pre- and post-adjustment cell counts to be compared
TableMappings: Table mappings describing layout of each input table (required)
StrataData: Data to be used for creation of stratified samples (optional)
RunParameters: Files containing program run-time parameters (required)
The file input_and_output_paths.txt lists these input/output sources, each followed by a pathname, defined relative to the program execution root folder, pointing to the relevant user-specified folder:
"StrataDataPath", "\Strata Data\"
"TableMappingsPath", "\Table mappings\"
"RunParametersPath", "\Parameters\"
"InputCountsPath", "\SDCi Input Counts\"
Note that, if modifying the default settings above, the quote marks, comma, and the first and final backward slash at the start and end of each pathname should all be retained.

2) Pre-perturbation counts

[Stored in the InputCounts folder pointed to in Input_and_output_paths.txt]
One file per table, containing the original table counts, prior to the application of statistical disclosure control, for $1-1000$ areas/samples. (A sample $=1$ or more areas previously selected at random, and aggregated if appropriate, from a larger set of user-supplied areas). These files may be supplied by the user, or produced using Create_Aggregates.

Files supplied directly by the user should use the following naming convention:
$<$ table name ${ }^{>}$_v $n . f m t$
where n is any user-specified number indicating a particular disclosure control variant. It is
recommended, but not essential, that 0 is used to indicate files containing the original unperturbed counts.

E.g. User_supplied_table_v0.fmt

Within each file, it is recommended that counts are laid out in rows and tables as per the published version, although supply of counts in vector format is also supported.

The counts (including marginals) should be space or comma separated (no commas at ends of rows).

For example, the table

SAS Table 06 Ethnic group of Residents by Age and by Sex

Enumeration District: BYFA01												
Sex and Age	Total Persons	Ethnic group										Persons born in Ireland
			Black	Black	Black					Other	roups	
		White	C'bean	African	other	Indian	P'stani	B'deshi	Chinese	Asian	Other	
Total												
Persons	115	94	4	0	0	3	0	0	12	0	2	7
Males	54	45	1	0	0	0	0	0	6	0	2	1
Females	61	49	3	0	0	3	0	0	6	0	0	6
0-4	6	5	0	0	0	0	0	0	1	0	0	0
5-15	5	3	0	0	0	0	0	0	2	0	0	0
16-29	52	44	1	0	0	0	0	0	5	0	2	5
$30<$ pa	42	36	2	0	0	3	\bigcirc	0	1	0	\bigcirc	0
Pa and over	9	5	0	0	0	1	0	0	3	0	0	2

would be represented in the file $s 06_{-} v 0 . f m t$ as

s06_v0_s $1 . f m t ~$											
115	94	4	0	0	3	0	0	12	0	2	7
54	45	1	0	0	0	0	0	6	0	2	1
61	49	3	0	0	3	0	0	6	0	0	6
6	5	0	0	0	0	0	0	1	0	0	0
5	3	0	0	0	0	0	0	2	0	0	0
52	44	1	0	0	0	0	0	5	0	2	5
42	36	2	0	0	3	0	0	1	0	0	0
9	5	0	0	0	1	0	0	3	0	0	2

Or
s06a_v0_s1.fmt

115,	94,	4,	0,	0,	3,	0,	0,	12,	0,	2,
54,	45,	1,	0,	0,	0,	0,	0,	6,	0,	2,
61,	49,	3,	0,	0,	3,	0,	0,	6,	0,	0,
6,	5,	0,	0,	0,	0,	0,	0,	1,	0,	0,
5,	3,	0,	0,	0,	0,	0,	0,	2,	0,	0,
52,	44,	1,	0,	0,	0,	0,	0,	5,	0,	2,
42,	36,	2,	0,	0,	3,	0,	0,	1,	0,	0,
9,	5,	0,	0,	0,	1,	0,	0,	3,	0,	0,
,										

As shown above, the counts for each area must be preceded by a header. This header should be used to identify the area which the set of counts represents in a way which is meaningful to the user, and should be in quotes if the identifier includes a space.

Data for the next area should start on the next empty row. (Do NOT leave a blank row between areas.) For example:

s71_v0_s1					
7399	104	7226	69	2991	40
718	9	709	0	298	0
s71_v0_s2					
7021	121	6823	77	3057	43
706	12	694	0	307	0

Files created via Create_Aggregates automatically conform to the above requirements.

3) Post-perturbation counts

[Stored in the InputCounts folder pointed to in Input_and_output_paths.txt]
One file per table variant, containing the perturbed table counts arising from a particular disclosure control method, for $1-1000$ areas $/$ samples. (A sample $=1$ or more areas previously selected at random, and aggregated if appropriate, from a larger set of user-supplied areas). Files containing perturbed counts for a set of samples may be supplied by the user themselves, or produced using Create_Aggregates. Users lacking perturbed counts may produce perturbed versions of usersupplied counts using Perturb.

Input files supplied directly by the user should use the following naming convention:
<table name>_vn.fmt
where n is any user-specified number indicating a particular disclosure control variant.
E.g. User_supplied_table_v2.fmt

It is recommended, but not essential, that 0 is reserved to indicate files containing the original unperturbed counts.

The names of input files created via Create_Aggregates should be left unchanged.
For example, the following three files would contain the perturbed counts arising from three different statistical disclosure control methods:

```
S06_v1.fmt
S06_v2.fmt
S06_v3.fmt
```

The file layout required is the same as that used for original counts, as outline in (2) above.

4) Table mappings

[Stored in the TableMappings folder pointed to in Input_and_output_paths.txt]
For each input table, a file is required specifying the table structure (rows/columns/marginals etc.). For this file the naming convention <table name>.map should be followed (e.g. User_supplied_table.map or s06.map for the examples presented in (2) above).

Creating an appropriate table mapping is by far the most onerous part of preparing data for input to SDC_Direct_Impacts (and to Perturb). Full details on how to create such table mappings are set out below, but in general the file will include: (i) number of rows and columns in table; (ii) row counts which sum to give row marginal(s) [if any]; (iii) column counts which sum to give column marginal(s) [if any]

Example 1: Table containing only independently perturbed table counts

Sex and Age	Ethnic group										Persons born in Ireland
		Black	Black	Black					Other groups		
	White	C'bean	African	other	Indian	P'stani	B'deshi	Chinese	Asian	Other	
Total Persons	94	4	0	\bigcirc	3	\bigcirc	\bigcirc	12	0	2	7

Given that all of the counts in the above table are independent of each other, the full description of this table required by $S D C$ _Direct_Impacts is:

111
Description Row 1: number of rows in table, followed by number of columns (above example $=$ table with 1 row and 11 columns)

Example 2: Table containing one dependent table marginal

Sex and Age	Total Persons	Ethnic group										Persons born in Ireland
		White	Black C'bean	Black African	Black other	Indian	P'stani	B'deshi	Chinese	Other groups		
										Asian	Other	
Total Persons	115	94	4	0	0	3	0	0	12	0	2	7

The original 'total persons' count in the above table is based on the sum of the interior ethnic group counts. Additional information is required, therefore, mapping the contribution of each table count to this table marginal.

In this case the full table description required by SDC_Direct_Impacts would be:

```
1 12
1
```

The description is compiled as follows:
Description Row 1: number of rows in table, followed by number of columns (above example $=$ table with 1 row and 12 columns)

Description Row 2, first number: flag to indicate whether following numbers give a mapping for a row or column marginal [$1=$ row, $2=$ column]. In this case 'total persons' is a row marginal (sum of counts in row), so first number in row 2 of the table mapping is 1 .

Second row, remaining numbers: A flag is given for each column in the table, reading from left to right, as follows:

Flag Meaning

-1 Column containing the row marginal being mapped
>0 Column containing a count that contributes to the row marginal being mapped
0 Column containing a count that does NOT contribute to the row marginal being mapped
When appropriate, the same flags are used to record the contribution of each row to a column marginal (reading from top to bottom).

In the above example, the row marginal recorded in column 1 [column 1 flagged with a -1] is the sum of columns 2 through 11 [each column flagged by a positive number]. Column 12 is present only due to table concatenation and does not contribute to the calculation of the table marginal. It is therefore flagged with a 0 .

Example 3: Table with dependent column and row marginals

Sex and Age	Total Persons	Ethnic group										Persons born in Ireland
		White	Black C'bean	Black African	Black other	Indian	P'stani	B'deshi	Chinese	Other groups		
										Asian	Other	
Total												
Persons	115	94	4	0	0	3	0	0	12	0	2	7
0-4	6	5	0	0	0	0	0	0	1	0	0	0
5-15	5	3	0	0	0	0	0	0	2	0	0	0
16-29	52	44	1	0	0	0	0	0	5	0	2	5
$30<\mathrm{pa}$	42	36	2	0	0	3	0	0	1	0	0	0
Pa and over	9	5	0	0	0	1	0	0	3	0	0	2

In the above table the original 'total persons' counts in each row and column are based upon the sum of various interior counts. Additional information is required to 'map' the contribution of table counts to each column and row table marginal.

In this case the appropriate table description would be:

```
612
1 -1 2 3 4 5 6 7 8 9 10 11 0
2-12 3 0 0 0
```

Description Row 1: 6 rows by 12 columns
Description Row 2: Row mapping (first number $=1$); column 1 is a row marginal [-1]; columns 2 through 11 sum to give total in column 1 [values $>0] ; 12^{\text {th }}$ column does not contribute to row marginal [0]

Description Row 3: Column mapping (first number=2); row 1 is a column marginal [-1]; rows 2 and 3 sum to give total in column 1 [values >0]

Example 4: Table with multiple dependent row and column table marginals

This final example is based upon a complex table containing multiple totals and sub-totals (see next page). Given that all table marginals are based on the sum of the relevant interior counts to be found in the body of the table, this table requires mappings for one row marginal and six column marginals:

```
28 11
1 -1 2 3 4 5 6 7 8 9 10 0
2
2
2
2
2-1
2
```

Note the need for one mapping per table marginal being mapped.
Note also that, in this example, to save time, some table marginals are expressed as the sum of other table marginals

Table 08 Economic position: residents aged 16 and over

	Total aged 16 and over	Age									Students (Econ. active or inactive)
Sex by economic position		$\begin{aligned} & 16- \\ & 19 \end{aligned}$	$\begin{aligned} & 20- \\ & 24 \end{aligned}$	$\begin{aligned} & 25- \\ & 29 \end{aligned}$	$\begin{aligned} & 30- \\ & 34 \end{aligned}$	$\begin{aligned} & 35- \\ & 44 \end{aligned}$	$\begin{aligned} & 45- \\ & 54 \end{aligned}$	$\begin{aligned} & 55- \\ & 59 \end{aligned}$	$\begin{aligned} & 60- \\ & 64 \end{aligned}$	65+	
Males											
Economically active											
Employees full-time											
Employees part-time											
Self-emp. + employees											
Self emp. 0 employees											
On a govt. scheme											
Unemployed											
Student (incl. Above)											
Economically inactive											
Students											
Permanently sick											
Retired											
Other inactive											
Females											
Economically active											
Employees full-time											
Employees part-time											
Self-emp. + employees											
Self emp. 0 employees											
On a govt. scheme											
Unemployed											
Student (incl. Above)											
Economically inactive											
Students											
Permanently sick											
Retired											
Other inactive											

5) SDC_Direct_Impacts_run_parameters.txt

[Stored in the RunParamters folder pointed to in Input_and_output_paths.txt]
The main purpose of SDC_Direct_Impacts is to evaluate the difference between perturbed and unperturbed count and percentage data. Users can select from a wide variety of goodness-of-fit measures at cellular, tabular and cross-table (i.e. global average) measures by modifying the relevant options in the file SDC_Direct_Impacts_run_parameters.txt. Options should be registered by changing the relevant values to the right of the comma on each line. The default settings are shown below. Please note that the spacing (blank lines) between sections is vital to the correct execution of the program, and should not be altered in any way.

Following the example file, the remainder of this section explains the meaning of the various parameters and the options available for each.

```
"=== file information on input counts ==="
"Data source [Create_Aggregates/User]: ", "Create_Aggregates"
"No. of samples
", 10
"Sampling strata [1=All;2=P20/P80;3=All/P20/P80]:
"Sample type:
' '10
Sample size
', 3
" " }2
"Report table mapping [on/off]: ", 1
"Use counts/percentages [0=count;1=%; 2=count & %]:", 0
"Strata source file:", "popdens.fmt"
"=== Report types ==="
"Table Totals [on/off]: ", 0
"Table-specific, Area-specific, Cell-based [on/off]: ", 0
Table-specific, Area-specific, Table-based [on/off]: ", 0
"Table-specific, Cross-area, Cell-based [on/off]: ", 0
"Table-specific, Cross-area, Table-based [on/off]: ",'0
"Cross-table, Area-specific, Table-based [on/off]: ", 0
"Cross-table, Cross-area, Table-based [on/off]: ", 1
"Correct Rank [on/off]: ", 1
"Correct Class [on/off]: "Correct/Neighbouring Class [on/off]: ", 1
"=== Cell-based measures of fit ==="
"cell_exp [on/off]: ", 0
"cell_obs [on/off]: ", 0
"cell_changed [on/off]: ", 0
"cell_TE [on/off]: ", 0
"cell_Z [on/off]: ", 0
"cell_NFC [on/off]: ", 0
"cell_Zm [on/off]: 
"Cell_Summary, Max [on/off]: ", 1
"Cell_Summary, 95%-tile [on/off]: ", 1
"Cell_Summary, mean [on/off]: ", 1
"Cell_Summary, 5%-tile [on/off]: ", 1
"Cell_Summary,min [on/off]: ", 1
"=== Table-based measures of fit ==="
"Table_frequency (of cell type) [on/off]: ", 1
"Table_n_changed [on/off]: ", 1
"Table_p_changed [on/off]: "', 1
"Table_max_change [on/off]: ", 1
"Table_maxPchange [on/off]: ", 1
"Table_TotalError [on/off]: ", 1
"Table_TAE [on/off]:
"Table_RAE [on/off]:
TTable_SAE [on/off]:
"Table_Sq_Error [on/off]: ", 1
"Table_RMSE [on/off]: ", 1
"Table_SSZ [on/off]: ", 1
"Table_NFC [on/off]: ", 1
'Table_NFT [on/off]: "', 1
"Table_SSZm [on/off]: ", 1
"Table_NFCm [on/off]: ", 1
Table_NFTm [on/off]: ", 1
"Table_Gibsons_D [on/off]: ", 1
"Table_Cramers_V [on/off]: ", 1
Table_PearsonsR [on/off]: ", 1
"Table_ChiSquare [on/off]: ", 1
"Table_TVCC [on/off]: ", 1
"Table_v_expcells [on/off]: ",
"Table_v_obscells [on/off]: ", 1
"Table_Summary, Max [on/off]: ", 1
'Table_Summary, 95%-tile [on/off]: "', 1
"Table_Summary, mean [on/off]: ", 1
"Table_Summary, 5%-tile [on/off]: ", 1
```

Note 1. For all on/off switches, $1=0$; any other number $=$ off

5(a) Information on input counts

Data source [Create_Aggregates/User]: For user-supplied inputs, set option to User. If the program Create_Aggregates has been used to create the input files of perturbed/unperturbed counts, set to Create_Aggreagtes.

No. of samples: No. of input areas (i.e. no. of areas for which data are supplied via the input files described in (1) and (2) above).

Sampling strata $[1=$ All; $2=P 20 / P 80 ; 3=$ All/P20/P80]: If the data source is "User", then sampling strata may be set to any whole number as the actual value chosen will have no impact on program operation; if the source is "Create_Aggregates", strata selection should reflect that previously used in Create_Aggregates.

Sample type: If the data source is "User", then sample type should be set to any whole number, as the actual value chosen will have no impact on program operation; if the source is "Create_Aggregates", sample type should reflect that used in Create_Aggregates.

Sample size: If the data source is "User", then sample type should be set to any whole number, as the actual value chosen will have no impact on program operation; if the source is "Create_Aggregates", sample size should reflect that used in Create_Aggregates.

Report table mapping: If set to 1, the output file SDC_Direct_Impacts_results.txt (located in the ProgramPath folder) will contain a table mapping indicating, for each table cell, the number of other table cells on which its value depends. This is useful for checking that table mappings have been properly declared. If set to 0 , table mappings will not be reported.

Use counts/percentages [$0=$ count; $1=\% ; 2=$ count \& $\%]$: A choice of whether assessment of disclosure control impact should be made for counts only [0]; percentages only [1]; or both counts and percentages [2]. Note that options [1] and [2] require the user to supply percentage mappings (see (8) below).

Strata source file: If the sampling_strata option has been set to [2] or [3], the name of the datafile upon which stratification by Create_Aggregates was based should be specified (e.g. "popdens.fmt"); else leave set to the default "None".

5(b) Report types

The output from SDC_Direct_Impacts is written to the file SDC_Direct_Impacts_results.txt, located in the ProgramPath folder. In addition to the cell-based and table-based measures chosen (see (c) and (d) below), the precise contents of this file depends upon the report-type selected. The basic report types available are outlined below. For all report types, a parameter value of $0={ }^{\prime}$ off', $1=$ 'on'.
$\mathbf{5 b}(\boldsymbol{i})$ Table Totals: For some input tables, the sum of the internal cell counts contributing to the overall table total may not equal the actual table total. If required, both table totals will be reported, for both the original and perturbed table variants. For example:

```
=== Revised table totals for s06a ===
Table s06a As published : Expected total 9834 Observed total 9831
Table s06a Sum of internal counts: Expected total 9834 Observed total 9882
```

5b(ii) Table-specific, Area-specific, Cell-based: reports all user-requested cell-based measures for each table cell, in each input table, for each input area. The available cell-based measures are listed in the section headed 'cell-based measures' below.

The following example report includes three of the available cell-based measures:

As may be seen from above, all requested cell-based measures are reported for each input area (sample) in turn. The layout of the cells directly mirrors the layout of the cells as input to SDC_Direct_Impacts, with the number of columns and rows conforming to that recorded in the table mapping. The example above presents results for the following input table layout:

Sex and Age	Total Persons	Ethnic group										Persons born in Ireland
		White	Black C'bean	Black African	Black other	Indian	P'stani	B'deshi	Chinese	Other groups		
										Asian	Other	
Total												
Persons	115	94	4	0	0	3	0	0	12	0	2	7
0-4	6	5	0	0	0	0	0	0	1	0	0	0
5-15	5	3	0	0	0	0	0	0	2	0	0	0

WARNING: for large input datasets, with many areas and/or many tables, the potential size of the output file produced by this report option is very large. The main purpose of this reporting option is simply to aid quality assurance of outputs from SDC_Direct_Impacts using small pilot datasets.

5b(iii) Table-specific, Area-specific, Table-based: reports all user-requested table-based measures for each user-supplied input table, for each input area (sample). The available table-based measures of fit are described below in the section 5(d) headed 'table-based measures'.

For example, if the number of cells changed by disclosure control (n _changed) is requested, the resulting output would look like:

Cell type (no. of contributing cells count depends upon)								
Sample	Measure	Marginal	Internal	All	1	2	10	20
1	n_changed	14.000000	17.000000	31.000000	17.000000	11.000000	2.000000	1.000000
2	n_changed	13.000000	20.000000	33.000000	20.000000	10.000000	2.000000	1.000000
3	n_changed	11.000000	20.000000	31.000000	20.000000	10.000000	0.000000	1.000000
4	n_changed	12.000000	20.000000	32.000000	20.000000	9.000000	2.000000	1.000000
5	n_changed	13.000000	19.000000	32.000000	19.000000	10.000000	2.000000	1.000000

Each input area (sample) is represented by a row, whilst each cell type is represented by a column. Cell 'type' = no. of cells on which a cell's value depends. (Please note that the column headed cell type 1 is the direct equivalent of the column headed 'internal'.)

If two measures of tabular fit are requested (no. and $\%$ of table cells changed by disclosure control), the output will look like:

Cell type (no. of contributing cells count depends upon)								
Sample	Measure	Marginal	Internal	All	1	2	10	20
1	n_changed	14.000000	17.000000	31.000000	17.000000	11.000000	2.000000	1.000000
1	p_changed	100.000000	77.272727	86.111111	77.272727	100.000000	100.000000	100.000000
2	n_changed	13.000000	20.000000	33.000000	20.000000	10.000000	2.000000	1.000000
2	p_changed	92.857143	90.909091	91.666667	90.909091	90.909091	100.000000	100.000000
3	n_changed	11.000000	20.000000	31.000000	20.000000	10.000000	0.000000	1.000000
3	p_changed	78.571429	90.909091	86.111111	90.909091	90.909091	0.000000	100.000000
4	n_changed	12.000000	20.000000	32.000000	20.000000	9.000000	2.000000	1.000000
4	p_changed	85.714286	90.909091	88.888889	90.909091	81.818182	100.000000	100.000000
5	n_changed	13.000000	19.000000	32.000000	19.000000	10.000000	2.000000	1.000000
5	p_changed	92.857143	86.363636	88.888889	86.363636	90.909091	100.000000	100.000000

and so on.
5b(iv)Table-specific, Cross-area, Cell-based: summarises the distribution of user-requested cellbased measures across all input areas (samples), on a table-by-table basis. For example, the user might require the mean and maximum percentage change in a cell-based value across all usersupplied input areas arising from disclosure control:

original_cnt	Maximum	10426.00000	152.00000	10191.00000	411.00000	3789.00000	224.00000
original_cnt	Mean	9746.90000	54.20000	9383.60000	309.10000	3682.40000	147.60000
original_cnt	Maximum	997.00000	14.00000	997.00000	0.00000	380.00000	0.00000
original_cnt	Mean	931.70000	5.20000	926.50000	0.00000	368.70000	0.00000
cell_changed	Maximum	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
cell_changed	Mean	0.80000	0.90000	0.80000	1.00000	0.90000	0.90000
cell_changed	Maximum	1.00000	1.00000	1.00000	0.00000	1.00000	0.00000
cell_changed	Mean	1.00000	0.60000	1.00000	0.00000	0.90000	0.00000

As for table-specific, area-specific, cell-based reports (5b(ii)), the layout of cells conforms to the layout of cells in the user-supplied input tables (in this case, a table comprising one row and six columns).

The full range of cellular measures and distributional summary statistics available are set out below (see section 5(c) below headed 'Cell-based measures').

If multiple distributional measures are requested, including the mean, the report output will include report the mean twice: once in conjunction with the other requested measures, as illustrated above, and once in a stand-alone section, as illustrated below:
$===$ Table-specific, Cross-area, Cell-based report (mean); s71 ===

original_cnt Mean	9746.90000	54.20000	9383.60000	309.10000	3682.40000	147.60000
cell_changed Mean	0.80000	0.90000	0.80000	1.00000	0.90000	0.90000
original_cnt Mean	931.70000	5.20000	926.50000	0.00000	368.70000	0.00000
cell_changed Mean	1.00000	0.60000	1.00000	0.00000	0.90000	0.00000

If produced, the stand-alone 'mean' section precedes the section containing all requested distributional measures. This feature is designed to aid summary results analysis.

5b(v) Table-specific, Cross-area, Table-based: summarises the distribution of user-requested tablebased measures across all input areas (samples), on a table-by-table basis. For example, the user might require the mean, maximum and minimum, across all user-supplied input areas, of the number and percentage of cells changed within each user-supplied input table as a result of disclosure control:

		Cell type (no. of contributing cells)				
Measure	Distrib	Marginal	Internal	All	1	3
n_changed	Maximum	2.000000	8.000000	10.000000	8.000000	2.000000
n_changed	Mean	1.800000	7.000000	8.800000	7.000000	1.800000
n_changed	Minimum	1.000000	6.000000	8.000000	6.000000	1.000000
p_changed	Maximum	100.000000	80.000000	83.333333	80.000000	100.000000
p_changed	Mean	90.000000	70.000000	73.333333	70.000000	90.000000
p_changed	Minimum	50.000000	60.000000	66.666667	60.000000	50.000000

Note that, as for table-specific, area-specific, table-based reports (see 5 b (iii) above), each table is considered as comprising a number of 'versions', each based on aggregations of cells of the same 'type'. A separate column is produced for each table cell type.

The full range of tabular measures and distributional summary statistics available are set out below (see section 5(d) below headed 'Table-based measures').

If multiple distributional measures are requested, including the mean, the report output will include report the mean twice: once in conjunction with the other requested measures, as illustrated above, and once in a stand-alone section, as illustrated below:

Cell type (no. of contributing cells)						
Measure	Distrib	Marginal	Internal	All	1	3
n_changed	Mean	1.800000	7.000000	8.800000	7.000000	1.800000
p_changed	Mean	90.000000	70.000000	73.333333	70.000000	90.000000

Note that distributional information is not available for the optional tabular measure 'frequency', which provides a simple count of the number of cells of each type in a table. Consequently, if this measure is requested, it will effectively be added as an additional header row. For example:

		Cell type (no. of contributing cells)				
Measure	Distrib	Marginal	Internal	All	1	3
frequency	Count	2	10	12	10	2
n_changed	Maximum	2.000000	8.000000	10.000000	8.000000	2.000000
n_changed	Mean	1.800000	7.000000	8.800000	7.000000	1.800000
n_changed	Minimum	1.000000	6.000000	8.000000	6.000000	1.000000
p_changed	Maximum	100.000000	80.000000	83.333333	80.000000	100.000000
p_changed	Mean	90.000000	70.000000	73.333333	70.000000	90.000000
p_changed	Minimum	50.000000	60.000000	66.666667	60.000000	50.000000

5b(vi) Area-specific, Cross-table, Table-based: a report of user-specified table-based measures, averaged across all user-supplied input tables. The report layout follows that of area-specific, tablespecific, table-based reports, with measures calculated separately for each cell type. Hence, tabular measures reported for in the column headed ' 4 ' represent the cross-table average of all marginal cells dependent upon the values of four internal cells. The results are reported separately for each user-supplied input area (sample):

```
=== Cross-table, Area-specific, Table-based report ===
```

		Cell type	. of contr	ng ce					
Measure	Sample	Marginal	Internal	All	1	2	3	10	20
n_changed	d 1	16.000000	25.000000	41.000000	25.000000	11.000000	2.000000	2.000000	1.000000
n_changed	2	15.000000	26.000000	41.000000	26.000000	10.000000	2.000000	2.000000	1.000000
n_changed	3	13.000000	28.000000	41.000000	28.000000	10.000000	2.000000	0.000000	1.000000
n_changed	4	14.000000	28.000000	42.000000	28.000000	9.000000	2.000000	2.000000	1.000000
Cell type (no. of contributing cells)									
Measure	Sample	Marginal	Internal	All	1	2	3	10	20
p_changed	1	100.000000	78.125000	85.416667	78.125000	100. 000000	100.000000	100.000000	100.000000
p_changed	2	93.750000	81.250000	85.416667	81.250000	90.909091	100.000000	100.000000	100.000000
p_changed	d 3	81.250000	87.500000	85.416667	87.500000	90.909091	100.000000	0.000000	100.000000
p_changed	d 4	87.500000	87.500000	87.500000	87.500000	81.818182	100.000000	100.000000	100.000000

5b(vii) Cross-table, Cross-area, Table-based: this report summarises user-specified measures of tabular fit across all user-supplied input areas (samples) and all user-supplied input tables. Summary and tabular measures reported are specified by the user. A full list of the tabular and summary measures available is listed below (5d(i)). The report output format follows that of tablespecific, area-specific, table-based reports (5b(iii)), with a separate output column for each table cell type.

For example:

Cell type (no. of contributing cells)									
Measure	Distrib	Marginal	Internal	All	1	2	3	10	20
frequency	Count	16	32	48	32	11	2	2	1
n_changed	Maximum	16.000000	28.000000	42.000000	28.000000	11.000000	2.000000	2.000000	1.000000
n_changed	Mean	14.400000	26.000000	40.400000	26.000000	10.000000	1.800000	1.600000	1.000000
n_changed	Minimum	13.000000	24.000000	38.000000	24.000000	9.000000	1.000000	0.000000	1.000000
p_changed	Maximum	100.000000	87.500000	87.500000	87.500000	100.000000	100.000000	100.000000	100.000000
p_changed	Mean	90.000000	81.250000	84.166667	81.250000	90.909091	90.000000	80.000000	100.000000
p_changed	Minimum	81.250000	75.000000	79.166667	75.000000	81.818182	50.000000	0.000000	100.000000

reports the mean, maximum and minimum, across all user-supplied areas and tables, of the number and percentage of table cells changed by disclosure control.

If multiple distributional measures are requested, including the mean, the report output will include report the mean twice: once in conjunction with the other requested measures, as illustrated above, and once in a stand-alone section, as illustrated below:

$\mathbf{5 b}$ (viii) Correct Rank: If this flag is switched on, and use counts/percentages $<>0$, a report is generated indicating the extent to which the ranking of input areas by observed (post-disclosure control) percentages matches the ranking of input areas by expected (original) percentages. The process of ranking and assessment of correct rank is repeated for each percentage identified via percentage mapping (see (8) below).

An example of the output produced, for two percentages only, follows. Subsequent percentages would appear as additional columns in the output. To aid readability, the example output below has been edited to ensure column alignment. The raw space-separated output is best viewed, particularly when many percentages are involved, via a spreadsheet.

```
=== Correct Rank; percentages ===
pltill pltill pltill punemp punemp punemp
CorrectRank Samples %_correct CorrectRank Samples %_correct
\begin{tabular}{llllll}
6 & 10 & 60.00 & 10 & 10 & 100.00
\end{tabular}
```

In SDC_Direct_Impacts, 'Samples' is synonymous with input areas. Hence the above output shows that, when ranked by $\%$ illness (pltill), 6 out of 10 areas (60%) had the same ranking pre- and postdisclosure control.

The report Correct Rank appears between any table-specific and cross-table reports requested.
N.B. In the case of areas with identical values, all are assigned the rank of the first occurring instance of the value, with the next occurring value having a rank $=$ to this rank + no. of duplicate values. Ranking is from lowest to highest value, with rank 1 equalling lowest value.
E.g. Values in ascending order

Assigned rank

0.1	1
0.2	2
0.4	3
0.4	3
0.5	5

$\mathbf{5 b}(\mathbf{i x})$ Correct Class: If this flag is switched on, and use counts/percentages $<>0$, the number of areas placed into the same pre- and post-disclosure control quantiles (classes) is reported, for each of three quantile types: 20/10/5. For each quantile type the report commences by identifying the relevant upper and lower class boundaries. This is followed by an assessment of classification by individual class, which is followed in turn by an overall assessment.

Example output is given below for only two percentages - additional percentages would appear in additional columns. Edited here to ensure column alignment, this space-separated output is best viewed by via a spreadsheet.

Percentile:	20	class:	1	Lower-bou	nd:		Upp	per-b	bound:	2		
Percentile:	40	class:	2	Lower-bou	nd:			per-b	bound:	4		
Percentile:	60	class:	3	Lower-bou	nd:			per-b	bound:	6		
Percentile:	80	class:	4	Lower-bou	nd:			per-b	bound:	8		
Percentile:	100	class:	5	Lower-bou	nd:		Upp	per-b	bound:	10		
=== Correct Class (5 quantiles); percentages ===												
Percentage	pltill		plti	ill					punemp		punemp	punemp
Class	Correct	t_Class	no.	_in_class	\%_C	rre	ect		Correct	Class	no._in_class	\%_Correct
1	1		2						2		2	100.00
2	0		2			00			2		2	100.00
3	1		2						2		2	100.00
4	2		2		100				2		2	100.00
5	2		2		100				2		2	100.00
All	Correct_Class no._in_sample \%_Correct							$\begin{aligned} & \text { Correct_Class } \\ & 10 \end{aligned}$			no._in_sample	\%_Correct
classes	6		10								10	100.00
=== Quantile boundaries (10 classes); percentages ===												
Percentile:	10	class:	1	Lower - bour	und :		1 U	Upper	r-bound	: 1		
Percentile:	20	class:	2	Lower-bour	und:		2 U	Upper	r-bound	: 2		
Percentile:	30	class:	3	Lower-bour	und:	3	3 U	Upper	r-bound	: 3		
Percentile:	40	class:	4	Lower-bour	und:		4 U	Upper	r-bound	: 4		
Percentile:	50	class:	5	Lower-bour	und:	5	5 U	Upper	r-bound	: 5		
Percentile:	60	class:	6	Lower-bour	und:	6	6 U	Upper	r-bound	: 6		
Percentile:	70	class:	7	Lower-bour	und:	7	7 U	Upper	r-bound	: 7		
Percentile:	80	class:	8	Lower-bour	und:			Upper	r-bound	: 8		
Percentile:	90	class:	9	Lower-bour	und:	9	9 U	Upper	r-bound	: 9		
Percentile:	100	class:	10	Lower-bour	und:	10	0 U	Upper	r-bound	: 10		

The report Correct Class appears between any table-specific and cross-table reports requested.
$\mathbf{5 b}(\mathbf{x})$ Correct/Neighbouring Class: If this flag is switched on, and use counts/percentages $<>0$, the number of areas placed into the same or an adjacent pre- and post-disclosure control quantile (class) is reported, for each of three quantile types: 20/10/5. For each quantile type the report commences by identifying the relevant upper and lower class boundaries. This is followed by an assessment of classification by individual class, which is followed in turn by an overall assessment.

Example output is given below for only two percentage - additional percentages would appear in additional columns. Edited here to ensure column alignment, this space-separated output is best viewed by via a spreadsheet. The column headed 'Near_Class' records the number of observed input areas falling within the relevant, or an adjacent, class.

```
=== Quantile boundaries ( 5 classes); percentages ===
Percentile: 20 class: 1 Lower-bound: 1 Upper-bound: 2
Percentile: 40 class: 2 Lower-bound: 3 Upper-bound: 4
Percentile: 60 class: 3 Lower-bound: 5 Upper-bound: 6
Percentile: 80 class: 4 Lower-bound: }7\mathrm{ Upper-bound: }
Percentile: 100 class: 5 Lower-bound: 9 Upper-bound: }1
=== Correct/Neighbouring class ( 5 quantiles); percentages ===
Percentage pltill pltill pltill punemp punemp punemp
Class Near_Class no._in_class %_Correct Near_Class no._in_class %_Correct
\begin{tabular}{lllllll}
1 & 2 & 2 & 100.00 & 2 & 2 & 100.00 \\
2 & 2 & 2 & 100.00 & 2 & 2 & 100.00 \\
3 & 2 & 2 & 100.00 & 2 & 2 & 100.00 \\
4 & 2 & 2 & 100.00 & 2 & 2 & 100.00 \\
5 & 2 & 2 & 100.00 & 2 & 2 & 100.00
\end{tabular}
=== Quantile boundaries ( 10 classes); percentages ===
All Near_Class no._in_sample %_Correct Near_Class no._in_sample %_Correct
classes 10 10 100.00 10 10 100.00
Percentile: 10 class: 1 Lower-bound: 1 Upper-bound: 1
Percentile: 20 class: 2 Lower-bound: 2 Upper-bound: }
Percentile: 30 class: 3 Lower-bound: 3 Upper-bound: 3
Percentile: 40 class: 4 Lower-bound: 4 Upper-bound: 4
Percentile: 50 class: 5 Lower-bound: 5 Upper-bound: 5
Percentile: 60 class: 6 Lower-bound: 6 Upper-bound: 6
Percentile: 70 class: 7 Lower-bound: }7\mathrm{ Upper-bound: }
Percentile: 80 class: 8 Lower-bound: 8 Upper-bound: 8
Percentile: 90 class: 9 Lower-bound: }9\mathrm{ Upper-bound: }
Percentile: 100 class: 10 Lower-bound: 10 Upper-bound: 10
Etc...
```

The report Correct/Neighbouring Class appears between any table-specific and cross-table reports requested.

5(c) Cell-based measures

[For each measure of fit, $0={ }^{\prime}$ off'; $1=$ 'on']

5c(i) Measures available

SDC_Impact_Direct calculates, and can report if required, 8 cell-based measures. (Note that to report cell-based measures a cell-based report-type must also have been requested.)
cell_exp: expected cell value (original value)
cell_obs: observed cell value (value after application of disclosure control)
cell_changed: A flag indicating whether expected and observed cell values differ ($1=$ differ; $0=$ no difference)
cell_TE: Total Error (size of difference between expected and observed values)
cell_Z: Z-score (depends upon size of difference and table total; see p. 38 for details)
cell_NFC: Flag set to ' 1 ' if cell | Z-score | is > 1.96, indicating a 'non-fitting cell' [i.e. difference between expected and observed count greater than would be expected by change alone (0.05 significance level)]; else flag set to ' 0 '.
cell_Zm: Modified Z-score $\left(Z_{m}\right)$ which takes account of cases when expected and observed table totals are markedly different (see appendix p. 38 for details).
cell_NFCm: Flag set to ' 1 ' if cell $\left|Z_{m}\right|$ is >1.96, indicating a 'non-fitting cell'; else flag set to ' 0 '. [modified Z does not have a known sampling distribution, although if expected table total $=$ observed table total, $Z_{m}=Z$]

5c(ii) Cross-area summary values available

For each cell-based measure, five sample summary values are available:
Cell_Summary, Max: Maximum value of cell-based measure across all input areas
Cell_Summary, 97.5%-tile: $97.5^{\text {th }}$ percentile-value of cell-based measure across all input areas
Cell_Summary, mean: mean value of cell-based measure across all input areas
Cell_Summary, 2.5%-tile: $2.5^{\text {th }}$ percentile-value of cell-based measure across all input areas
Cell_Summary,min: Minimum value of cell-based measure across all input areas

5(d) Table-based measures

In (i) and (ii) below the term 'table' is used in the sense outlined in more detail in section (iii). Full definitions of all measures are given in pages 38-41. The measures listed below will only be reported if a 'table-based' report type has also been requested.

5d(i) Available measures of tabular fit

SDC_Direct_Impact produces the following range of measures of tabular fit:
Table_frequency (of cell type): No. of cells in a table of a given 'type' [see (iii) below]
Table_n_changed: No. of cells in table who's expected (original) and observed (post disclosure control) values differ

Table_p_changed: \% of cells in table who's expected and observed values differ
Table_max_change: Maximum difference (change) in pre- and post-disclosure control cell values

Table_maxPchange: Maximum \% difference (change) in pre- and post-disclosure control cell values

Table_TotalError: Total Error - difference between expected and observed counts summed across all table cells

Table_TAE: Total Absolute Error - absolute difference between expected and observed counts summed across all table cells

Table_RAE: Relative Absolute Error - TAE as \% of total value of changed cells
Table_SAE: Standardised Absolute Error - TAE / sum of table cells (table total)
Table_Sq_Error: Total Square Error - sum of square of difference between expected and observed cell values

Table_RMSE: Square root of the average square error across all table cells.
Table_SSZ: Sum of the square of the cell Z-scores
Table_NFC: No. of 'Non-Fitting Cells' in table. [i.e. no. of cells with | Z-score | > 1.96] (i.e. no. of cells for which difference between expected and observed values is greater than can be explained by chance at the 0.05 significance level).

Table_NFT: Non-fitting table; $=$ ' 1 ' if table SSZ exceeds critical value (at 0.05 significance level); else $=0$

Table_SSZm: Sum of the square of the cell modified Z-scores [see p. 38 A for full explanation of Z_{m})
Table_NFCm: No. of 'Non-Fitting Cells' in table [i.e. no. of cells with | Z_{m}-score |> 1.96] (N.B. value of 1.96 is arbitrary as Zm has no known sampling distribution unless expected and observed table totals are the same).

Table_NFTm: Non-fitting table; $=$ ' 1 ' if table $\mathrm{SSZ}_{\mathrm{m}}$ exceeds SSZ critical value (at 0.05 significance level); else $=0\left(\mathrm{SSZ}_{\mathrm{m}}\right.$ has unknown sampling distribution unless expected and observed table totals are the same)

Table_Gibsons_D: Gibson's D
Table_Cramers_V: Cramer's V
Table_PearsonsR: Pearsons Correlation Coefficient
Table_ChiSquare: Chi-square
Table_TVCC: Total expected value of all cells for whom expected and observed values differ
Table_v_expcells: Sum of expected cell values
Table_v_obscells: Sum of observed cell values
5d(ii) Cross-area five sample summary values are available

Table_Summary, Max: Maximum value of table-based measure across all input areas
Table_Summary, 97.5%-tile: $97.5^{\text {th }}$ percentile-value of table-based measure across all input areas Table_Summary, mean: mean value of table-based measure across all input areas Table_Summary, 2.5%-tile: $2.5^{\text {th }}$ percentile-value of table-based measure across all input areas Table_Summary, min: Minimum value of table-based measure across all input areas

(e) 'Tables' and 'cell types'

Conventionally, measures of tabular fit are based on a table's internal cells (i.e. all cells whose value depends on no other cell). However, in terms of disclosure control, the cumulative impact on marginals is of particular interest. For this reason, SDC_Direct_Impact produces 'table-based' measures based on evaluation not only of all internal cells, but also, separately, for all cells of a given 'type' within each table. A cell's 'type' is defined by the number of other cells within the table upon which it's value depends. Internal cells are type ' 0 ' (their values depend on no other cells). In contrast, cells of type 4 represent all marginal cells in a table whose value depends upon the summation of 4 internal cells. In addition, two other cell types are also recognised: all cells, whether marginal or internal, denoted by cell type ' -2 '; and all marginal cells (i.e. all cells depending on the value of $1+$ other cells), denoted by cell type ' -1 '. During calculation a 'table' is regarded as comprising all table cells of a given 'type'. Please note that, for internal programming reasons, all cells reported in all SDC_Direct_Impacts output as cells of type 1 are, in fact, cells of type 0 [i.e. type $1=$ internal cells]. This is because cells of type 1 , depending on only 1 cell are, in effect, simply direct copies of existing internal (type 0) cells.

6) SDC_Direct_Impacts_Count_input_tables.fmt

[Stored in the RunParameters folder pointed to in Input_and_output_paths.txt]
A list of files containing lists of pre/post perturbation table counts to be used in assessment of disclosure control (one pair of comparison tables per row of file).

The format for each comparison pair (row) in the file is:
"<table name>", <original count variant>, <perturbed count variant>
E.g.
"s06", 0, 2
It is important that: (i) the table name is in quotes; (ii) all items in the row are comma-separated; (iii) the table name supplied matches the table name used in the naming of input and map files (see (1), (2) and (3) above if in doubt).

The file SDC_Disclosure_Impacts_run_parameters.txt contains all additional information required to generate full input file names covering both map files and original/perturbed count data, regardless of data source (user-supplied, or created via Create_Aggregates).

For a user-supplied set of tables, the example given above is equivalent to requesting that the counts contained in the file

S06_v0.fmt
are compared to their equivalents in

S06_v2.fmt
If the data source for the tables is Create_Aggregates, the example above is equivalent to requesting that the counts contained in the file

S06a_v0_P20[Popdens]_n20[R]_s1000.fmt
are compared to their equivalents in
S06a_v2_P20[Popdens]_n20[R]_s1000.fmt

7) SDC_Direct_Impacts_Percentage_input_tables.fmt

[Stored in the RunParamters folder pointed to in Input_and_output_paths.txt]
If the Use counts/percentages option has been set to 1 or 2 in
SDC_Direct_Impacts_run_parameters.txt, then this file is required as input. The file should list files containing pre/post perturbation table percentages to be used in assessment of disclosure control (one pair of comparison tables per row of file). For example,

The format for each comparison pair (row) in the file is:
" $<$ table name $>$ ", <original count variant $>,<$ perturbed count variant $>$
E.g.
"percentages", 0, 2
It is important that: (i) the table name is in quotes; (ii) all items in the row are comma-separated; (iii) the table name supplied matches the table name used in the naming of input and map files (see (1), (2) and (3) above if in doubt).

SDC_Direct_Impacts will parse root table name(s) into full input filename(s) in precisely the same manner as for files containing count data, as outlined for SDC_Direct_Impacts_Count_input_tables.fint above.

8) <percentage name>.map

[Located in the TableMappings folder]
If the Use counts/percentages option has been set to 1 or 2 in
SDC_Direct_Impacts_run_parameters.txt, then this file is required as input (one map file per input file listed in SDC_Direct_Impacts_Percentage_input_tables.txt).

This file describes the format of the associated percentage input file. Just as for count data, percentage data can be supplied in tabular or vector format. The first line of the file $<$ percentage name>.map describes the number of rows and columns per input area.

For example
117
describes an input file with 17 percentages per input area, laid out as a vector (1 row).

For percentages whose value depends on the summation of other percentages, additional mapping information is required, just as for count data (see section 3 'Table Mappings' above).

9) Chisquare.dat

[Stored in the RunParamters folder pointed to in Input_and_output_paths.txt]
A file, supplied with the program, that gives chi-square critical values, at 0.05 significance level, for 0 to 5000 degrees of freedom. Needed to check whether or not pre- and post-disclosure counts agree at the tabular level, using squared Z-score (which has unit normal distribution).

Program Outputs

SDC_Direct_Impacts_results.txt

[Stored in the folder pointed to by ProgramPath]
All output from SDC_Direct_Impacts is written to this file. The precise contents of the output depend upon the reports requested by the user via SDC_Direct_Impacts_run_parameters.txt. Details of the output produced by each report are given under the relevant report heading in section 5 of Program Inputs above. More complex output may best be viewed via a spreadsheet package. For the purpose of importing to a spreadsheet package, the program output should be regarded as space-separated.

FULL DESCRIPTIONS OF TABULAR AND CELLULAR MEASURES

(1) Cellular measures for count data

Definitions

Cell type - the number of internal cell counts on which a cell's value is based. Internal cells have a cell type of 0 ; marginal cells have a cell type of 2 or more. Cells of type 1 are direct copies of internal cells, and are treated as internal cells for classification purposes.

Cell $[i]=$ specific cell within table (i ranges from 1 to number of cells in table)

Measures

$\operatorname{Exp}\left[E_{i}\right]=\operatorname{expected}$ (pre disclosure control) cell value
Obs $\left[O_{i}\right]=$ observed (post disclosure control) cell value (value after application of disclosure control)

Changed $\left[C_{i}\right]=1$ if $O_{i}<>E_{i}$; else $=0$.
$\mathbf{T E}\left[T E_{i}\right]=O_{i}-E_{i}$
$\mathbf{Z}\left[Z_{i}\right]=\left[\left(O_{i} / \Sigma O_{i}\right)-\left(E_{i} / \Sigma E_{i}\right)+Q_{i}\right] /\left[\left\{\left(E_{i} / \Sigma E_{i}\right)\left(1-\left(E_{i} / \Sigma E_{i}\right)\right)\right\} / \Sigma O_{i}\right]^{0.5}$,
where $Q_{i}=0$ if $E_{i}=0$; else if $\left(O_{i} / \Sigma O_{i}\right)-\left(E_{i} / \Sigma E_{i}\right)>0, Q_{i}=-\left(1 /\left(\Sigma E_{i}+\Sigma O_{i}\right)\right)$;
else $Q_{i}=+\left(1 /\left(\Sigma E_{i}+\Sigma O_{i}\right)\right)$.
To avoid Z_{i} becoming undefined:
(i) if $E_{i}=0$, substitute $E_{i}=1$
(ii) if $E_{i}=\Sigma E_{i}$, substitute ΣE_{i} with $\Sigma E_{i}+1$
(iii) if $E i>\Sigma E_{i}$, substitute ΣE_{i} with $E_{i}+1$
(iv) if $E_{i}=O_{i}$ and $\Sigma E_{i}=\Sigma O_{i}, Z_{i}=0$

NFC $\left[N F C_{i}\right]=1$ if $\left|Z_{i}\right|$ exceeds critical value of $1.96(p=0.05)$; else 0.
$\mathbf{Z m}\left[Z m_{i}\right]=\left[\left(O_{i} / \Sigma E_{i}\right)-\left(E_{i} / \Sigma E_{i}\right)\right] /\left[\left\{\left(E_{i} / \Sigma E_{i}\right)\left(1-\left(E_{i} / \Sigma E_{i}\right)\right)\right\} / \Sigma E_{i}\right]^{0.5}$
To avoid $Z m_{i}$ becoming undefined:
(i) if $E_{i}=0$, substitute $E_{i}=1$
(ii) if $E_{i}=\Sigma E_{i}$, substitute ΣE_{i} with $\Sigma E_{i}+1$
(iii) if $E i>\Sigma E_{i}$, substitute ΣE_{i} with $E_{i}+1$
(iv) if $E_{i}=O_{i}$ and $\Sigma E_{i}=\Sigma O_{i}, Z m_{i}=0$
$\mathbf{N F C m}\left[\mathrm{NFCm}_{i}\right]=1$ if $\left|Z m_{i}\right|>1.96$; else 0

(2) Tabular measures for count data

Definitions

Table - input tables will typically comprise a set of internal cell counts, possible plus a set of table margins. It is possible to envisage assessing the impact of disclosure control on all table cells, on internal cells only, on marginal cells only and so on. For analytical purposes, therefore, a 'table' is taken to represent a set of cells of common cell type (e.g. all marginal cells based on the summation of 4 internal cells). In consequence one input table may have generate multiple 'table' outputs.

Measures

frequency $(n)=$ a count of the number of cells within a given table
n_changed $(N C)=\Sigma N C_{i}$, where $N C_{i}=1$ if $O_{i}<>E_{i} ; 0$ otherwise.
$O=$ observed (post-disclosure control) counts; $E=$ expected (pre-disclosure control) counts; $i=$ specific cell within table.
p_changed $(P C)=\left(\Sigma N C_{i}\right) / n$
max_change $(M N C)=\max \left(O_{i}-E_{i}\right)$, for $i=1$ to n
maxPchange $(M P C)=\max \left\{\left(O_{i}-E_{i}\right) / E_{i}\right\}$, for $i=1$ to n
TotalError $[T E]=\Sigma\left(O_{i}-E_{i}\right)$, for $i=1$ to n
$\operatorname{TAE}(T A E)=\Sigma\left|\left(O_{i}-E_{i}\right)\right|$, for $i=1$ to n
$\operatorname{RAE}(R A E)=100\left(T A E_{i} / T V C\right)[\%]$ [see below for definition of TVC]
SAE $[S A E]=T A E /\left(\Sigma E_{i}\right)$, for $i=1$ to n
Sq_Error $\left[E^{2}\right]=\Sigma\left(O_{i}-E_{i}\right)^{2}$, for $i=1$ to n
RMSE $[R M S E]=\left(E^{2} / n\right)^{0.5}$
$\mathbf{S S Z}[S S Z]=\Sigma Z_{i}^{2}$, for $i=1$ to n
NFC $[N F C]=\Sigma N F C_{i}$, for $i=1$ to n
NFT $[N F T]=1$ if SSZ exceeds χ^{2} critical value for table $(p=0.05 ; d f=n)$; else 0 .
Degrees of freedom: calculation of NFT assumes that all cells, internal and marginal, are not constrained in their fit to pre-disclosure control values. Hence degrees of freedom, for any table, is taken to be n.

This stance is justified as follows. First, few, if any, disclosure control methods currently implemented by statistical agencies involve modifying internal cells in such a way that they are guaranteed to total to original marginals. Such a method would, in any case, probably open up the possibility of reverse-engineering the perturbations applied. Consequently, in assessing degrees of freedom, all internal cells may be regarded as unconstrained. If post
disclosure control marginal values are also not constrained, then the assumption that $\mathrm{df}=\mathrm{n}$ remains valid. However, it is possible that margins are independently supplied and constrained to fit to original margins, in which case degrees of freedom for marginal cells = 0 . If this is the case the values of NFT for all cell types except internal should be disregarded.
$\mathbf{S S Z m}[S S Z m]=\Sigma Z m_{i}{ }^{2}$, for $i=1$ to n
$\mathbf{N F C m}[\mathrm{NFCm}]=\Sigma \mathrm{NFCm}_{i}$, for $i=1$ to n
NFTm $[N F T m]=1$ if SSZm exceeds χ^{2} critical value for table $(p=0.05 ; d f=n)$; else 0.
Gibsons_D $[D]=0.5 \Sigma\left|\left(E_{i} / \Sigma E_{i}\right)-\left(O_{i} / \Sigma O_{i}\right)\right|$, for $i=1$ to n
(i) If $\Sigma E_{i}=0$, set $E_{i} / \Sigma E_{i}=0$; if $\Sigma O_{i}=0$, set $O_{i} / \Sigma O_{i}=0$

Cramers_V $[V]=\left[\chi^{2} / n \min (r-1, c-1)\right]^{0.5}$,
where $r=$ no. of rows (of given cell type) in table; $c=$ no. of columns in table (in table).
(i) If minimum $(r, c)=1, V=-9$ [undefined]
(ii) For cell types other than internal, the value of V represents only an approximate measure of fit

PearsonsR $[r]=\Sigma\left[\left(O_{i}-O_{m}\right)\left(E_{i}-E_{m}\right)\right] /\left[\Sigma\left(O_{i}-O_{m}\right)^{2} \Sigma\left(E_{i}-\mathrm{E}_{m}\right)^{2}\right]^{0.5}$, for $i=1$ to n,
where $O_{m}=\Sigma O_{i} / n$ and $E_{m}=\Sigma E_{i} / n$
(i) If $\Sigma\left(O_{i}-O_{m}\right)^{2}=0$ or $\Sigma\left(O_{i}-O_{m}\right)^{2}=0$, set $r=0$
(ii) If number of cells in table $=1, r=-9$ [undefined]

ChiSquare $\left[\chi^{2}\right]=\Sigma\left\{\left(O_{i}-E_{i}\right)^{2} / E_{i}\right\}$, for $i=1$ to n
TVCC $[T V C C]=\Sigma E_{i}$, for all i where $E_{i}<>O_{i}$
v_expcells $\left[\Sigma E_{i}\right]=\Sigma E_{i}$, for $i=1$ to n
v_obscells $\left[\Sigma O_{i}\right]=\Sigma O_{i}$, for $i=1$ to n

(3) Cross-table measures for count data

In definitions given in this section, $\Sigma X=$ sum indicated measure (X) across all input tables

N_changed	$\sum N C$
P_changed	$\sum N C / \Sigma n$
Max_change	Maximum $M N C$
MaxPchange	Maximum $M P C$
TotalError	$\Sigma T E$
TAE	$\Sigma T A E$

RAE	$100(\Sigma T A E / \Sigma T V C C)$
SAE	$\sum T A E / \Sigma E i$, for $i=1$ to Σn
SqError	ΣE^{2}
RMSE	$\Sigma R M S E$
SSZ	$\Sigma S S Z$
NFC	$\Sigma N F C$
NFT	$\Sigma N F T$
SSZm	$\Sigma S S Z m$
NFCm	$\Sigma N F C m$
NFTm	$\Sigma N F T m$
GibsonsD	As for tabular measure, but for $i=1$ to Σn
Cramers_V	V / T, where $T=$ no. of tables [an approximation required because min $(r-1$,
	$c-1)$ is a meaningless concept across multiple tables]
PearsonsR	As for tabular measure, but for $i=1$ to Σn
ChiSquare	$\Sigma \chi^{2}[d f=\Sigma n]$
TVCC	$\Sigma T V C C$
v_expcells	As for tabular measure, but for $i=1$ to Σn
v_obscells	As for tabular measure, but for $i=1$ to Σn

(4) Measures for use with percentages

The following measures of fit are inappropriate for use with percentage data:
Cellular: $Z, N F C, Z m, N F C m$
Tabular: SSZ, NFC, NFT, SSZm, NFCm, NFTm, V, χ^{2}
Therefore, even if requested, SDC_Direct_Impacts will not report these measures for percentage data.

(5) Distributional measures

Available measures: Maximum, minimum, mean, $2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles. (The latter two measures may be used to derive a 95% 'confidence interval'.)

Percentiles - calculated by interpolation given $\mathrm{Q}, \mathrm{Q}=$ rank of value for given percentile. $Q=$ $1+(p(N-1))$, where $p=$ percentile required, expressed as a fraction) (e.g. $0.975=97.5^{\text {th }}$ percentile) and $N=$ no. of ranked values (i.e. no. of input areas).

