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Abstract 
  
The work reported here offers for the first time a thorough comparison of two established 

methodologies for the creation of small area synthetic microdata, synthetic reconstruction 

and combinatorial optimisation.  Two computer models, Pop91SR and Pop91CO, have 

been developed for the reconstruction of ED level populations drawing upon 1991 Census 

data.  The adequacy of their outputs has been assessed at cellular, tabular and overall 

levels.  Consideration has also been given to the impact on outputs of aggregating ED 

estimates into wards.   

 

Compared with previous synthetic reconstruction models, Pop91SR employs the 

following new techniques: (a) use of the SAR to examine relationships between variables 

and determine the ordering of conditional probabilities; (b) a three-level modelling 

approach to create the conditional distributions, combining data from the SAS, LBS and 

SAR; and (c) adoption of a modified Monte Carlo sampling procedure. These techniques 

maximise the use of information and greatly reduce the sampling error, thereby increasing 

estimation accuracy.  The major improvements in Pop91CO are: (a) using a new criterion 

(RSSZm) for the selection of household combinations;  (b) selection of households from 

the relevant SAR region, where possible; and (c) a revised set of stopping rules to control 

the number of iterations and improve the consistency of outputs.  Using RSSZm as the 

selection criterion yields significant improvements in the quality of the synthetic data 

generated. 

 

An assessment of outputs from the two rival approaches, produced using the same small-

area constraints, suggests that both can produce synthetic microdata that fit constraining 

tables extremely well.  But further examination reveals that the variability of datasets 

generated by combinatorial optimisation is considerably less than that for datasets created 

by synthetic reconstruction, at both ED and ward levels, making combinatorial 

optimisation the approach of choice for the creation of a single set of synthetic microdata. 
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1. Introduction 

 

Population microdata comprise a list of individuals with associated attributes (e.g. age, 

sex, marital status, tenure), typically grouped into families and households.  The list-

based representation of these attributes has significant advantage over array-based 

representations, including efficient representation, flexible aggregation and data linkage 

(Birkin and Clark, 1995; Williamson et al., 1998).  In Britain the two largest, readily 

accessible and non-commercial survey microdata sets are the 2% individual and 1% 

household Samples of Anonymised Records (SAR) from the 1991 Census.  Since their 

release they have been very popular with researchers for area-level and spatial analysis 

(Dale, 1998).  Unfortunately, the types of analyses achievable using the SAR are limited 

in a number of ways.  These limitations include the relatively restricted range of questions 

asked in the census, the restriction of sample size, the collapsing of response categories, 

and in particular the restriction of geographical information.  In order to protect 

confidentiality the 1% household SAR contain only a coarse geography (standard 

statistical region), whilst the 2% individual SAR offers a more detailed district level 

geography, but at the expense of the loss of a great deal of household level information.  

Indeed, the lack of spatially detailed information has been recognised as a major limiting 

factor.  King and Bolsdon (1998) pointed out that although local government is a major 

potential user of the 1% SAR, given its centrality both to local housing policy and to 

planning policy, this use is greatly restricted by the geography of the SAR.     

 

The need for spatially detailed microdata has been recognised by the Economic and 

Social Research Council (ESRC).  Over the last two decades, ESRC supported research 

has led to the development of two competing methodologies for producing synthetic 

small area population microdata, namely ‘synthetic reconstruction’ and ‘combinatorial 

optimisation’.  In this context, ‘small area’ is taken to mean enumeration district (ED) - 

the smallest geographical unit in the UK for which census tabulations have been made 

available.  Synthetic reconstruction approach involves the use of Monte Carlo sampling 

from a series of conditional probabilities, derived from published census tabulations, to 

create synthetic data.   The combinatorial optimisation approach involves the selection of 

a combination of households from the 1% household SAR that best fit known small area 

constraints (published census tabulations). 
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Recently the combinatorial optimisation technique has been examined and assessed by 

Voas and Williamson (2000a), but to date only partial evaluations of the synthetic 

reconstruction approach have been made (Williamson, 1995; Duley, 1989).  In particular, 

although initial results have suggested that both approaches have potential, no direct 

comparison of the results obtained using each approach has been made.  In an effort to fill 

this gap, the aim of this paper is to compare and contrast the two established 

methodologies (synthetic reconstruction and combinatorial optimisation) for synthetically 

reconstructing small area microdata, leading to the identification of a favoured 

methodology as the pre-cursor to the creation of a validated set of national small area 

population microdata. 

 

The plan of the paper is as follows.  Section 2 briefly reviews the two alternative 

methodologies and highlights their associated problems.  Section 3 describes the general 

approach to evaluating and comparing the two methodologies, in which a set of measures 

of fit is defined.  This is followed by a more detailed description of the two alternative 

approaches to the recreation of small area microdata.  Section 4 is devoted to the 

development of Pop91SR, a new model based on the synthetic reconstruction approach.  

A number of technical innovations associated with this approach are reported.  Section 5 

describes the combinatorial optimisation model, Pop91CO, and various improvements 

that have been introduced since the writing of Voas and Williamson (2000a).  Section 6 

presents a thorough evaluation and comparison of the two sets of competing model 

outputs.   The conclusions arising from this comparison are set out in Section 7.      
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2. Synthetic reconstruction vs. combinatorial optimisation 

 

A number of approaches exist for estimating spatially detailed microdata, including 

stratified sampling, geodemographic profiling, data fusion, data merging, iterative 

proportional fitting, reweighting, synthetic reconstruction and their combinations.  Given 

data availability in the United Kingdom, synthetic reconstruction and combinatorial 

optimisation (a variant of the reweighting approach) have been identified as the two main 

competing approaches in the creation of small area synthetic population microdata 

(Williamson et al., 1998; Williamson, 2002).  Both approaches attempt to create lists of 

individuals and households whose characteristics are consistent with known aggregate 

local distributions within the census or other data, but they differ in the means by which 

they try to achieve this end. 

 

2.1 Synthetic reconstruction 
 

The synthetic reconstruction approach is the most long-standing method for generating 

synthetic microdata.  It normally involves Monte Carlo (random) sampling from a series 

of conditional probabilities derived from published contingency tabulations.  The 

procedure is usually sequential, and typically begins by creating a set of household heads 

with age, sex, marital status and spatial location attributes determined by sampling from a 

known distribution.  A next step could be to allocate economic activity to the sample, 

drawing upon another published tabulation to determine a conditional probability of 

economic activity given age, sex, marital status, and location of these household heads  

(see Figure 1).  If a head is designated as economically active, a next step might be to 

estimate his/her occupation.  If married, a spouse and, potentially, children could be 

generated.  And so the procedure is carried out for all the variables we wish to include in 

our synthetic microdata.  

 

The only source of population data at small area scale in the UK and most of other 

countries is the census, which yields a series of separate, predetermined, aggregate cross-

tabulations such as age by sex by marital status for individuals and tenure by ethnic group 

of head of household for households.  It is almost always the case that these tables 

provide only partial information concerning the conditional chain probabilities to be 

derived.  Suppose that we are interested in the relationships between four variables a, b, c, 
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Household head 

 
Steps 
 
1. Age, sex and marital 
status (M) of household 
head  
(From SAS Table 39)a 
 
2. Cumulative probability 
of employment status, 
given age, sex and marital 
status 
(From SAS Table 34) 
 
3. Random number 
(computer generated) 
 
4. Employment status 
assigned on basis of 
random sampling 
 
5. Next household head 
(repeat until all household 
heads assigned an 
employment status) 

 
1st 
 
Age: 18 
Sex: Male 
M:    Married 
 
 
 
Employed:     0.6 
Unemployed: 0.9 
Inactive:         1.0 
 
 

0.281 
 
 
 

Employed 

 
2nd 

 
Age: 20 
Sex: Male 
M:    Married 
 

 
 
Employed:     0.6 
Unemployed: 0.9 
Inactive:         1.0 
 
 

0.709 
 
 
 

Unemployed 

 
Last 
 
Age: 87 
Sex: Female 
M:   Unmarried b 
 
 
 
Employed:     0.0 
Unemployed: 0.0 
Inactive:         1.0 
 
 

0.481 
 
 
 

Inactive 

 

a Coarse age bands disaggregated into single year of age using other local information 
b Includes single, widowed and divorced 
 
After Clarke G (1996) ‘Microsimulation: an introduction’ in G P Clarke [ed.] Microsimulation for urban 
and regional policy analysis, Pion, London, Figure 1. 
 
Figure 1  A simplified synthetic reconstruction procedure 
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and d for a given location and population group, and the interdependencies between these 

four variables could not be obtained from published census data.  But parts of the array 

are known from the published tables, say Q1(a, b, c), Q2(b, d) and Q3(a, d).  In this 

case,the required conditional probability can be estimated using iterative proportion 

fitting (IPF), a well-established technique for overcoming data shortfalls of this kind (see 

Birkin and Clark, 1988; Fienberg, 1970; and Wong, 1992).  Specifically, IPF can be used 

to estimate the full joint distribution, P(a, b, c, d), which fits the constraints Q1, Q2 and 

Q3.  One of the advantages of IPF is that any number of sets of constraints can be 

embedded within the procedure.  If we have created a sample with attributes a, b and c, 

we can then add variable d to the list using the conditional probabilities, p(d| a, b, c), 

derived from P(a, b, c, d).  Hence, through IPF, the data contained in separate tables may 

be linked together.   

 

In essence, synthetic reconstruction approach tries to reconstruct the original population 

in such a way that all known constraints (the counts represented in the census tables) are 

reproduced.  A number of models have been developed based on this approach, such as 

SYNTHESIS (Birkin and Clarke, 1988), UPDATE (Duley, 1989), and OLDCARE 

(Williamson, 1992, 1996). SYNTHESIS is a model to estimate small area income 

distribution, OLDCARE is a model of community care services for the elderly, and 

UPDATE is a dynamic microsimulation model for updating small area populations 

between censuses.  The exact list of variables included in these models depends on the 

study being undertaken.  The majority of variables, such as age, sex, marital status, 

housing tenure, and socio-economic group, can be estimated using census data.  Some 

variables, such as income in the SYNTHESIS and OLDCARE models, are not available 

from the census and must be derived from other sources.  One main advantage of the 

synthetic reconstruction approach is that its use of conditional probabilities allows data to 

be incorporated from the widest possible range of sources. 

 

2.2 Combinatorial optimisation 
 

An alternative way pf estimating small area micropopulations is through the reweighting 

of an existing large-scale microdata set.  The release of the Sample of Anonymised 

Records (SAR) from the 1991 Census makes it possible to derive list-based estimates of 

small-area populations by combining information contained in the SAR and the census 
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small-area tables.  The 1% household SAR contains 215,789 households and 541,894 

persons resident within those households.  Theoretically it is possible to evaluate every 

possible combination from this SAR and find the set that best fits known small area 

constraints. But in practice this is almost unachievable owing to computing constraints. 

For example, the number of possible solutions from the SAR would exceed 10690 for an 

ED with 200 households.  Williamson et al. (1998) present a combinatorial ‘optimisation’ 

approach to offer a way of performing intelligent searching and effectively reducing the 

number of evaluations.  The process is iterative: starting from an initial set of households 

chosen randomly from the SAR, an assessment is made of the effects of randomly 

replacing one of the selected households with a fresh household from the SAR.  If the 

replacement improves the fit, the households are swapped.  Otherwise the swap is not 

made.  This process is repeated many times, with the aim of gradually improving the fit 

between the observed data (a set of pre-selected constraining tables) and the selected 

combination of SAR households.  Given the search space, the final combination arrived 

as is normally the best achievable in a given time, rather than the guaranteed optimal 

solution.  Figure 2 presents a simplified example of this combinatorial ‘optimisation’ 

approach.  

 

An initial analysis based on the test of two EDs suggested that the combinatorial 

optimisation approach produces acceptable population estimates for a suburban ED, 

where the distribution of constraining tables was close to those of the SAR, but the 

performance was relatively poor the an inner-city ED, with a distribution markedly 

different from the national average.  Even so, the fit achieved between the estimated 

population and its constraining tables appeared better than that reported in earlier studies 

based on the synthetic reconstruction approach (Williamson et al., 1998; Williamson, 

1996).   

 

The combinatorial optimisation approach has been further examined by Voas and 

Williamson (2000a).  They developed a ‘sequential fitting procedure’ to improve the 

accuracy and consistency of resulting outputs.  The most abnormal table for a given area 

is fitted first (within the target), followed by the next most difficult table, and so on.  At 

each stage changes (household replacements) that favour the fit of later tables at the 

expense of preceding ones are not allowed.  With this sequential fitting procedure they  
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Step 1: Obtain sample survey microdata and small area constraints 
 
 
Survey microdata    Known small area constraints [Published small area census tabulations]  

      
Household  Characteristics 
 
                                    size     adults    children 
 
     (a)     2           2            0 
     (b)     2           1            1 
     (c)     4           2            2 
     (d)     1           1            0 
     (e)     3           2            1 
 

1. Household size 
 (persons per household) 
 
Household 
size 

Frequency 

1 1 
2 0 
3 0 
4 1 

5+ 0 
Total 2 

2. Age of occupants 
 
 
Type of 
person 

Frequency 

adult 3 
child 2 

 
 
Step 2: Randomly select two households from survey sample [ (a) & (e) ] to act as an initial small-area microdata  
             estimate 
 
Step 3: Tabulate selected households and calculate (absolute) difference from known small-area constraints 
 

Household 
size 

Estimated 
Frequency 

(i) 

Observed 
Frequency 

(ii) 

Absolute 
difference 
| (i)-(ii) | 

1 0 1 1 
2 1 0 1 
3 1 0 1 
4 0 1 1 

5+ 0 0 0 
  Sub-total: 4 

 

 
 

Age 
Estimated 
Frequency 

(i) 

Observed 
Frequency 

(ii) 

Absolute 
difference 
| (i)-(ii) | 

adult 4 3 1 
child 1 2 1 

  Sub-total: 2 
 
 
 Total absolute difference  = 4 + 2 = 6 

Step 4: Randomly select one of selected households  (a or e).  Replace with another household selected at random from 
the survey sample, provided this leads to a reduced total absolute difference 
 
Households selected: (d) & (e) [Household (a) replaced] 
 
Tabulate selection and calculate (absolute) difference from known constraints 
 

Household 
size 

Estimated 
Frequency 

(i) 

Observed 
Frequency 

(ii) 

Absolute 
difference 
| (i)-(ii) | 

1 1 1 0 
2 0 0 0 
3 1 0 1 
4 0 1 1 

5+ 0 0 0 
  Sub-total: 2 

 

 
 

Age 
Estimated 
Frequency 

(i) 

Observed 
Frequency 

(ii) 

Absolute 
difference 
| (i)-(ii) | 

adult 3 3 0 
child 1 2 1 

  Sub-total: 1 
 
 

Total absolute difference = 2 + 1 = 3  

Step 5: Repeat step 4 until no further reduction in total absolute difference is possible: 
 
Result: Final selected households: (c) & (d) 
 

Household 
size 

Estimated 
Frequency 

(i) 

Observed 
Frequency 

(ii) 

Absolute 
difference 
| (i)-(ii) | 

1 1 1 0 
2 0 0 0 
3 0 0 0 
4 1 1 0 

5+ 0 0 0 
  Sub-total: 0 

 

 
 

Age 
Estimated 
Frequency 

(i) 

Observed 
Frequency 

(ii) 

Absolute 
difference 
| (i)-(ii) | 

adult 3 3 0 
child 2 2 0 

  Sub-total: 0 
 
 

Total absolute difference = 0 + 0  = 0  

 
 
Figure 2  A simplified combinatorial optimisation process
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found it is possible to satisfy a level of minimum acceptable fit for every table used to 

constrain the selection of households from the SAR.   

 

2.3 Problems of generating small area microdata 
 

Although the previous studies reviewed above suggest that both synthetic reconstruction 

and combinatorial optimisation are promising approaches, a number of issues are still 

unresolved.  For synthetic reconstruction approach the main problems are: 

 

• The sampling error.  Synthetic reconstruction of microlevel population data is a 

Monte Carlo based approach.  As a stochastic process Monte Carlo sampling is 

subject to sampling error.  This error is likely to be more significant for small area 

simulation where the sample sizes are small.  The average size of EDs is about 200 

households or 450 people.  Moreover, our objective is to produce a single synthetic 

population.  Therefore, even if the model’s estimates (averaged over many 

replications) are unbiased the approach may not useful if the variance is too large. 

 

• The ordering of conditional probabilities.  Synthetic reconstruction is a sequential 

procedure.  A certain amount of error is introduced in each stage, which may be 

contributed variously by Monte Carlo sampling, modelling assumptions, and data 

inconsistency.  The level of error will increase as we go further along the chain of 

generation of characteristics.  It is thus important to generate new characteristics in an 

appropriate order so that potential errors are minimised.  Because of the lack of an 

appropriate ‘scientific’ approach the determination of the ordering relies on the 

modeller’s skills and art (Birkin and Clark, 1995; Clark, 1996). 

     

Lack of data at ED level.  Data are vital for modelling.  The models reviewed in 

Section 2.1 all draw upon the 1981 Census.  They suffer from a shortage of census 

tabulations at ED level and necessarily rely heavily upon data at larger spatial 

scales (county or national level).  The situation has been improved since 1981.  

The number of available ED level census counts trebled between the 1981 and 

1991 Censuses.  More detailed data were also made available at ward level, whilst 

the release of SAR from the 1991 Census offer theoretically limitless flexible 

tabulations (at least for district level geographies and above).  Yet we have not 
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seen any synthetic reconstruction model making the full use of these information.  

On the other hand, the increase of available data makes the model building an 

even more complex task. At each stage some kind of judgement, typically 

subjective, must be made about the relationships between characteristics.  These 

factors certainly affect the quality of the synthetic data in some way.   

 

The combinatorial optimisation approach provides a novel solution to the problem of 

generating small area microdata, but there are several areas for further investigation and 

refinements.   

 

• Selection criterion.  The existing combinatorial optimisation model uses total absolute 

error (TAE) as the measure of fit during the iterative fitting process, but the fit of the 

final synthetic data to the known small area tables is evaluated based on a relative 

statistic (Z score) (Williamson et al., 1998; Voas and Williamson, 2000a).  Whether 

an alternative iterative fitting criterion would generate improved estimates, and the 

extra cost (in term of computing time), remains unknown.  

 

• Stratified sampling from the SAR. The existing combinatorial optimisation model 

selects households from the whole SAR.  It might be better to limit household 

selection to households which come from the same region as the small area being 

synthesised.   

 

• Table fitting sequence. The ordering of tables in the sequential fitting procedure is 

area-specific, and the target level of acceptance is table-specific.  These constraints 

make it difficult to apply the sequential fitting procedure in generating large area 

microdata.   

 

For both approaches appropriate measures of fit between the synthetic population and the 

known constraints are debatable (see Voas and Williamson, 2001a).  In addition, for 

models that work from the bottom-up (starting at ED level), the assessment of fit is 

complicated by among other factors: (1) the tables of observed and expected results are 

often sparse, i.e. many counts are at or close to zero, and (2) an observed count may not 

be the actual count.  The latter is the result of data blurring applied to the released ED and 
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ward census tabulations for confidentiality reasons.  With the exception of a few basic 

counts of total households and total population, non-zero counts in the census Small Area 

Statistics (SAS) have been modified by the addition of +1, 0 or –1 in quasi-random 

patterns.  This leads to discrepancies in census counts between tables and between ED 

and ward totals. 

 

The inconsistency between the constraining tables could also cause problems in 

modelling.  The effect for the synthetic reconstruction approach may be significant 

because convergence will not occur during IPF where there is a mismatch in the table 

totals or subtotals.  For the combinatorial optimisation approach the impact of data 

blurring may mean there is no possible combination of households that would match 

every constraining table perfectly. 

 

In summary, synthetic reconstruction is a well-established approach for the creation of 

synthetic small-area micriodata.  The increase of small area data and the release of census 

microdata at coarse spatial scale offer great potential to build better models.  

Combinatorial optimisation is a promising alternative to the creation of synthetic 

microdata, although further refinements could be envisaged.  In the light of above, the 

objectives of this paper are twofold: first, we attempt to explore techniques to tackle some 

of the problems described above in order to improve the resulting outputs of both 

approaches; and second, we evaluate and compare the two competing methodologies 

leading to the identification of a favoured methodology for generating small area 

microdata.    
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3. Approach to evaluation  

 

In order to evaluate and compare the two main competing approaches, two models 

(Pop91SR and Pop91CO) have been developed for the reconstruction of ED level 

population microdata, drawing upon 1991 Census data.  Pop91SR is a new programme 

suite based on the synthetic reconstruction approach.  Attention has been paid to 

establishing a procedure for determining the ordering of the conditional probabilities, 

through use of the SAR, increasing the accuracy of the estimated conditional distributions 

and reducing sampling error.  Pop91CO is the latest version of the alternative 

combinatorial optimisation programme suite.  Effort has been focused on determining the 

best criterion for household selection and improving the quality and consistency of the 

synthetic dataset. 

 

3.1 Assessing performance 
 

The performances of each approach will be assessed with respect to their effectiveness 

and efficiency in generating synthetic datasets.  The main element in evaluating 

performance is the ability to produce accurate and reliable spatially-detailed microdata 

(effectiveness).  Synthetic microdata will not be identical to the actual records of 

households and individuals from the area in question, and any evaluation should identify 

the nature and extent of these discrepancies.  Because a full set of raw census data is not 

available to us, we are obliged to evaluate the reconstructed populations by comparing a 

number of aggregated tables derived from the synthetic dataset with published census 

small-area statistics.  The principle is that if we examine enough cross-sections of multi-

dimensional space, we can assess the overall resemblance between the datasets 

themselves.  In what follows we discuss the major factors that should be considered in 

accessing the reliability of results and our adopted approaches to evaluating the 

alternative synthetic datasets. 

 

• The stochastic nature of the models.  Both synthetic reconstruction and combinatorial 

optimisation are stochastic processes.  Variations in the sample seed value will alter 

the random number string and so alter assignments (or household selection) and the 

estimated counts.  Knudsen and Fotheringham (1986) suggest that if the object of the 

analysis is to assess the accuracy of a model in replicating a single dataset, 
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significance tests need to be undertaken.  In this study the assessment of model results 

are based on 100 replications.  Each run starts with a different initial sample seed.  

This allows us to test model performance on each synthetic dataset individually, and 

on all datasets in aggregate, thereby giving both the fit of mean and the mean fit (i.e. 

the bias and the average error). 

 

• Measures of fit.  The discrepancies between estimated and observed tabular data can 

be looked at in different ways (Voas and Williamson, 2001a).  Some measures 

emphasis on absolute differences, others assess relative distributions.  Consequently, a 

synthetic dataset may show a good fit by one measure but not by another.  The fit may 

be good overall, but poor at a particular point.  Information on bias and variability at 

the cellular level will, therefore, be as important as at tabular level.  Consequently, in 

order to undertake a thorough evaluation of model outputs, we have designed a set of 

test statistics that measure the fit of the synthetic microdata to local constraints at 

cellular, tabular and overall levels (detailed in Section 3.2). 

 

• Geographical scale.  Intuitively, estimates at ED level could be subject to a 

considerable degree of error, particularly if they are based on a single run.  Hence, we 

may wish to examine whether or not error can be balanced across EDs.  The fit might 

relatively poor at ED level but much better at higher geographical levels.  Conversely, 

fit at ED level does not guarantee a perfect fit at a coarser spatial scale.  Previously, 

this element of fit has received little consideration.  In particular, neither of the sets of 

synthetic 1981 British population microdata described in section 2 have been subject 

to multi-geographical level evaluation.  In section 6 we test the fit of synthetic 

datasets at both ED and ward levels using the same set of test statistics.  Attention is 

also paid to establishing the degree of variability associated with a range of estimated 

count data at both levels.   

 

• Comparability of outputs.  Initially at least, the same set of ED level constraints are 

used by both the synthetic reconstruction and combinatorial optimisation approaches.  

This allows us to directly compare and evaluate the fit of the two sets of synthetic data 

using the same set of ED level constraining tables.  For both combinatorial 

optimisation and synthetic reconstruction datasets based on ED data only, the extent 
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to which known (but unused) ward level interactions have been captured can also be 

assessed. However, the ideal synthetic reconstruction model uses these ward level 

data, because they fill known gaps at ED level.  For instance, data linking household 

heads’ demographic characteristics with economic position or housing tenure are only 

available down to ward level.  Consequently, we have created a second synthetic 

reconstruction based dataset using ward level tables as additional constraints.  This 

second dataset allows the impact on ED level fit of adding ward level constraints to be 

evaluated for the synthetic reconstruction approach. 

• The selection of test areas.  Previous studies (Duley, 1989; Williamson et al., 1998; 

Voas and Williamson, 2000a) have shown that the quality of synthetic microdata 

produced by either synthetic reconstruction or combinatorial optimisation varies with 

location.  Usually the fit is good when the distribution of local constraining tables is 

similar to the overall population’s, whilst the performance is less good if the tables are 

atypical relative to the national distribution.  In particular the greatest population 

estimation problems have been encountered when dealing with inner-city and 

‘student’ areas.  Accordingly, test areas should cover different types of EDs and 

include both ‘normal’ (close to norm) and ‘abnormal’ (far from the norm) areas.  We 

have selected two wards, the Cookridge and University wards of Leeds, as test areas.  

The former may be described as a typical suburban area and the latter as an inner-city 

and ‘student’ area.  As a test of whether these wards meet our criteria, we can 

compare the distributions of the EDs in the two wards with that of all the EDs in 

England and Wales according to their distance from the norm, using a standardised 

measure based on 54 census variables (described in Voas and Williamson, 2000b).  

The results are shown in Figure 3.  Clearly, the test areas comprise EDs of different 

types, which are well dispersed over the range of the national distribution.  The 

distribution of the EDs in the Cookridge ward is very similar to the national one.  In 

contrast, most of the EDs in the University ward are far from the norm.  Nearly half of 

them (47%) lie outside the 90th percentile of the national distribution; 23% are 

extremely atypical (outside 99th percentile); and two are among the top four furthest 

EDs from the norm in England and Wales (Voas and Williamson, 2001b: Table II).  

This demonstrates that the two wards selected offer a reasonable test: one is quite 

‘normal’ and the other extremely ‘abnormal’.  
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Figure 3  The distance of test EDs from the national norm

0

5

10

15

20

25

3 4 5 6 7 8 9 10 11 12 13 14 15

Distance from norm (inteval=0.5) 

N
um

be
r o

f E
D

s a
t e

ac
h 

ba
nd

s

0.00

0.05

0.10

0.15

0.20

0.25

N
at

io
na

l d
is

tri
bu

tio
n

  Cookridge ward, Leeds

  University ward, Leeds

  National (England&Wales)

DAFJ01 DAGF12DAGF04

 



Apart from examining the reliability of outputs, it is necessary to assess the efficiency of 

each approach.  Bearing in mind that our objective is to identify the best approach for 

creating population microdata for large areas, from metropolitan district level to a whole 

nation, the resource costs of generating such data should be assessed.  We consider the 

two main inputs: man-hours for developing the model and computing time for running the 

model.  They are likely to be very different for the two approaches.  The development of 

a small area population reconstruction model typically takes a considerable period of time 

(person months), but takes considerably less time to run than the combinatorial 

optimisation model.  These factors will be assessed in conjunction with the model’s 

reliability in section 6.2.  It is also desirable to estimate the extra cost of adding more 

variables and constraints, or altering the exist set of constraints.  Due to time limitations, 

we can only select a basic set of attributes in our datasets, which we believe is sufficient 

for the purpose of comparison.  Others may wish to include more variables or change 

some of them in a final synthetic dataset, and the flexibility of adding or altering variables 

and constraints becomes an important aspect in the assessment of a model’s efficiency. 

 
3.2 Testing statistics 
 

Numerous statistics have been used to assess model goodness-of-fit, but the choice 

remains difficult.  Knudsen and Fotheringham (1986) classified these statistics into three 

types: information-based statistics, general distance statistics, and traditional statistics.  

Information-based statistics have their origin in the information gain statistic; these 

include the phi statistic, the psi statistic, the absolute value formulation of the psi statistic, 

and the absolute entropy difference.  General distance statistics simply measure the 

differences between observed and estimated counts.  The differences are either squared or 

made absolute to avoid summing positive and negative values.  A representative of these 

statistics is the standardised root mean square error (SRMSE).  Traditional statistics 

include R2 and the chi-square statistic.  According to Knudsen and Fotheringham’s study, 

for analysing the performance of two or more models in replication of the same data set, 

or for comparing a single model in different systems, the most accurate statistics appear 

to be SRMSE, the absolute value formulation of the psi statistic and the phi statistic.  The 

chi-square statistic is particularly poor for these purposes.  
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There are, however, several problems with employing the statistics suggested by Knudsen 

and Fotheringham in our analysis.  SRMSE should only be used when the total of the 

estimated table equals that of the observed table (Knudsen and Fotheringham, 1986:132).  

Because the synthetic dataset may not contain the same number of individuals as the 

actual population, and because census data are modified before release to protect 

confidentiality, totals in the tables being compared will not necessarily match.  The use of 

information-based statistics such as psi and phi statistics are also problematic because 

they remain undefined when one or more of the observed counts equal zero.  Small area 

tabulations often contain many values at or close to zero.  Finally, the use of traditional 

tests based on chi-square are subject to similar problems.  They are designed to test the 

goodness-of-fit of an entire table rather than individual cells, are also subject empty cell 

problems, and perform poorly on relatively large sparse tables. 

 

In the light of these difficulties, a number of authors have used the ‘Z-statistic’ or its 

modified version to test the fit of individual counts, cell by cell (Birkin and Clarke, 1988; 

Duley, 1989; Williamson, 1992; Williamson et al., 1998).  Recently Voas and 

Williamson (2001a) offered an in-depth appraisal of the Z-statistic and its variants, along 

with other measures.  They put particular emphasis on the suitability of measures for the 

evaluation of synthetic microdata.  The conclusions of their study may be summarised as 

follows: 

 

(1) The most straightforward test statistic is total absolute error (TAE), which is 

calculated simply as the sum of the absolute differences between estimated and 

observed counts. Although relatively crude as a measure of fit, it is easy both to 

calculate and to understand.  It can be used to compare rival models against the same 

table, but not performance across different tables.  The standardised absolute error 

(SAE), which is TAE divided by the total expected count for the table, is marginally 

preferable on the grounds that it may be valuable for quick and easy comparisons 

across tables.   

 

(2) The forms of the phi and psi statistics are shown to be closely approximated by the 

simple measure of absolute error, SAE.  Since SAE is simple and readily understood, 

there seems to be little benefit in using phi or psi as an alternative. 
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(3) The preferred measure is a normal Z score for each table cell.  The Z score is based 

on the difference between the relative size of that category in the synthetic and actual 

populations, although an adjustment is made to the formula when dealing with zero 

counts.  The Z score is preferred because it has known statistical properties, wide 

acceptance as a valid measure of fit, and can assess not only cellular fit but also, 

when aggregated, tabular fit (see (5)). 

 

(4) The modified Z score (Zm) proposed by Williamson et al. (1998, Appendix) is 

recommended for use during the iterative fitting process (combinatorial optimisation 

approach only), since the synthetic totals may not be identical to the actual total.  In 

cases where observed and synthetic totals are the same, Zm = Z.  As the final 

synthetic and target totals will be highly similar, an unmodified Z score should be 

used for evaluating end results. 

 

(5) The Z statistics for individual counts, when squared and summed, provides a measure 

of fit for the entire table.  The sum of squared Z scores (which we will label SSZ) has 

a χ2 distribution with degrees of freedom equal to the number of table cells (Voas and 

Williamson, 2001a).  If a table’s SSZ exceeds the table-specific 5% χ2 critical value, 

then the dataset is deemed not to fit (an application of this statistic can be found in 

Voas and Williamson, 2000a). 

 

Based on the results of this study and our considerations as described previously, we have 

designed a set of test statistics for comparing the two sets of synthetic data (see Table 1).  

At the detailed level, for every count we calculate the mean estimate, the estimated 95% 

confidence interval (i.e. the range within which 95% of the synthetic values fall over 100 

replications), the normal Z score and the Z score of the mean estimate.  If a cell produces 

a synthetic count with normal Z score exceeding the 5% critical value (i.e. |Z|>1.96), then 

the synthetic data is deemed not to fit that cell.  Such a cell is called a ‘non-fitting cell’ 

(NFC).  However, as already noted, ED level census data (SAS tables) have been 

modified by randomly adding +1, 0 or –1, the effect of which is most severe when the 

value of the count is small.  Unfortunately, it is difficult to separate the error contributed 

by data blurring from that caused by the estimation process itself.  One simple way of 

attempting to assess the possible impact of data blurring is to assume that the actual count 
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could be one greater or one less.  Consequently, for every count we also calculate two 

other Z-scores by adding +1 and –1 to the SAS count, which are denoted by Z+1 and Z-1 

respectively.  If a cell’s Z score exceeds the critical value but either Z+1 or Z-1 value does 

not, the discrepancy could theoretically be caused, at least in part, by data blurring.  In 

contrast, where a cell produces a synthetic count with all Z, Z+1 and Z-1 scores exceeding 

the critical value, then the fit is undeniably poor and the cell is designated as a ‘poorly-

fitting cell’ (PFC). 

 

The measures we have adopted for tabular fit are aggregations of statistics calculated for 

the individual cells.  We use three types of test statistics to assess the magnitude of the 

discrepancies between the estimated and observed tables: the number of non-fitting and 

poorly-fitting cells per table; TAE (total absolute error); and SSZ (sum of squared Z-

scores).  The numbers of NFC and PFC per table are simply the sums of the cellular test 

results.  TAE provides a quick and easy measure of absolute differences between 

observed and synthetic table counts.  The more complex SSZ assesses proportional 

differences and provides a more robust appraisal of tabular fit.  If a table’s SSZ exceeds 

the table-specific 5% χ2 critical value, it is deemed to be a ‘non-fitting table’ (NFT).  

Note that in this case no allowance is made for the possible adverse impact of data 

blurring, as the overall impact of data blurring on a given table should be broadly neutral.  

In addition, measures of tabular fit have been developed to assess fit over 100 

replications.  The NFT-rate simply records the number of times out of 100 replications 

that a table is designated as a non-fitting table on the basis of its SSZ.  In contrast, the 

SSZ of mean identifies the fit of a table’s 100-run mean, again on the basis of SSZ. 

 

When assessing the fit of a synthetic dataset to a set of constraining tables, it is 

convenient to have some measure of overall fit.  Ideally, such a measure of overall fit 

would be a simple aggregation of tabular test results.  One obvious candidate is SSZ.  A 

difficulty encountered is that at tabular level the magnitude of SSZ depends on the 

number of table cells, as well as the degree of error.  The bigger a table, the larger the 

value of SSZ is likely to be.  The solution adopted is to divide a table’s SSZ by the table-

specific 5% χ2 critical value.  We call this new statistic the relative sum of squared Z 

scores, or RSSZ.  RSSZ appears to be more informative than SSZ.  First, as the table-

specific critical values already take into account the number of table cells, it provides a 
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Table 1  Test statistics for evaluating the fit of synthetic microdata  

Cellular level Tabular level General level 

Mean synthetic TAE Overall TAE 

95% confidence interval SSZ Overall RSSZ 

Z score of mean SSZ of mean Overall RSSZ of mean 

- NFT rate Number of NFT 

Z score Number of NFC Overall number of NFC 

Z+1 and Z-1 scores * Number of PFC * Overall number of PFC * 
* Only used for comparing the synthetic data with SAS tables. 
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relative measure that can be used to assess the performance across different tables.  

Second, the RSSZ statistics for individual tables, when aggregated, provides a measure 

for overall fit for a set of tables that treats fit to each table with equal importance.  Third, 

the value of RSSZ is simple to interpret; if it is less than one then the data fit the table.  

Other measures to assess and compare the overall fit of the alternative synthetic datasets 

are shown in column 3 of Table 1, all based on summing various measures of tabular fit 

already discussed above.  The first three statistics (TAE, RSSZ, and RSSZ of mean) are 

mainly used for the comparison of the two synthetic datasets, while the last three 

measures (numbers of NFT, NFC, and PFC) are better used to identify key sources of 

error, although they can be used for overall comparison purposes as well. 

 

At ward level comparisons of synthetic estimates with census counts are considerably 

affected by the census data blurring process.  Due to data blurring, the ward sum of ED 

level counts for a given table cell are only guaranteed to fall within ±n of the published 

ward level count, where n = number of EDs in the ward.  As ED level counts are used as 

the basis for creating synthetic microdata, comparing aggregated ward level synthetic 

microdata to published ward level counts could be very misleading.  To overcome this 

problem comparisons are made instead with SAS table counts aggregated to ward level.  

However, if a cross-tabulation we wish to examine is available only at ward level, then 

necessarily that table will be used.  Given uncertainties over the impact at ward level of 

the data inconsistencies between tables caused by data blurring, the concept of poorly-

fitting cells (PFC) is not used at ward level.   
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4. The synthetic reconstruction model (Pop91SR) 

 

In this section we describe the development of Pop91SR, a synthetic reconstruction 

model for recreating small area population microdata with the use of 1991 census data.  

The population group considered by Pop91SR is residents in households (household 

residents).  Residents in communal establishments are excluded, as is the case for the 

combinatorial optimisation approach reviewed in section 5.  In this section, we first 

consider the available data and their suitability for synthetic reconstruction.  This is 

followed by a description of the methodology for synthetic population reconstruction.  

Several technical innovations designed to increase the accuracy of estimation are 

introduced.  Finally, the construction process of Pop91SR is presented in a step-by-step 

description of both inputs and outputs. 

 

4.1 Data for the construction of Pop91SR   
 

Three types of data from the 1991 Census have been used for the construction of 

Pop91SR: the Small Area Statistics (SAS), the Local Base Statistics (LBS) and the 

Samples of Anonymised Records (SAR).  The only available data at ED level comes from 

the Small Area Statistics (SAS), which comprise a set of 86 tables providing aggregate 

data.  More detailed information are available at coarser spatial scales.  One of the major 

innovations introduced with the 1991 Census is the expansion of the local statistics output 

into two separate but interrelated sets (Dale and Marsh, 1993:205).  The lower tier is the 

SAS and the upper tier is the LBS.  The LBS consist of 99 tables available down to ward 

level.  The SAS are in fact an abbreviated version of the LBS.  The SAS comprise about 

9,000 statistical counts for each area, while the LBS comprise about 20,000 counts.  Not 

only are some of the LBS tables omitted in the SAS but also, in most cases, the level of 

detail in an LBS table is reduced when producing a corresponding SAS table.  Both LBS 

and SAS are available in machine-readable form. 

 

The quality and suitability of the SAS and LBS for small area population reconstruction 

can be examined from the following dimensions: the spatial scale, the number of 

variables cross-tabulated, the number of classes within a variable, the effect of data 

modification, and the sample size.  The SAS tables have the most spatial detail and are 

vital for providing small-area constraints to the synthetic reconstruction process.  The 
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LBS tables are useful for two main reasons: first, they can provide extra constraints on 

relationships between variables that are not available at ED level, and second, they can be 

used to disaggregate coarser ED level data to finer classifications. 

 

Census tables vary greatly in size. For instance, the number of cells in a SAS table range 

from a dozen to nearly 200.  This is because of the differences in the number of variables 

involved and the detail of their categorisation.  From the viewpoint of small area 

population reconstruction, larger tables are more useful because they provide more 

detailed local information.  However, very large tables should be used with care, 

particularly at ED level, because the larger a table, the smaller the individual cell counts 

are likely to be and the greater the possible impact of data blurring.  For example, adding 

or subtracting 1 from 2 has a far greater proportionate effect than it does on values of 20 

or 200.  But by far the major factor affecting the suitability of a SAS/LBS table is sample 

size.  Most of the SAS and LBS tables report on variables which are 100% coded; but a 

small set reports on variables which are coded only for 10% of census returns.  The 10% 

SAS have only been released at ED level to provide users with a primary building block 

to estimate 100% population of much larger areas.  They are not suitable for produce 

100% counts of small area because of their large sampling error.  

 

The SAR are anonymised microdata extracted from the 1991 census.  They can serve two 

main purposes.  First, the SAR can be used to examine the relationship between variables, 

helping to determine the ordering of chain probabilities.  Second, the SAR can be used to 

strengthen weak links in the reconstruction process.  The SAR can be aggregated in any 

way to produce joint distributions that are not available in the SAS/LBS.  For synthetic 

reconstruction use of both 2% individual and 1% household SARs can be appropriate, but 

in this study we use only the 1% household SAR throughout.  The SAS, LBS and SAR 

together provide a rich data source for the reconstruction of small area microdata. 

 

4.2 Methodologies 
 

4.2.1 Iterative proportional fitting 
 

The synthetic reconstruction procedure to generate population microdata from a variety of 

aggregate data is underpinned by the method of IPF.  The theoretical aspects of IPF have 
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been investigated thoroughly (e.g., Fienberg, 1970; Bishop et al., 1975), and the utility 

and reliability of the procedure in geographical research and population modelling have 

been demonstrated (e.g., Wong, 1992; Norman, 1999; Birkin and Clark, 1988; Duley, 

1989; Williamson, 1992).  In a simple case, the IPF procedure can be used to ensure that a 

two-dimensional table of data is adjusted so that its row and column sums equal to 

predefined values.  Let P k(i,j) be the matrix element in row i, column j, and iteration k.  

Q(i) and Q(j) are the predefined row sums and column sums.  Starting from an initial 

matrix P0(i,j), the new cell values are estimated iteratively by the following set of 

equations: 
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The iterative estimation process will stop when convergence to the desired accuracy is 

attained.  A satisfactory stopping rule is to decide on a quantity δ (e.g., δ = 0.001) and 

stop when a complete cycle does not cause an cell to change by more than this amount, 

that is, when 

 |         (3) δ<− ++ |),(),( 12 jiPjiP kk

for all i and j.   

 

In the context of population reconstruction, Q(i) and Q(j) could be the total population  in 

the ith and jth categories of any two census variables, and P(i,j) will be the estimated 

values in the cross-classified categories defined by the two variables.  The same principle 

can be applied to estimate an n-dimensional array when only partial distributions or 

marginal totals are available.  Examples of the IPF procedure for three variables have 

been given by Bishop, et al. (1975:84).  For more detailed discussion of using IPF to 

estimate conditional probabilities see Birkin and Clark (1988).  
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During the construction of Pop91SR, the IPF procedure has been mainly used in two 

situations: (1) inflating 10%-based tables and (2) augmenting joint count or probability 

distributions.    

 

4.2.2 Inflating 10%-based tables 
 

Data on some variables we wish to include in our sample may be only available in the 

10% form.  Although 10% SAS are not modified, unreliable results would be produced if 

we simply multiplied the 10% SAS counts by 10; they are only released at ED level to 

provide a basis for flexible area aggregations (Dale and Marsh, 1993:230).  Alternatively, 

we can use the corresponding ward-level 10% table to estimate ED level table counts.  

For example, during the population estimation process we have to use a 10%-based table, 

SAS table 86, which gives the break down of the socio-economic group of household 

heads by tenure.  The socio-economic group is a 10% coded variable, which is divided 

into nineteen categories including economically inactive. To estimate the 100% counts of 

this table, a two-stage estimation is adopted.   The first stage is to estimate the 100% 

counts of the table at ward level.  Let Pw
0(s,t) be the matrix element in row s (socio-

economic group of household heads) and column t (tenure), given by LBS table 86.  

Qw
0(s) and Qw

0(t) are the row sums and column sums. The marginal totals Qw
0(t) are not 

reliable because they are 10% sample and do not include imputed households.  The 

distribution of tenure, denoted by Qw(t), is available from other 100%-based tables (e.g., 

LBS table 42).  No better data are available for the socioeconomic group of household 

heads, so Qw
0(s) is weighted in such a way that the total is equal to that of Qw(t).  Let 

Qw(s) be the weighted distribution of the socioeconomic group of household heads.  Then 

the IPF procedure is used to estimate the ward level array Pw(s,t) constrained by Qw(s) 

and Qw(t) given an initial input of Pw
0(s,t). 

 

In stage two, we estimate the ED level cross-distribution of these two variables, Pe(s,t).  

The ED level tenure distribution Qe(t)  can be obtained from 100%-based table (e.g., SAS 

table 42.  Although the marginal totals of the socioeconomic group of household heads 

presented in SAS table 86 is unreliable, when aggregated they may provide some vital 

local constraints.  From this table we can estimate the proportions of household heads 

who are economically active and who are economically inactive at ED level, a constraint 

that is not available in other SAS tables.  Let Qe(s’) be the ED level distribution of the 
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socioeconomic group of household heads, divided by two categories: economically active 

and economically inactive.  Similarly, the IPF procedure is used to estimate the ED level 

array Pe(s,t) constrained by Qe(s’) and Qe(t) given ward level array Pw(s,t) as the initial 

estimates. 

 

4.2.3 Augmenting cross-classifications 
 

The main function of the IPF procedure in synthetic population reconstruction is to 

estimate augmented joint distributions or conditional probabilities for the variables of 

interest.  A three-level estimation procedure is adopted to create an ED level joint 

distribution, which incorporates data from the SAS, LBS and SAR.  

 

1. Estimate the national level joint distribution for the all variables concerned 

derived directly from the SAR; 

2. Estimate the ward-level joint distribution for the variables concerned given the 

national level distributions and ward level constraints (the LBS tables), using the 

IPF procedure; 

3. Estimate the ED-level joint distribution for the variables concerned given the 

ward-level distributions and ED level constraints (the SAS tables), using IPF. 

 

This process is illustrated in Figure 4. 

 

An example is useful at this point to clarify the process.  Suppose we have created a 

synthetic population of household heads for a given ED with the characteristics of age 

(a1), sex (g) and marital status (m1).  The subscript number 1 refers to the target set of 

variable categories (e.g., a1 may indicate age breakdown is by single year); larger 

numbers represent coarser disaggregations.  This sample is constrained by the known 

ward level distribution Qw(a2, g, m2) and ED level distribution Qe(a3, g, m3).  We now 

wish to add another attribute, say x, to the synthetic data.  Our target is to estimate the 

conditional probabilities p(x1|a3, g, m3), i.e., the probability distributions of attribute x1 

given the household heads’ coarse age group (a3), sex (g) and coarse marital status (m3).     

 

The problem can be viewed as needing to estimate an ED level joint distribution Pe(a3, g, 

m3, x1).  A cross-tabulation of these four variables can be derived from the SAR, which 
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Figure 4  A three-level estimation procedure 
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acts as a national level distribution.  So we have an array Pn(a3, g, m3, x1) at national 

level. From the LBS we may have a table, Qw(a3, g, x1), which links two of the existing 

variables with the new one.  This table and the previous one, Qw(a3, g, m3), aggregated 

from Qw(a2, g, m2), are the ward level constraints.  Note that a variable may be grouped in 

different ways in different tables.  Using the IPF procedure we can adjust Pn(a3, g, m3, x1) 

to fit Qw(a3, g, x1) and Qw(a3, g, m3), resulting in an estimated ward level distribution 

Pw(a3, g, m3, x1).   

 

At ED level, we may find only one table from the SAS linking one of the existing 

attributes, say age, with variable x, and both variables are in coarser groups, Qe(a3, x2).  In 

a similar way, we can weight the ward level distribution Pw(a3, g, m3, x1) to fit the ED 

level constraints Qe(a3, x2) and Qe(a3, g, m3), and obtain an estimated ED level 

distribution Pe(a3, g, m3, x1).   

 

Here, IPF acts as a weighting system whereby the elements of an array of a higher 

geographical level are adjusted iteratively (scaled down) to fit known constraints of the 

lower geographical level.  The resulting array will retain the interaction pattern of the 

higher level one, where unknown at lower levels.  In general, an increase in the amount of 

information included via the constraints will improve the accuracy of the estimation.  

Employing the three-level estimation procedure, it is easier to identify all relevant 

information from the census and include them as constraints. It also reduces the 

complexity of dealing with two-level constraints at the same time.  Another advantage of 

this approach is that we can generate a ward-level dataset at the same time, though this is 

beyond the scope of this study.  

 

Birkin and Clark (1988) summarised the outcome of the IPF procedure as follows: 

 

• All known information is retained, and may be generated anew via reaggregation. 

• Although no new information is actually generated, maximum likelihood estimates 

are provided for missing cell probabilities. 

• Any model incorporating partial information may be treated in this way.  In practice, 

the maximum possible information should be included through the constraints.  

 

 27



They also noted that no errors are introduced by the IPF process (i.e. we can estimate a 

complete set of joint probabilities which is completely consistent with all known 

constraints) (Birkin and Clark, 1995, p373).  But this is subject to the comparability of the 

constraints.  Any overlap between the constraints must be consistent.  For example, if two 

constraints Q(a, b) and Q(b, c) are to be fitted, the common vector b must be identical.  

Otherwise, the convergence of IPF will not occur (see Bishop et al, 1975, 101).   

 

A key challenge to the use of IPF in small area population reconstruction is that 

inconsistency exists between constraining tables due to data blurring.  It is necessary to 

adjust the constraining tables so that there are no inconsistencies between them before 

using the IPF procedure.  Fortunately a few tables containing basic counts such as the 

numbers of households and resident in households within an ED are unmodified, abd 

provide a basis for adjustment.  Each constraining table is subject to one of the following 

types of adjustment. 

 

(1) Adjust table to fit known total.  For instance, SAS table 39 (S39) gives the 

breakdown of the number of household heads by age, sex and marital status, which 

is the first SAS table used to generate a sample of household heads.  The table total 

is checked against the known number of households for that ED.  If they are not 

identical, the difference is randomly added to or subtracted from table cells 

according to the relative size of cell.  The adjusted S39 total fits the known total. 

 

(2) Adjust table subtotals.  Sometimes one of the table variables has already appeared 

in a previously adjusted table (e.g., age of household heads).  In this case, the new 

table elements are adjusted to fit ‘known’ subtotals.  Similarly a three-dimensional 

table can be adjusted to fit the ‘known’ cross-tabulation of two dimensions. 

 

(3) Reconcile variant cell counts. A special case is the scenario in which two tables 

contain the same variables, but the population group of one table is a subset of the 

other.  For example, S35 and S39 give the cross-tabulation of age, sex and marital 

status for household residents and household heads respectively.  There are more 

age groups in S35 compared with S39.  If we aggregate S35 to the format of S39, it 

is quite often found that in one or two cells the number of household heads is larger 

than that of the residents, due to data blurring.  It is not possible to judge which 
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count is correct, so in this case we assume the S39 count is correct and adjust the 

S35 count to match. 

 

In reality these various adjustments are unlikely to bring about much perturbation into the 

SAS.  Comparing the total of S39 with the actual number of household heads for every 

ED within the two test wards, it is found that the maximum net error is two, and for 92% 

of EDs the net error is either one or zero.  Therefore, for the majority of EDs S39 is 

unchanged or just one cell is altered by +1 or -1.  Type (2) or (3) adjustment may alter 

more cells, but the difference between a SAS table and the adjusted one is again likely to 

be trivial.  Although an adjusted table may be not more accurate than the SAS table, the 

adjustment process guarantees that at least the total and subtotals of constraining tables 

are consistent.  

 

Another issue related to the use of IPF is the complexity of the process.  In the past when 

anonymised census microdata were not available, a new attribute was normally made 

directly dependent upon only two or three existing attributes.  Using the SAR it is 

possible to estimate any joint distribution of census variables desired, with large 

multivariate joint distributions from the SAR coded to district or above constrained to 

local conditions using ward and ED SAS tables.  Consequently, as more variables are 

added to the synthetic microdata, many constraining tables with different categorisation 

schemes become involved, and the IPF procedure becomes extremely complex.  A 

technique has been developed to reduce this complexity, which will be discussed in 

Section 4.3.  

 

4.2.4 Random sampling: a modified procedure 
  

Having derived the necessary conditional probabilities, synthetic microdata is created 

through the use of random (Monte Carlo) sampling.  This method involves the generation 

of a string of pseudo-random numbers to assign attributes on the basis of sampling from 

the relevant conditional probabilities (as shown in Figure 1).  At the first step of the 

population reconstruction process, the Monte Carlo method is used to disaggregate data.  

After that it is used to augment data. 
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A fundamental characteristic of the bottom-up approach is that the separate, aggregate 

data at lower geographical level are linked and disaggregated with detailed data at higher 

geographical level.  To begin with, for a given ED we create a sample of household heads 

with the characteristics of coarse age (a3), sex (g) and coarse marital status (m3), which 

can be obtained directly from the adjusted S39.  This table is disaggregated using ward 

level tabulation Qw(a2, g, m2) from L39 and national level tabulation Qn(a1, g, m1) from 

the SAR.  So we have the conditional probability distribution p(a1, m1|a3, g, m3).  Monte 

Carlo sampling is used to disaggregate our sample into the target set of categories.  Next 

we create the conditional probabilities p(x1|a3, g, m3) for the new variable x.  Monte Carlo 

sampling is then used to augment our sample with variable x.  The same process is used 

for all attributes. 

 

As a stochastic process Monte Carlo sampling is subject to sampling error.  This error is 

likely to be more significant for small areas where the sample sizes are small.  Huang and 

Williamson (2001) presented a modified sampling procedure designed to reduce this 

sampling error.  The procedure can be summarised as follows:   

 

(1) Partition the synthetic population into groups that match the cells in the conditional 

probability to be used for adding/disaggregating a variable.  

 

(2) Calculate the target distributions for each group by multiplying the conditional 

probability by the group total.  

 

(3) Separate every count of the target distribution into integer and fraction parts.  Use 

Monte Carlo sampling to turn the fraction distribution into an integer one.  

 

(4) For each group, assign each member in the group to a category of new variable (or 

finer categories) according to the target integer distribution.   

 

For example, we know the probability distributions of variable x (x1), given the household 

heads’ coarse age (a3), sex (g) and coarse marital status (m3).  So, in step one our sample 

is divided into groups according to household heads’ age (a3), sex (g) and marital status 

(m3).  In step two the target distribution is calculated.  Suppose x1 contains five categories 

and the probability distribution of this variable for a given group is {0.12, 0.25, 0.52, 
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0.04, 0.07}.  If the group size is 20, then the target distribution of variable x for the group 

is {2.4, 5.0, 10.4, 0.8, 1.4}.  In step three, the fraction part of this distribution is separated, 

which is {0.4, 0, 0.4, 0.8, 0.4} with the sum of 2.   Monte Carlo sampling is used to turn 

this distribution into an integer one, say {1, 0, 0, 1, 0}, i.e., assigning one person in the 

first cell and one in the forth cell.  We now have a target integer distribution {3, 5, 10, 1, 

1} for this group.  The final step is randomly assigning these 20 people to a category of 

variable x to match this distribution. 

 

The advantage of modified over conventional Monte Carlo sampling is that only the 

fractional part of the target distribution is subject to random sampling.  As a result, 

modified sampling can produces more accurate estimates.  The degree of improvement 

generated by this procedure depends upon the relative size of the fraction (or integer) part 

of a target distribution.  The smaller the fraction part, the less random variability remains 

and, therefore, the greater the degree of improvement in comparison to conventional 

Monte Carlo sampling.  Where all the target values are integers no error will occur from 

the modified sampling (in term of matching the two distributions).  Where all the target 

values are less than one, the modified sampling procedure becomes the same as non-

modified sampling.   

 

4.3 The Pop91SR reconstruction process 
 

As discussed in Section 2, the synthetic reconstruction of population is a step-by-step 

process.  The value of each individual or household characteristic is estimated by random 

sampling from a probability conditional upon one or more previously generated attributes.  

Pop91SR starts by generating a set synthetic heads of household with the characteristics 

of age, sex, marital status and location (enumeration district).  This is based partly upon 

the assumption that location, age, sex, and marital status of the head of household are the 

most fundamental characteristics of household structure, but also on practical 

considerations of what data are available, since these features are all cross-classified at 

ED level (S39).  Further statistical justification of this choice is offered in section 5.3.1.  

The decisions on what and how many other attributes should be included in our synthetic 

data and the ordering of their generation are guided by the following main considerations:  
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(a) the perceived importance of a variable in ‘determining’ others: some characteristics 

are very important in determining others and thus need to be assigned at an early 

stage; whereas others are more dependent and can be introduced latter (Birkin and 

Clarke, 1988). 

(b) the availability of suitable local data linking a variable with those already created: a 

variable may be thought of as important, but without local constraints to link it with 

existing variables estimates are unlikely to be accurate. 

(c) data quality: the published small area tabulations have been modified and some 

only contain a 10% sample of all census returns. 

(d) cost: every additional variable included will increase the time for programming and  

testing. 

  

4.3.1 Variables and their ordering  
 

If we accept that given the location of a household the characteristics of household head 

are important factors in generating other variables, then we can start with analysing what 

variables are good predictors of a person being a head (or non-head).  Many variables 

within the census may be relevant to the analysis, but only those contained in the census 

tabulations that are directly linked with household heads are under consideration.  With 

the aid of Metac91, a meta-database about 1991 Census table contents (see Williamson, 

1993; Williamson et al., 1995), we found five SAS tables plus two LBS tables are of 

greatest relevance.  They are S39, S49, S51, S86, S90, L45 and L50.  Figure 5 shows 

these tables (in dark fill) and the variables appearing in the tables.  There are nine 

variables all together: 

 

Age 

Sex 

Marital status 

Tenure 

Ethnic group  

Economic primary position 

Socio-economic group  

Social class  

Country of birth  

 

In Figure 5 we plot three sets of age, sex, and marital status, which represent three 

population groups: household heads, household residents, and all residents.  There are 

two reasons for this.  First, as shown in Figure 5, few variables are directly linked with 
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       Key:  Household/heads    100%-based table 
 
   Household residents    10%-based table 
 
   All residents 
 
 
 

Figure 5  Census tables and the links between selected variables 
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the demographic characteristics of household head, but some tables connect one of the 

household head characteristics with the demographic characteristics of the parent 

population group such as household residents.  For example, S50 gives the breakdown of 

age of household residents by country of birth of household heads. Second, by separating 

the three population groups we obtain a clearer picture of the relevant tables and linkages 

between variables, which has proven to be a useful visual aid in identifying suitable 

constraining tables.   

    

These nine variables are all potential predictors of a person being a head (or non-head).  

Because the dependent variable is dichotomous (head or non-head) we can use logistic 

regression analysis to identify those that provide the best predictors of headship.  The data 

allowing us to do so are drawn from the SAR.  The whole SAR contains a very large 

sample.  For the purpose of the current analysis a 10% random sample of of the 

household records was extracted.  Ten variables, nine described above plus relationship to 

household head (relat), were retained for all individuals aged 16 and over.  The SPSS 

forward selection logistic regression algorithm was then used to single out the key 

predictors of headship. 

 

One of the problems of using logistic regression is that there is no commonly accepted 

measure of ‘goodness of fit’.  We used two SPSS outputs: (a) the classification table, 

which compares model predictions to the observed outcomes; and (b) the –2 log likehood 

(-2LL) values.  Table 2 summarises the results of our model.  It shows the variables 

entered into the model at each step.  For each step the correct prediction percentage of the 

model from the classification table and the improvement in –2LL achieved are reported. 

 

The first variable selected by is sex, suggesting that this is the single most important 

predictor of headship out of the nine available in published census ED outputs.  Just using 

sex, 79.1% of household heads and 71.8% of non-heads are correctly classified, with an 

overall correct prediction rate is 75.6%.  The next variables selected by forward 

regression were marital status, followed by age.  Having included these three variables 

the overall correct prediction rate reaches 84.7%.  At the end of its run, the logistic 

regression analysis selected eight out of the nine available variables.  The variable not 

selected was country of birth.  As shown in Table 2, the correct prediction rate barely 
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Table 2  Summary results of the logistic regression model  

(a) Correct predictions (%) Step Variable   

entered * Head Non-head Overall 

(b) -2 log   

likelihood 

1 Sex 79.1 71.8 75.6 34514 

2 MStatus 88.2 69.9 79.3 29889 

3 Age 84.7 84.7 84.7 29103 

4 Tenure 84.6 85.1 84.9 28587 

5 SEGroup 84.4 84.2 84.3 28065 

6 EconPrim 84.5 84.0 84.3 27775 

7 EthGroup 84.5 84.0 84.3 27741 

8 SoClass 84.5 84.0 84.3 27718 
* COBirth is not included in model because statistically significant. 
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changes after step three, although the –2LL continues to decrease as more variables are 

included in the model.  

 

The results provide clear evidence that sex, marital status and age are the three main 

predictors of headship.  Country of Birth turns out to be statistically non-signficant as a 

predictor, having taken into account the other variables available, and may be discarded.  

Social Class, although statistically significant, is also discarded as a predictor of headship 

at this stage. as a potential modelled head of household attribute.  It was the last (and by 

implication least important) predictive variable identified via forward regression, is only 

10% coded, has significant conceptual overlaps with socio-economic group, and has 

fewer links with other target household head attributes. 

 

Having generated household head’s age, sex and marital status (neatly cross-classified in 

S35), an obvious step is to combine the data in S35 and S39 to generate non-heads by 

age, sex and marital status, and to disaggregate heads’ ages into finer categories.  After 

this the remaining household head attributes of tenure, SEG, economic position and 

ethnic group are synthetically reconstructed in an order determined primarily by data 

availability. 

 

From Figure 5 we can see that of the four head’s attributes to be added, only two are 

linked with the household head attributes of age, sex and marital status.  S34 gives 

economic position by sex and marital status for household residents and S08 gives 

economic position by age and sex for all residents.  At ward level, L45 cross-tabulates the 

age, sex and economic position of household heads and tenure.  Economic position is 

selected as the first variable to be generated after age, sex and marital status, because we 

have more data liking this variable with age, sex and marital status.  Economic position is 

added to heads and non-heads alike.  After economic position we generate tenure, 

followed by ethnic group of household head and finally socio-economic group of 

household head.  Socio-economic group is generated after ethnic group because S86 is 

inflated from 10%-based table and not as reliable as S49.  Figure 6 shows the sequence of 

steps in population generation and Table 3 reports the modelled attributes and their 

details.  
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Household location (given ED) 

 

Relationship to household head, 

coarser age, sex and coarser marital status 

(given location) 

 

Finer age and marital status 

(given coarser age, and coarser marital status) 

 

Economic position 

(given relationship to household head,  

age, sex and marital status) 

 

Household tenure 

(given household heads’ age, sex,  

marital status and economic position) 

 

Ethnic group of household head 

(given household heads’ age, sex, marital status,  

economic position and tenure) 

  

Socio-economic group of household head 

(given household heads’ sex, marital status,  

economic position, ethnic group and tenure) 

 

 
Figure 6  Sequence of steps in population reconstruction 
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Table 3  Attributes and their details 

Location EthGroup: Ethnic group of household head (10) 
 Enumeration district 1 White 

Relat: relationship to household head (2)  2 Black Caribbean 
 1 Head of household  3 Black African 
 2 Non-head of household  4 Black Other 

Age: (75)  5 Indian 
 16, 17, …, 89, 90+  6 Pakistani 

Sex: (2) 7 Bangladeshi 
 1 Male  8 Chinese 
 2 Female  9 Other groups - Asian 

MStatus: marital status (4)  10 Others 
 1 Single SEGroup: Socio-economic group of household 
 2 Married head (18) 
 3 Widowed 1 Employers and managers in large 
 4 Divorced establishments 

Tenure: (7) 2 Employers and managers in small 
 1 Owner occupied-owned outright establishment 
 2 Owner occupied-buying 3 Professional workers - self-employed 
 3 Rented privately-furnished  4 Professional workers - employees 
 4 Rented privately-unfurnished 5 Ancillary workers and artists 
 5 Rented with a job or business 6 Foremen and supervisors - non-manual 
 6 Rented from a housing association 7 Junior non-manual workers 
 7 Rented from a local authority or new  8 Personal service workers 

  Town 9 Foremen and supervisors - manual 
EcomPrim: primary economic position (10) 10 Skilled manual workers 

 1 Employees-full time 11 Semi-skilled manual workers 
 2 Employees-part time 12 Unskilled manual workers 
 3 Self employed-with employees 13 Own account workers (other than 
 4 Self employed-without employees professional) 
 5 On a government scheme 14 Farmers - employers and managers 
 6 Unemployed 15 Farmers - own account 
 7 Students  16 Agricultural workers 
 8 Permanently sick 17 Members of armed forces 
 9 Retired 18 Inadequately described and not  
 10 Other economically inactive  stated occupations 

Figure in parentheses indicates the number of categories 
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In theory, other variables, such as household composition and size, can be added 

sequentially given the household head characteristics that have been created.  But in 

practice ward and ED level tables provide very poor linkages between household 

composition and head of household characteristics.  Instead, to proceed further, crucial 

links would have to be made drawing upon national or regional distributions.  However, 

the variables listed in Table 3 cover the key population characteristics and are sufficient 

for the purpose of this paper, which is to compare the two main approaches to the 

generation of small-area population microdata. 

 

4.3.2 Population reconstruction 
 

We now turn to detail of the population reconstruction process.  Following the framework 

shown in Figure 6, the synthetic reconstruction model is divided into six steps (steps 0 to 

5).  The main task for each step is to create a joint distribution or conditional probability 

for a given ED so that a new variable can be added.  As discussed in Section 4.2.1 the 

probabilities required are derived using a three-level estimation procedure.  For each step 

of the reconstruction process Table 4 reports: the joint distribution at national level 

derived from the SAR, the ward-level constraining tables used, the variables involved 

including their number of categories, and the target ward-level joint distribution.  In a 

similar way, Table 5 reports for each step the ED level constraining tables used and the 

target ED-level joint distribution. 

 

Step 0: Generate an initial population  

 

To begin with, we create a population of adults with following characteristics: 

relationship to head of household (head and non-head), coarse age, sex, coarse marital 

and location (ED).  The number of household heads in the ED is identified by S71.  S39 

and S35 give the breakdown of the number by age, sex and marital status for household 

heads and household residents respectively.  S35 has finer grouping of age than S39 (see 

Table 5, step 1), so it is aggregated to the S39 format.  The difference of the two is the 

estimated distribution of non-heads by age, sex and marital status.  Note that all of the 

constraining tables are subject to an adjustment procedure, as described in Section 4.2.1.  

From this we can create a sample with the four attributes: relationship to head of 

household, coarse age (7 classes: 16-29, 30-44, 45-59, 60-64, 65-74, 75-84, 85+), sex and 
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Table 4  Calculating ward level joint distributions  
           

 Tables Variables Relat Age  Sex MStatus EconPrim Tenure EthGroup SEGroup
 used and population group 2 75 2 4 10 7 10 18 
           
STEP 1           
 SAR1 Relat-Age-Sex-MStatus 2 75 2 4  National level joint distribution 
           
 L39 HOH: Age-Sex-MStatus  9 2 3     
           
 L35 RinH: Age-Sex-MStatus  17 2 4  Ward level constraints 
           
 L38 RinH: Age-Sex  75 2      
           
 WQ1 Relat-Age-Sex-MStatus 2 75 2 4  Ward level joint distribution 
           
STEP 2           
 SAR2 Relat-Age-Sex-MStatus- 2 17 2 2 10    
    EconPrim         
           
 L45 HOH: Age-Sex-EconPrim  4 2  3    
             
 L34 RinH: Sex-MStatus-EconPrim  2 2 10    
           
 L08 AR : Age-Sex-EconPrim  17 2  10    
           
 WQ12 Relat-Age-Sex-MStatus 2 17 2 2     
           
 WQ2 Relat-Age-Sex-MStatus- 2 17 2 2 10    
    EconPrim         
           
STEP 3           
 SAR3 HOH: Age-Sex-MStatus-  4 2 2 10 7   
    EconPrim-Tenure         
           
 L45 HOH: Age-Sex-EconPrim-  4 2  3 4   
    Tenure         
 L42 HOH: Tenure         7   
           
 WQ23 HOH: Age-Sex-MStatus-  4 2 2 10    
    EconPrim         
           
 WQ3 HOH: Age-Sex-MStatus-  4 2 2 10 7   
    EconPrim-Tenure         
           
STEP 4           
 SAR4 HOH: Age-Sex-MStatus-  4 2 2 10 5 10  
    EconPrim-Tenure-EthGroup        
           
 L49 HOH: Tenure-EthGroup         5 10  
           
 L06 AR: Age-Sex-EthGroup  4 2      10  
           
 L09 AR: Sex-EconPrim-EthGroup   2  10  10  
           
 WQ34 HOH: Age-Sex-MStatus-  4 2 2 10 5   
    EconPrim-Tenure         
           
 WQ4 HOH: Age-Sex-MStatus-  4 2 2 10 5 10  
    EconPrim-Tenure-EthGroup        
           
STEP 5           
 SAR5 HOH: Sex-MStatus-EconPrim-   2 2 2 5 4 18 
    Tenure-EthGroup-SEGroup        
            
 L86 HOH: Tenure-SEGroup          5  18 
           
 L92 AR: Sex-EconPrim-SEGroup   2   2   18 
           
 L93 AR: EthGroup-SEGroup          4 9 
           
 WQ45 HOH: Sex-MStatus-EconPrim  2 2 2 5 4  
    Tenure-EthGroup         
           
 WQ5 HOH: Sex-MStatus-EconPrim   2 2 2 5 4 18 
      Tenure-EthGroup-SEGroup        
           
           
Notes: HOH - Head of Household;  RinH - Residents in household;  AR - All residents;  see Table 3 for other variable codes 

 Figures indicate the number of categories        



Table 5  Calculating ED level joint distributions 

           

 Tables Variables Relat Sex MarStatt EconPrim Tenure EthGroup SEGroup
 used and population group 2 75 2 4 10 7 10 18 
          
STEP 1           
 WQ1 Relat-Age-Sex-MStatus 2 2 4  Ward level joint distribution 
           
 S39 HOH: Age-Sex-MStatus  7 2     
        ED level constraints 
 S35 RinH: Age-Sex-MStatus  17 2 2     
        

Age  

75 

2 

2 

 

   
           
 EQ1 Relat-Age-Sex-MStatus 2 75 2 4  ED level joint distribution 
           
STEP 2           
 WQ2 Relat-Age-Sex-MStatus- 2 17 2 2 10   
    EconPrim         
           
 S86 HOH: EconPrim     2    
           
 S34 RinH-Sex-MStatus-EconPrim  2 2 10    
          
 S08 AR : Age-Sex-EconPrim  9 2  10    
           
 EQ12 Relat-Age-Sex-MStatus 2 17 2 2     
           
 EQ2 Relat-Age-Sex-MStatus- 2 17 2 10    
    EconPrim         
           
STEP 3           
 WQ3 HOH: Age-Sex-MStatus-  4 2 2 10 7   
    EconPrim-Tenure        
           
 S42 HOH: Tenure         7   
           

 

 

 

 EQ23 HOH: Age-Sex-MStatus-  4 2 2 10    
    EconPrim         
          
 EQ3 HOH: Age-Sex-MStatus-  4 2 2 10 7   
    EconPrim-Tenure         
           
STEP 4           
 WQ4 HOH: Age-Sex-MStatus-  4 2 2 10 5 10  
    EconPrim-Tenure-EthGroup        
           
 S49 HOH: Tenure-EthGroup         4 4  
           
 S06 AR: Age-EthGroup  3       10  
           
 S09 AR: Sex-EconPrim-EthGroup   2  3  4  
           
 EQ34 HOH: Age-Sex-MStatus-  4 2 2 10 5   
    EconPrim-Tenure         
           
 EQ4 HOH: Age-Sex-MStatus-  4 2 2 10 5 10  
    EconPrim-Tenure-EthGroup        
           
STEP 5           
 WQ5 HOH: Sex-MStatus-EconPrim-   2 2 2 5 4 18 
    Tenure-EthGroup-SEGroup        
           
 S86a HOH: Tenure-SEGroup          5  18 
           
 EQ45 HOH: Sex-MStatus-EconPrim  2 2 2 5 4  
    Tenure-EthGroup         
           
 EQ5 HOH: Sex-MStatus-EconPrim   2 2 2 5 4 18 
      Tenure-EthGroup-SEGroup        
           
           
Notes: HOH - Head of Household;  RinH - Residents in household;  AR - All residents;  see Table 3 for other variable codes 

 Figures indicate the number of categories        
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coarse marital status (2 classes: single/widowed/divorced and married), which match 

known distributions exactly.  

 

Step 1: Disaggregate the sample into finer age and marital status 

 

The next step is to disaggregate the sample generated in step 0 into target groupings (i.e., 

breaking age down into single year groups and marital status into single, married, 

widowed, and divorced groups).  A joint distribution of four variables with the target 

groupings is derived from the SAR, which is denoted by SAR1.  Ward-level constraints 

are L39, L35 and L38 (Table 4, step1).  Using the IPF procedure we obtain a ward-level 

four-variable joint distribution WQ1, which is, in turn, scaled down to fit the ED level 

constraints of S39 and S35 using IPF.  The result is an ED-level joint distribution EQ1 

(Table 5, step 1).  So we can calculate the conditional probability distributions of the finer 

age and finer marital status given sample’s relationship to head of household, coarse age, 

sex and coarse marital status.  Using modified Monte Carlo sampling we disaggregate our 

sample into the target variable details. 

 

Step 2: Generate economic position 

 

The process of adding variables is more complex than data disaggregation.  In step 2 we 

wish to estimate the economic position for our sample, which is assumed to be 

conditionally dependent upon the ‘known’ variables generated in step 1.  At step 1 the 

estimated joint distribution is an array with 2×75×2×4 =1200 cells.  Economic position 

has 10 categories.  If we want create a full five-variable distribution using the finest 

possible variable categorisation we would end up with an array containing 12,000 cells, 

the majority of which would be empty.  An efficient solution is to divide the sample into 

subgroups.  For example, we know that the majority of females aged over 60 are retired, 

so we do not need to break age down into single year groups to estimate economic 

position.  However aggregating these people into one group may be too coarse, as we 

may wish to examine, for instance, the relationship between age and the economic 

position ‘permanently sick’. When several variables are involved, the partition of the 

sample into subgroup is not straightforward.  Moreover, as the process goes on and more 

we have to select a subset of all possible predictors to reduce complexity.  Again, the 
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decision is guided by (a) analysing the relationships between known variables and the 

target one, and (b) the availability of the data. 

 

The target (dependent) variable has more than two categories ruling out the use of logistic 

analysis for identifying the most suitable predictors.  The Quest decision-tree algorithm 

(Loh and Shih, 1997), as implemented in SPSS AnswerTree, provides a useful alternative 

tool, which allows  for the analysis of multi-category and continuous variables.  It is a 

tree-based analysis, which uses chi-squared or F statistics to select predictors, with the 

results presented in a decision tree map.  At the top of the tree is the target variable, with 

the next level down showing the first predictor selected by the model, which is split into 

several nodes.  As the tree grows into many levels we have a map that shows the 

combined effect of the selected variables upon the target variable.  Figure 7 shows a 

simple two-level tree map of for the prediction of economic position using the head of 

household variables already modelled in step 1.  The data used for this analysis are the 

same sample as we used for the logistic model.  The first predictor selected is sex, which 

is split into male and female.  The root node is a tabulation of the target variable.  

Comparing the two tabulations at the first level we can see different employment patterns 

between men and women.  Proportionally more men work full time (51%) than women 

(26%), but more women work part time (16.5%) than men (1.7%).  At level two each 

node is split into head and non-head of household.  Figure 8 shows the result when we let 

the tree grow a further two levels.  For simplicity we ignore the tabulations at each node 

and concentrate simply on the variables and their division at each level.  Age is the 

predictor selected by the model at level three, but the partition is different for different 

nodes.  At level four marital status and age (further disaggregation) are included in the 

model.  

 

To see how well the model does at predicting economic position we can examine the risk 

summary, which compares the tree’s assignment of economic position with the position 

actually recorded.  Table 6 shows the risk estimate at each level.  The number of levels is 

five.  The risk estimate gives the proportion of cases classified incorrectly.  We can see 

the misclassification rate of the model decreases as the number of levels increases, but the 

improvement is trivial at level five.  Although decision trees can grow into many levels, 

further splits may add little to our understanding of the problem because the subsequent 

splits deal with small numbers of cases.   
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    Economic position (primary) 
    

           e % N                 Categori s    
           FT 83                 Employee 38.21 146   
           PT 12                 Employee 9.40 36   
           s) .3 87                 Self-emp (employee 2 1 28   
            .7 15                 Self-emp (no emp’s) 4 2 18   
           .6 64                 Govt scheme 0 9 2   
                            Unemployed 5.69 2188   
           .4 95                 Student 4 1 16   
           ck .6 92                 Permanently si 3 2 13   
           .9 79                 Retired 18 4 72   
           ve .0 09                 Other inacti 12 0 46   
                              Total 100.00 38414
                                   
                                    
                       
                       
                         

                                                Sex 
  P-value=0,0000, Chi-square=9245.6960, df=9 

             
                                     
                                      Female 

   
                                            Male 

    
    

                              
                                   
                         Categories % N Categories % N   
                       Employee FT 26.17 5228   Employee FT 51.25 9455
                       Employee PT 16351 3298   Employee PT 1.70 314
                       Self-emp (employees) 1.06 212   Self-emp (employees) 3.66 675
                       Self-emp (no emp’s) 1.80 359   Self-emp (no emp’s) 7.89 1456
                     Govt scheme 0.50 99   Govt scheme 0.89 165
                       Unemployed 3.45 689   Unemployed 8.12 1499
                     Student 4.39 876   Student 4.44 819
                       Permanently sick 2.74 547   Permanently sick 4.58 845
                     Retired 20.88 4170   Retired 16.85 3109
                       Other inactive 22.51 4496   Other inactive 0.61 113
                       Total 51.98 19974 Total 48.02 18450   
                                   
                                     
                  
                 
                   

Head or Non-head Head or Non-head 
P-value=0.0000, Chi-square=1720.5888, df=9 
       

P-value=0.0000, Chi-square=2913.3745, df=9 
           

                                   
                       
                            

Non-head 
  

  Head 
 

Non-head 
  

Head   
  

                                   
 Categories %                 N Categories % N Categories % N Categories % N  
 Employee FT 27.95 3931    Employee FT 21.94 1297    Employee FT 50.77 2490    Employee FT 51.42 6965  
 Employee PT 19.61 2758    Employee PT 9.13 540    Employee PT 1.59 78    Employee PT 1.74 236  
 Self-emp (employees) 1.26 177    Self-emp (employees) 0.59 35    Self-emp (employees) 1.41 69    Self-emp (employees) 4.47 606  
 Self-emp (no emp’s) 1.98 278    Self-emp (no emp’s) 1.37 81    Self-emp (no emp’s) 6.44 316    Self-emp (no emp’s) 8.42 1140  
 Govt scheme 0.55 78    Govt scheme 0.36 21    Govt scheme 2.28 112    Govt scheme 0.39 53  
                Unemployed 3.50 492 Unemployed 3.33 197 Unemployed 13.13 644 Unemployed 6./31 855
            Student 5.83 820 Student 0.95 56 Student 15.50 760 Student 0.44 59
 Permanently sick 2.32 326    Permanently sick 3.74 221    Permanently sick 3.53 173    Permanently sick 4.96 672  
            Retired 13.95 1961 Retired 37.36 2209 Retired 4.61 226 Retired 21.28 2883
 Other inactive 23.05 3241    Other inactive 21.23 1255    Other inactive 0.73 36    Other inactive 0.57 77  
 Total              36.60 14062 Total 15.39 5912 Total 12.76 4904 Total 35.25 13546  
                                   
 

Figure 7 Two-level decision-tree map 
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   Figure 8  A full decision tree map identifying the determinates of economic position  



Table 6  Risk estimated by the tree-based model  

Level of split Variables Risk estimated 

1 Sex 0.618 

2 Relationship to head 0.594 

3 Age  0.490 

4 Marital status or Age  0.484 

5 Marital status or Age 0.479 
 The dependent variable is economic position. 
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The results suggest we need all four known variables to estimate the economic position of 

our synthetic population.  Even including all these variables the misclassification rate of 

the model is still high (about 48%), which is why the local constraints play an important 

role.  When deciding how to reduce the size of the joint distribution, the golden rule is 

that we do not reduce the known local information.  From Table 4 (step 2) we can see that 

L08 links age (17 classes) with economic position and L34 links marital status (2 classes) 

with economic position.  So at step 2 age is aggregated into 17 classes, whilst marital 

status is aggregated into 2 classes.  Figure 8 suggests it is better to separate single from 

divorced/widowed.  This can be compromised by the finer age scheme.   

 

A joint distribution of five variables, SAR2 (2×17×2×2×10), is derived from the SAR.  

Ward-level constraints are L45, L34 and L08 (Table 4, step 2).  L45 gives the breakdown 

of age by sex by economic position by tenure for household heads.  Only the first three 

variables are used at this step.  ED-level constraints are part of S86, which gives the 

proportion of economically active and economically inactive household heads, S34 and 

S08.   

 

It should be noted that tables L08 and S08 are for all residents and are scaled down in this 

step to represent residents in household only.  This could cause a net error in table counts.  

These tables are also very large (S08 contains 180 cells), so the exact table counts are not 

reliable.  On the other hand, ignoring these tables would certainly lose some local 

information.  An innovation is adopted at this point, which is to treat these tables as 

quasi-constraints.  When using the IPF procedure quasi-constraints are only used for a 

few iterations (e.g., 5, 10).  The final estimates should retain some of the interaction 

patterns of the quasi-constraints but will not necessarily match their counts.   

 

The concept of quasi-constraint could also help reduce the complexity of IPF when 

dealing many variables.  For example, at this step we need to estimate a full five-variable 

joint distribution at ward-level.  The constraining tables mentioned above (L45, L34 and 

L08) are only those containing economic position.  We should also include tables L39 

and L35, which have been used in step 1, so that the estimated joint distribution fits all 

known constraints.  This certainly increases the complexity of the procedure.  When 

dealing with more variables we may find it too cumbersome to operate.  We suggest using 

the distribution created at the previous step instead of the constraints already used.  As 
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shown in Table 4 (step 2), we use WQ12 as a constraint in step 2, which is obtained by 

aggregating WQ1 to meet the scheme of the first four variables in SAR2. Consequently, 

WQ12 fits both L39 and L35.  However, WQ12 is a four-dimensional array and the cell 

counts are the maximum likelihood estimates.  We can treat this as a quasi-constraint if its 

existence causes the problem of convergence in IPF.  Otherwise, it can be used as a 

normal constraining table.  ED level constraints can be treated in a similar way.   With the 

use of IPF we obtain a ward level and ED level distributions of five variables, WQ2 and 

EQ2, resulting in the conditional probability distributions of economic position given 

sample’s relationship to head of household, coarse age, sex and coarse marital status.  At 

the end of step 2 each individuals in our sample has been assigned a category of economic 

position.  

 

Step 3 to 5: Generate tenure, ethnic group and socio-economic group for household heads 

 

In Steps 3 to 5 we generate household tenure, ethnic group and socio-economic group for 

household heads.  These are head of household characteristics, so the existing non-head 

attributes (age, sex, marital status and economic position) are not involved in the 

processes. At each step, the Quest decision-tree algorithm has been used to help select the 

most appropriate predictors and decide their levels of aggregation.  For estimating tenure 

and ethnic group all known characteristics for household heads are used (see Tables 4 and 

5, steps 3 and 4).  For estimating socio-economic group one variable (age) is eliminated.  

As a result, we need to create an array of six dimensions at steps 4 and 5.  Using the 

technique described above this can be achieve without too much difficulty, because the 

constraints for each step are only the tables linking the target variable with the predictors 

and the joint distribution of the predictors derived from the previous step.  

 

In total thirteen LBS tables and nine SAS tables have been used in the population 

reconstruction process.  These tables plus the joint distributions for each step derived 

from the SAR act as the inputs of Pop91SR.  The output of the model is a synthetic 

dataset with all the variables described in Table 3 for a given area.  An assessment of the 

quality of this dataset will be presented in Section 6. 
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5. The combinatorial optimisation model (Pop91CO) 
 

5.1 Model components and method employed  
 

Pop91CO is the latest version of a program suite used previously for the creation of 

synthenetic microdata using combinatorial optimisation approach (see Williamson, 1996; 

Williamson et al., 1998).  It consists of three sets of programs.  The first set of programs 

is designed to extract SAS table data and convert them into carefully ordered table 

vectors, which act as the constraints for household combinations.  The second program 

suite assigns each household and individual in the SAR with a set of values; each value 

indicates the cell number in a given table vector to which each individual/household 

relates.  This speeds the process of casting SAR data into SAS look-alike tables to enable 

statistical comparison of population distributions between data recorded in SAS and SAR 

formats.  The third and main program suite is concerned with the evaluation and selection 

of combinations of households from the SAR that best fit constraining tables.  It includes 

a number of subroutines which select an initial set of households, iteratively evaluate the 

effects of replacing one of the selected households until a satisfactory fit is reached, and 

report the results, respectively. 

 

The combinatorial optimisation approach is relatively simple compared with the synthetic 

reconstruction approach.  It attempts to fit all the selected constraints simultaneously.  

However, to achieve a satisfactory fit across all the constraints is not an easy task.  The 

quality of the resulting synthetic dataset is likely to be affected by the these factors: the 

size of the sample used as a parent population; the constraints used to guide the household 

selection; the method of combinatorial optimisation; the selection criterion; the computer 

resource used; and the divergence of each small area’s characteristics from norm.   

  

(1) The size of the sample used as a parent population.  In the combinatorial 

optimisation approach it is assumed that the population characteristics in a small area 

can be reassembled by a set of households drawn from a known sample.  The larger 

the sample size, the more possible combinations of households exist and the better 

the fit is likely to be.  The SAR contains around 215,000 household records.  It is 

might well be possible to find household combinations from such a large pool that 

match local population characteristics of various types.  But the solution space is 
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extremely large.  One might use a smaller sample, such as region-specific SAR 

instead of whole SAR.  It is, however, a priori, not clear whether using region-

specific SAR would generate the same level of fit as using whole SAR.  Further 

consideration is given to this question in the next section.  Even using the whole SAR 

there is no guarantee that every type of household will be represented, since it is a 

1% sample.  When a perfect match cannot be found (or could not be discovered in 

the time allowed), the result is likely to be a population more akin to the national 

(SAR) average than actually exists in the area being considered.  

 

(2) The constraints used to guide the household selection.  The number of constraining 

tables adopted and the variables involved in these tables will affect the resulting 

output.  Previous work (Voas and Williamson, 2000a) suggests that synthetic 

microdata generally produce a poor fit to tabulations of variables not used as 

constraints.  Using a different set of constraints would produce different results.  In 

general, the more constraints used the better the synthetic dataset.  But every 

additional table included will increase computing time, as more iterations will be 

required to achieve a given level of fit.  At the experimental stage, a set of eight SAS 

tables was used to judge the fitness of a household combination (Williamson et al., 

1998; Voas and Williamson, 2000a).  These are the first eight tables listed in Table 7.  

The selection of these tables was guided by the desire to include an equal number of 

household and individual-level tabulations, covering as wide a range of census 

variables as possible in as few tables as possible.  It was also partly motivated by 

assessments of the relative interest of particular topics to researchers. 

 

It is quite possible that a better set of constraints could be chosen.  The primary 

objective of this paper, however, is to compare the effectiveness of the two main 

approaches to generation of synthetic microdata.  To ensure comparability, the 

approaches should adopt the same set of constraints.  Of the nine SAS tables used in 

the synthetic reconstruction process only two are included in the original list of 

constraints for the combinatorial optimisation model  Hence seven more tables have 

been added to the list of constraining tables, resulting in a total of fourteen possible 

constraints (see Table 7).  A switch is assigned to each table, and users can select a 

set of the constraints of most interest.  For the purpose of this paper, the nine SAS 

tables used in building Pop91SR have been selected to guide the selection of 
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household combinations.  As the 10%-based table counts for EDs are known to be 

unreliable (Voas and Williamson, 2000a), we have already substituted them with the 

revised the table counts for S86 estimated during the synthetic reconstruction 

process. 

 

(3) The method of combinatorial optimisation.  In the early stages of model 

development, considerable attention was devoted to identifying the best methods of 

combinatorial optimisation.  Williamson et al. (1998) tested three techniques of 

combinatorial optimisation: hill climbing, simulated annealing and genetic 

algorithms.  The results suggested that modified simulated annealing (a hybrid of hill 

climbing and simulated annealing) stood out as the best solution (in term of the 

greatest average reduction in total absolute error).  Details concerning the assessment 

of these techniques may be found in the above study.  To summarise, in both hill 

climbing and simulated annealing algorithms an initial combination of households 

are selected from the SAR.  Subsequently a household from the combination and a 

possible replacement from the SAR are randomly selected.  In hill climbing the 

replacement will be made only if the swap improves the fit, whilst in simulated 

annealing some swaps are accepted even if they lead to a moderate degradation in 

performance, in order to allow the algorithm to backtrack from suboptimal solutions.  

The probability of this ‘retrograde swap’ decreases with the increase of the number 

of successful replacements and is determined by two parameters: the starting 

‘temperature’ and the ratio of initial temperature to number of replacements.  When 

the starting temperature is set low the probability of a retrograde swap occurring soon 

declines towards zero, at which point the behaviour of simulated annealing becomes 

much more like that of straightforward hill climbing. It is this latter approach that we 

describe as ‘modified simulated annealing’. 

 

(4) The selection criterion.  The evaluative statistic used in the iterative fitting process 

directly affects household selection.  Previous model variants used overall total 

absolute error as the selection criterion.  The choice was guided by the desire to 

reduce computing time since it is very simple to calculate.  The disadvantage is that 

TAE is a relatively crude measure, taking no account of error relative to the size of a 

cell count..  Using this measure, as reported in Williamson et al. (1998), it can 

frequently occur that even though the overall fit seems good, one or more tables do 
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Table 7  SAS tables included by Pop91CO  

No. SAS tables Variables                                                            Used for comparison of

                          Pop91SR and Pop91CO

1 S01 Resident status / Sex  

2 S14 Long-term illness / Age / Economic activity  

3 S22 Household size / Number of rooms / Tenure   

4 S29 Dependants   

5 S35 Age / Sex / Marital status ✓  

6 S42 Household composition / Tenure ✓  

7 S74 Occupation / Age / Sex  

8 S86 Socio-economic group of household head / Tenure ✓  

9 S06 Age / Ethnic group  ✓  

10 S08 Age / Sex /  Economic position ✓  

11 S09 Sex / Economic position / Ethnic group ✓  

12 S34 Sex / Marital status / Economic position ✓  

13 S39 Age / Sex / Marital status of household head ✓  

14 S49 Ethnic group of household head / Tenure ✓  
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not fit particularly well.  Voas and Williamson (2000a) suggested that using global 

measures will always produce closer matches for tables reflecting distributions 

similar to the overall population’s, at the expense of those with more divergent 

characteristics.  This problem, however, may be particularly associated with the use 

of TAE.  As we will see in section 5.2, adopting a new selection criterion both 

‘normal’ and ‘abnormal’ tables will benefit from potential replacements, leading to 

significant improvements in resulting outputs. 

 

(5) The computer resource.  The process of combinatorial optimisation is iterative.  In 

order to achieve a satisfactory fit hundreds of thousand or millions of evaluations are 

required for each ED.  In fact, all the techniques and model designs are based around 

this theme: finding the best possible solution within the available time.  Williamson 

et al. (1998) reported that for eight constraining tables 70 CPU seconds per ED are 

required to perform 500,000 evaluations on a powerful workstation.  Due to advances 

in computer technology it is now possible to perform millions of evaluations on a 

desktop PC within a minute.  As a result, we are now able to devote more time on 

‘hard-to-fit’ area and include more tables as constraints in combinatorial 

optimisation.   

 

(6) The divergence of a small area’s characteristics from norm.  The fit between 

constraining tables and synthetic microdata produced by combinatorial optimisation 

varies with location.  The poorly fitting are typically those where observed statistics 

reflect a distribution very different to the national norm, and hence from that captured 

in the SAR.  A challenge is how to fit these atypical areas. Voas and Williamson 

(2000a) developed a sequential fitting procedure in order to improve the accuracy of 

model outputs.  Using this procedure they found every constraining table can be 

satisfied (i.e., SSZ not exceeding the critical value). However, further examination of 

this technique indicates that with the sequential fitting the SSZ statistics of abnormal 

tables can be reduced to an acceptable level, but at the expense of increasing overall 

TAE.  In some cases the increase is substantial.  For example, testing on ED 

DAGF12 in University ward of Leeds city, with the original simultaneous fitting 

procedure one table is always ‘non-fitting’ (NFT) (see next section).  With sequential 

fitting all the tables can be fitted, but the overall total absolute error increases by 

more than 100% compared with the result of the original fitting procedure.  It is also 
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difficult to apply the sequential fitting technique for generating large area microdata, 

because, as mentioned in Section 2.3, the ordering of tables to be fitted is area-

specific.  

 

Pop91CO has employed the modified simulated annealing approach but dropped the 

sequential fitting procedure.  We have discussed the factors that may affect the modelling 

results.  It is argued that the problem of poorly fitted tables partly results from the use of 

TAE in the iterative process, and that the sequential fitting procedure to cope with the 

problem is unsatisfactory.  To solve these problems we propose an alternative selection 

criterion.  This new measure is presented in the next section together with a number of 

techniques designed to improve the accuracy and consistency of model outputs. 

 

5.2 New developments in Pop91CO 
 

5.2.1 Selection criterion  
 

The test statistic used in the iterative fitting process is vital in a combinatorial 

optimisation model.  Previous versions have used overall total absolute error as the 

selecting criterion, defined as 

  ∑∑ −=
k i

k
i

k
i EOTAEOverall      (1) 

where  Oi
k
 and Ei

k
 are the observed and expected counts respectively for ith cell of kth 

table vector.  The drawbacks of this measure have already been discussed.  In Section 3.2 

we presented a new summary statistic, overall RSSZ (relative sum of squared Z scores), 

as the measure of global fit across several tables, based upon the work of Voas and 

Williamson (2001a).  It is calculated by 
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where SSZk is sum of squared Z scores for table k 

  SSZ        (3) ∑=
i

k
i

k Z 2

and Ck is the 5% χ2 critical value for table k.  Zi
k
 is the Z score for ith cell of kth table 

vector, which is calculated as: 
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where No
k
 and Ne

k
 are the observed and expected table totals respectively for table k.  

  

During the iterative fitting process the expected totals may not be identical to the 

observed total, so the modified Z score (Zm) is used.  In a modified version the expected 

table total is replaced by the observed table total, hence   
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When observed and expected table totals are the same, Zm=Z. 

From equations (2), (3) and (5) we obtain a modified overall RSSZ  
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We can see from equation (6) that using the modified Z, everything except the difference 

in cell values is fixed for a given area.  Comparing with equation (1), it is therefore quite 

feasible to use overall RSSZm as an alternative test statistic in sampling iterations without 

greatly increasing computing overhead.  At the later stage of sampling the expected and 

target totals will be highly similar as are RSSZm and RSSZ.  Therefore, it is consistent to 

use the overall RSSZm as the selecting criterion and overall RSSZ as the measure to 

evaluate the final results. 

 

Table 8 presents a comparison of the performance of the two alternative selection criteria, 

TAE and RSSZm.  Three different types of EDs (DAFJ01, DAGF04 and DAGF12) are 

tested, which are selected from our test areas.  Their distances from norm are shown in 

Figure 3.  ED DAFJ01 in the Cookridge ward is a typical suburban area, and the position 

is relatively close to the national norm.  EDs DADF04 and DADF12 are in the University 
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Table 8  Results from the use of TAE and RSSZm as the selecting criterion 

      
      

Selection criterion:   TAE RSSZm 
      

(A) ED DAFJ01 in Cookridge ward (198 households)   
      

Evaluations('000) TAE RSSZ NFT NFC CPU (s) TAE RSSZ NFT NFC CPU (s)
      

0  1438 124.60 9.0 117.8 0 1438 124.60 9.0 117.8 0
10  447 7.51 1.2 28 0 495 2.71 0 15.8 0

6.4 185 3
0 3.4 9 111 0.30 0 0 13

19 97 0.27 0 0 26
0 2.6 28 93

0.64 0 2.2 38 86 0.24 0 0 53
47 66

0 2.4 57 81 0.23 0 0 79
0 1.8 66 78 0.23 0 0

80 0.23 0 105
0 1.4 94 77 0.22 0 0 131

1.4 113 76 0.22 0 0 158
210

89 0.57 0 1.2 188 73 0.21 0 0
  

 
   

NFC
  

48.89 1869 48.89 
67.0 59.2 0

4.11 0 21.8 1.88 0 4.6
320 3.57 236 0.98 

14.8 19 0.4 26
2.72 0 13.2 0.75 0 0.4

240 2.58 190 0.70 
13.0 47 0.2

2.22 0 12.0 0.65 0 0.2
0.62 

0.2 105
2.16 0 10.4 0.60 0 0.2

213 2.11 
10.0 151 0 210

9.8 188 153 0.53 0 0 263
      

  
      

Evaluations('000) TAE RSSZ NFT NFC CPU (s)
 

 2642 106.81 9 164.6 0 2642 106.81 9 164.6 0
0 1421 17.24 7.8 103.2

3.4 43.6 2 680 3.97 0 19.0 3
1.8 23.2 9 1.59 0 4.2 13
1.0 20.6 19 343 1.24 0 3.0 26

55 18.8 1.11 0 2.0 40
1.2 16.6 38 295 1.05 0 2.2

3.87 17.4 47 294 1.02 0 1.6 66
1.2 17.8 57
1.2 17.4 66 284 0.95 0 1.4 92

05 3.69 105
1.2 16.6 94 271 0.90 0 1.6 132
1.4 17.8 113 269 0.88 0 158
1.2 17.2 151 269 0.86 211
1.2 17.6 189 261 0 1.2 263

      
Figures are 5-run average   
Total number of tables: 9;   Total number of cells: 597   
CPU time is central processing unit time in seconds on a 800MHz PC    

   

100  188 1.26 
500  145 0.86 

 
1,500  118 0.73 

 
2,500  102 0.67 
3,000  101 0.65 
3,500  98 0.63 
4,000 
5,000  94 0.60 
6,000  93 0.60 
8,000  91 0.59 

10,000 

NFC CPU (s)
 

10  

 

 
 

 
8,000  

(C) ED DAGF12 in University ward (191 households) 

   

100  659 7.56 
500  445 5.39 

1,000  385 4.29 
1,500  3
2,000  338 3.83 
2,500 
3,000  314 3.69 
3,500  309 3.69 
4,000  3
5,000  300 3.61 
6,000  296 3.64 
8,000  293 3.57 

0 2 0.52 0 0.2

1,000 135 0.82 0 3.6
0.26 0 0 40

2,000 107 
0 2.6 81 0.24 0 0

92
 97 0.60 0 1.4 75 0

0
0 1.4 151 74 0.21 0 0

 263
    

(B) ED DAGF04 in University ward (149 households)  
   

Evaluations('000) TAE RSSZ NFT CPU (s) TAE RSSZ NFT 
   

0  1869 9.0 132.6 0 9.0 132.6 0
880 12.11 5.6 0 853 8.14 3.0 

100  364 2 359 3
500 0 18.8 9 0 0.6 13

1,000  275 3.07 0 206 0.81 0 
1,500  248 28 200 39
2,000 0 13.8 38 0 0.2 53
2,500 233 2.35 0 185 0.67 0 66
3,000  227 57 178 79
3,500  222 2.16 0 11.8 66 173 0 0.2 92
4,000  219 2.18 0 10.4 75 177 0.62 0 
5,000  216 94 171 131
6,000 0 10.6 113 162 0.58 0 0.2 158

207 2.03 0 160 0.56 0 
10,000  201 1.98 0

TAE RSSZ NFT NFC CPU (s)
  

0 
10  1542 35.15 8.6 116.8 0

398

3.98 1.2 28 315
53

 324 1.4
286 0.98 0 1.6 79

1.2 18.0 76 278 0.95 0 1.4

1.4
0 1.2

10,000  290 3.54 0.85 

 

   



ward; the former is far from the norm (outside the 98% percentile of the national 

distribution), and the latter is even more atypical (outside the 99.8% percentile of the 

national).  For each ED combinatorial optimisation is run for a maximum of 10 million 

evaluations.   

 

Figure 9 highlights the differences in TAE and RSSZ arising from use of the two 

alternative selection criteria.  Figure 9a shows that for every ED the TAE statistics are 

significantly lower when using the new selection criterion.  The greatest improvement 

brought about by using RSSZm, however, is in the reduction of RSSZ statistic (Figure 9b).  

Table 8 provides a more detailed set of results, based on 5-run averages, reporting 

measures of overall fit across all nine constraining tables plus associated run times (CPU 

seconds).  A similar story is emerges whichever of the four test statistics presented, TAE, 

RSSZ, NFT and NFC, are examined, with the synthetic microdata created using the 

RSSZm
 selection criterion out-performing that created using TAE. 

 

The results in Figure 9 and Table 8 also reveal that the more an ED’s distribution diverges 

from the national average, the greater the observed improvement is likely to be.  In fact, 

with the use of RSSZm abnormal tables no longer appear hard to fit.  Take for example 

ED DAGF12 (an extremely atypical area).  Using TAE as the measure of fit in sampling 

at least one constraining table does not fit, no matter how many evaluations have been 

performed.  With the use of RSSZm all the constraints are satisfied within 100,000 

evaluations.  At the cellular level, the gain of using RSSZm is even greater, as only one or 

two cells out of 597 with Z score exceeding the critical values, while this figure would be 

more than 17 if TAE was used (Table 8c).  The one possible negative of using RSSZm as 

a selection criterion is that the run time is 26 CPU seconds per million evaluations per ED 

on an 800MHz PC, representing a 40% increase compared to TAE-based runs.  But even 

if run time rather than number of evaluations is taken as the basis for comparison, the 

results in Table 8 show that RSSZm remains a superior selection criterion, achieving 

better fit from considerably fewer evaluations. 

 

5.2.2 Using region-specific SAR 
 

Previous versions of the combinatorial optimisation model have selected households from 
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the whole SAR (i.e. ignoring the geography of SAR records).  The household SAR is 
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Figure 9  Performance of using alternative selecting criteria: TAE vs. RSSZm
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spatially coded into twelve large areas (the Registrar General’s Standard Regions, plus 

Wales and Scotland).  The size of these regional samples vary greatly, ranging from about 

8000 to 24000 households.  A priori, it is not clear whether or not it is better to limit 

household selection to those households coming from the same region as the ED being 

synthesised.  A major concern of using regional subsets of the SAR is that the solution 

space is reduced.    However, the effect of using regional SAR might be very small for a 

typical ED, since there are still many households to select from.  Problems may arise 

when several constraints are extremely atypical and no or few records from the regional 

SAR can match them.   

 

Figure 10 highlights the difference between using a regional sub-set of the  SAR (Scheme 

R) and whole SAR (Scheme W) tested on EDs DAFJ01 and DAGF12.  Our test areas 

belong to the region of Yorkshire and Humberside.  The SAR sample for this region 

contains approximately 19,000 household records.  For ED DAFJ01 the difference 

between the RSSZ statistics of the two schemes is trivial, although the performance 

obtained using the whole SAR is slightly better.  But for ED DAGF12 using only the 

relevant regional SAR performs significantly worse than using the whole SAR; the RSSZ 

statistic of Scheme R is almost twice of that of Scheme W.  The results suggest that it is 

quite feasible to use regional subsets of the SAR for the majority of EDs where 

characteristics are close to the norm.  But for atypical EDs limiting household selection to 

the regional SAR would significantly increase the error of estimation, and hence the 

whole SAR should be used.  Even so, the use of regional SAR is to be preferred where 

possible, as the households in each subset may better reflect regional differences in 

household characteristics not constrained in the household selection process. 

 

As a result, Pop91CO adopts a two-stage approach with respect to the usage of the SAR.  

In the first stage, the initial households are randomly drawn from the regional SAR that 

cover the EDs being synthesised and potential replacement elements are drawn from the 

same source.  After a number of evaluations the results are analysed and the test statistic 

is compared with a pre-determined criterion.  Currently, Pop91CO is set to assess whether 

or not the number of NFC is equal to zero after 200,000 evaluations.  If the test is positive 

(i.e., not a single cell fails its Z-score test), it is assumed that the region-specific SAR is 

large enough to produce household combinations that match that ED’s characteristics.  
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All further potential replacement elements are therefore drawn from the regional SAR.  If 



R - region-specific SAR
W - whole SAR
R+W - region-specific and whole SAR

Figure 10  Comparing use of region-specific vs. whole SAR
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the test is negative, in stage two the selection of potential replacement elements is 

switched from the regional to whole SAR.  The results of the model after adopting this 

approach for the above two EDs are also plotted in Figure 10 (Scheme R+W).  For ED 

DAFJ01 the result of Scheme R+W is the same as that of Scheme R, because the test to 

continue using the regional SAR was positive.  For ED DAGF12, after switching the 

selection from regional to whole SAR, the RSSZ statistic soon declines towards the level 

of Scheme W, and after approximately three millions evaluations it is very close to the 

result of Scheme W.  Using the whole SAR the final household combination in any given 

ED repolication contains less than 9% of households that come from the same region.  

Using the two-stage scheme the percentages of synthetic households come that from the 

relevant regional SAR are 100% and 14% for EDs DAFJ01 and DAGF12 respectively.     

 

The use of regional SAR is guided by the intuition that the synthetic households drawn 

from a SAR region might fit better than those drawn from the whole SAR on topics that 

are not covered by constraining variables.  Variables that are neither chosen to constrain 

the selection, nor are highly correlated with those that were chosen, will tend to be 

distributed according to the characteristics of the SAR.  However, at such a coarse 

geography the distribution of region-specific SAR is unlikely to be much different from 

the national (the major exception perhaps being the South East and London).  Therefore, 

the regional representation should not be over emphasised.  Moreover, unconstrained 

variables generally do not fit well.  Nevertheless, one might hope to lower the error at 

least to some extent by increasing the percentage of synthetic households from the region, 

subject to not degrading the model’s performance on constraining variables. 

  

5.2.3 Stopping rules  
 

The results on the test of three EDs have shown that, using the new selection criterion, the 

estimated synthetic populations fit their constraining tables very well.  As Table 8 shows, 

even for the extremely atypical area of ED DAFJ12, all the tables can be satisfied (no 

‘non-fitting’ tables) within half a million evaluations (about 13 seconds computing time).  

Further iterations reduce the error at the cellular level, albeit at a gradually declining rate.  

Figure 9 shows that for ED DAFJ01 after half a million evaluations the RSSZ value 

stablises but the TAE value continues to decline. Even for TAE, after approximately two 

million evaluations further iterations appears unnecessary, as the computational 
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overheads outweigh the marginal gains in fit obtained.  For atypical EDs more iterations 

are required to allow the test statistics to stabilise.  When the model switches searching 

from regional to national SAR, as shown in Figure 10, it takes additional time for the test 

statistics to catch-up with the result of using whole SAR all the way. 

 

It appears that the RSSZ statistics of an atypical a typical ED will never converge to the 

same level.  It is even possible that some of the few remaining discrepancies are 

inevitable because of the inaccuracy of the observed counts in SAS tables. Therefore it is 

not appropriate to set a target RSSZ value as the trigger for the termination of 

combinatorial optimisation; nor is it appropriate to fix the number of iterations as some 

EDs take far longer to ‘fit’ than others.  Instead, a set of stopping rules have been 

designed to control the number of iterations.  On the basis of observed test ED 

performance, minimum and maximum numbers of evaluations for each ED have been set 

at 2 million and 4.5 million respectively, giving run times on the PC used for this study of 

between 53 and 118 seconds per ED.  Starting from 2 million evaluations, the results are 

evaluated at intervals of 0.5 million evaluations.  After any evaluation, if all cells are 

deemed to fit (i.e., the number of NFC is zero) optimisation stops.  This reflects the desire 

to devote more computing power to an ED if any cell is not satisfied.  This standard of fit 

is extremely stringent.  Some EDs will never meet it.  In such cases the iteration will stop 

at 4.5 million evaluations.   

 

Another innovation designed to improve the fit of abnormal EDs is that between 4 and 4.5 

million evaluations, the model will not select the possible replacement element from the 

whole SAR any more, but use only those households already in the selected combination 

as potential candidates (i.e., any swap at this stage is made between households already 

chosen after 4 million evaluations).  The theoretical consideration underpinning this 

procedure is within-ED homogeneity.  Households close to one another tend to have 

similar characteristics.  An ED with an abnormal distribution is likely to comprise a group 

of similar households whose characteristics are far from the norm.  For example, suppose 

a given household’s characteristics are so rare that only one record in the SAR can match 

it, but an ED contains twenty such households.  Using the combinatorial optimisation 

routines the household has been selected, say five times after 4 million evaluations.  To 

allow the household combination to include twenty such records, it would require more 

than 16 million evaluations.  If, after 4 million evaluations, we limit our search to 
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households in the existing household combination, the required 20 duplicates are rapidly 

selected as the chances of picking the target household greatly increase.  The result for 

ED DAGF12 shows that with the above procedure the five-run average TAE and RSSZ 

are 265 and 0.88 respectively after 4.5 million evaluations.  To achieve the same level of 

fit it would normally require more than 6 million evaluations (see Table 8c).    
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6. Evaluation and comparison of the two approaches 
 

Following the method described in Section 3, in this section each model approach is 

evaluated with respect to both reliability and efficiency.  Model reliability depends upon 

the variability of model fit between runs.  To assess the degree of variability associated 

with the estimated data, each model has been run 100 times with a different initial sample 

seed, generating 100 sets of synthetic microdata for each ED in the testing area.  The 

reliability of the model’s outputs are assessed though the test of goodness-of-fit between 

the constraints and synthetic data.  Using the test statistics at cellular, tabular and general 

level, the fit of two sets of data generated by Pop91SR and Pop91CO can be examined at 

both ED (section 6.1) and ward (section 6.2) levels.  Finally, the time and resource 

requirements of each approach can be compared to establish relative model effectiveness 

(section 6.3). 

 

 

For the purposes of comparison, both synthetic reconstruction and combinatorial 

optimisation have used nine SAS tables as constraints (listed in Table 7).  The synthetic 

data created by Pop91SR only include the variables listed in Table 3, but the data 

generated by Pop91CO contain a full set of attributes within the SAR.  Of the nine 

constraining tables, S06 and S09 cannot be recreated with the dataset generated by 

Pop91SR because they contain ethnic group for all residents and Table 3 only includes 

the ethnic group of household heads.  These tables have been used as quasi-constraints in 

Pop91SR.  Therefore the seven remaining SAS tables are used as the basis to assess the 

fit of synthetic data.  They are tables S08, S39, S34, S35, S49, S86, S42.  The counts in 

S08 are for all residents and they are scaled down to include residents in households only.  

The counts in S35 for children (aged between 0-15) are not used since Pop91SR has not 

included this population.  For S42 only the distribution of tenure is used.  In total the 

seven tables contain 415 cells.       

 

6.1 Comparison of outputs at ED level 

First we examine whether the synthetic datasets generated by each model fit the 

constraints. The definition of fit has been given in Section 3.2.  Table 9 shows the test 

results over 86 EDs in the two test wards.  It reports the summary figures of the test 

results, giving the average numbers of NFT (non-fitting tables), NFC (non-fitting cells) 
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 Table 9   Performance of synthetic reconstruction and combinatorial  
                optimisation (NFT, NFC and PFC statistics) 
              
              
    Cookridge ward   University ward 
       
      

       
        

   Number of Number 
of 

 

Number of Number of  Number of Number of 

  NFT  NFC PFC   NFT PFC  NFC 
 EDCODE SR  CO  CO CO  CO SR CO SR EDCODE SR SR  SR CO
              
 DAFJ01 0 0 0.07 0 DAGF01 

0 0 0 DAGF02 0 0.01 0
  DAGF03 0.02 1.36

0 
AFJ05 

0 0 0 0 0.74 0
0 1.42

3.77 0  6.2  
 0.54 DAGF09 0.01 0.5 0.61 0.02

AFJ10 0  6.06 0
0 0  DAGF11 4.61  0.16 0.44

3.89 0 0.08 6.7 0.75 0.08
 DAFJ13 5.5 0.02 5.88 0.41 

0.02 0 0.25 0  0.03 0 
0 0 0.46 0  0.01 0 0.68 0

 0 0 
0 0 4.22 0.02 DAGF17 5.23 0.21 
0 0 0.17  0 0 0.63 0

AFJ19 2.47 0.01 DAGF19 5.57 
0.01 0 0.17 0  0.01 0.04

 3.58 0 0.28
4.5   0 0

0  0 5.68 
DAGF24 0.47

0.01 DAGF25 5.65 0 0.58 0
0.02 0

0  0 4.67  0 0.18  0.01 6.6 0.11 0
AFJ28 0 3.53 0.16 DAGF28 0 5.68 0.13 0

0  0 DAGF29 0 0
AFJ30 0.01 0 0 DAGF30 0.01 3.86  0.21 0

0.15 0.02
0 0.01 6.27 

 DAFJ33  0.28  0
AFJ34 0 0 0.57  0.02 0

 0 0 0 0 5.11  
 0 0.33 0  DAGF36 0 0.22 0

0  0 3.52  0 0.18 0  DAGF37 0.01
0 DAGF38 0.02 0 5.77  0.08 0.71 0
0  0 4.93  0.09 0.4 0  DAGF39 0.45 0.04

        DAGF40 6.98  1.02 0.53 0.98
         0 0.01 0.77 0
        DAGF42 0.03 0 6.18  0.12 0.6 0
 NFT - Not fit table     DAGF43 0 9.18  0.03 1.05 0
 NFC - Not fit cell       DAGF44 0.01 0 
 PFC - Pool fit cell     DAGF45 0 0 5.55  0.08 0.6 0
 SR - Synthetic reconstruction   DAGF57 0 0.78  0.29 0.19 0.01
 CO - Combinatorial optimisation   DAGF58 1.27  1.73 0.06 0.22
   

      

 2.58  0  0.01 0 5.21  0.01 0.44 0
 DAFJ02 0  3.25  0.14  0 6.13  0.65
 DAFJ03 0 0 2.57  0 0.14 0 0 8.44  0.55 0.05
 DAFJ04 0.01  0 2.95  0.09 0.09 0  DAGF04 0.02 7.15  0.15 0.62 0
 D 0  0 4.62  0.94 1.3 0.06  DAGF05 0.01 0 7.65  0 0.75 0
 DAFJ06 0  4.02  0.01 0.19  DAGF06 6.71  0 
 DAFJ07 0  0 2.61  0.27 0.19  DAGF07 0.01 0 7.36  0.01 0
 DAFJ08 0  0  0 0.12 DAGF08 0.01 0 0.04 0.51 0
 DAFJ09 0.01 0 4.42  0.02 0  0 6.09  
 D  0 3.98  0.02 0.24 0 DAGF10 0.01 0  0 0.4
 DAFJ11  0 3.29  0.41 0 0.01 0.01 0.01
 DAFJ12 0.01  0  0.01 0.2  DAGF12 0  0.76 

0  0  0.43 0  DAGF13 0 0  0.84 0
 DAFJ14  3.63  0 DAGF14 6.95  0.06 0.71 0
 DAFJ15  5.46  0 DAGF15 6.28  0.04 
 DAFJ16 0 0 4.24  0.25 0  DAGF16 0.01 0 6.08  0.85 0
 DAFJ17   0.33 0  0.01 0  0.2 0
 DAFJ18  3.22  0.01 0 DAGF18 5.85  0 
 D 0  0  0.23 0  0.01 0  0.11 0.28 0
 DAFJ20  3.51  0 DAGF20 0.01 6.03  0.43 0.62
 DAFJ21 0 0  0.19 0  DAGF21 0 0 4.09  0.27 0
 DAFJ22 0.02  0 0.21 0.3 0 DAGF22 0 6.84  0.22 0.47
 DAFJ23 0 2.9  0.04 0.31  DAGF23 0.02 0  0.01 0.45 0
 DAFJ24 0  0 3.15  0.04 0.47 0  0.01 0 5.99  0.2 0
 DAFJ25  0 4.41  0 0.29 0  0.01 0  
 DAFJ26 0  0 5.09  0 0.27 0  DAGF26 0 5.72  0.19 0.49
 DAFJ27 0 DAGF27 0  0.69
 D 0   0 0  0.01  0.66
 DAFJ29 0 4.27  0 0.28  0 5.09  0 0.44
 D  0 4.65  0.25  0 0 
 DAFJ31 0  0 2.78  0 0  DAGF31 0 5.65  0.43 0.63 0
 DAFJ32 0.02  0 4.11  0.32 0  DAGF32 0  0.29 0.48 0

0 0 4.76  0 0 DAGF33 0.01 0 4.54  0 0.21
 D 0  5.45  0 DAGF34 0 5.7  0.01 0.58
 DAFJ35 0.01 4.06  0.18  DAGF35 0 0.03 0.26 0
 DAFJ36 0.01 0 3.36  0 3.72  0 
 DAFJ37 0 6.3  0.04 0.74 0
 DAFJ38  0 4.78  0 0.5 0  
 DAFJ39 0.03 0 4.63  0.45 

 0.02 0 
DAGF41 0.02 7.05  

 
  0.01

6.69  0.16 0.59 0
  

 0
 0 0.29 

           
        
 Figures are mean values over 100 replications across 7 tables, comprising 415 cell counts 
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and PFC (poorly-fitting cells) across the 7 tables over 100 replications.  The difference in 

performance between the two models is highlighted in Figure 11.  Using SSZ as the test 

statistic of tabular fit it is found that both datasets fit the constraining tables extremely 

well. As shown in Figure 11a, for nearly half of all EDs in the test area Pop91SR 

produces synthetic data with the mean number of NFT equal to zero (i.e., the synthetic 

data fit all constraining tables for all 100 trials).  The figures for the rest of the EDs are 

less than 0.03; a figure of 0.03 suggests that generated datasets fail to fit one table (out of 

7) in three trials (out of 100).  The tabular fit for the dataset generated by Pop91CO is 

even better.  For all but four EDs the NFT values are zero; for two of the remaining four 

EDs the 100-run average NFT is less than 0.01.  Only in two EDs (DAGF12 and 

DAGF58) is the fit produced by combinatorial optimisation less good than that for 

synthetic reconstruction. 

 

At cellular level the number of NFC for datasets generated by Pop91SR ranges from 0.78 

to 9.18 with the mean of 4.95 across 86 EDs (Figure 11b).  This result means that, on 

average, only 5 out of a possible 415 cells fail the Z-statistic test in a given trial.  

However, the constraining SAS tables are modified by data blurring.  If we allow for the 

the ±1 uncertainty over actual cell counts, the number of cells that fail Z-statistic test falls 

significantly.  As shown in Table 9 and Figure 11c, the PFC figures are almost one tenth 

of the NFC numbers for the data generated by Pop91SR.  On average the number of PFC 

is only 0.45, i.e., less than one cell poorly fit per trial.  The datasets generated by 

Pop91CO, however, show an even better fit at individual level (see Figures 11b,c).  The 

average numbers of NFC and PFC over 86 EDs are only 0.13 and 0.02 respectively, 

considerably less then that arising from synthetic reconstruction.  

 

Having tested the goodness-of-fit of the two approaches at both tabular and cellular 

levels, we can now compare their overall fit in more summary form.  Table 10 reports the 

average errors and the percentage differences of the two approaches for every test ED, 

measured by the mean overall RSSZ and overall TAE statistics. Both statistics show that 

for all but two EDs Pop91CO produce much better estimates.  The average errors of the 

dataset generated by Pop91CO are considerably less than that of dataset created by 

Pop91SR.  The average reductions of the overall RSSZ statistic are 81% and 66% for EDs 

in the Cookridge and University wards respectively.  The average reductions of overall 

TAE are 65% and 51% for the same two wards.   
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(a)  Histogram of mean number of NFT over 100 replications

(b)  Histogram of mean number of NFC over 100 replications

(c)  Histogram of mean number of PFC over 100 replications

Figure 11 Performance comparison: synthetic reconstruction vs.
combinatorial optimisation 
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 Table 10  Performance of synthetic reconstruction and combinatorial  

         
  

                optimization (RSSZ and TAE statistics) 
       
              

  Cookridge ward  
            

             
    

   

      
 EDCODE SR CO  Diff. (%) SR CO Diff. (%) EDCODE SR CO  Diff. (%) SR CO Diff. (%) 

                
 -70  193.3 -64 

 DAFJ02 0.13  -86  180.1 -55 
 DAFJ03 0.14   111.4 -55 

 
 D 1.18 0.30  -75   

-78   238.4 74.6 -69 
0.95    272.8 112.8

  -65 0.40  -76 80.4
1.15   197.9 DAGF09 

-84  -59 
 DAFJ08 1.00 0.17 -83  170.7 59.3 DAGF08 1.69   235.7 -66 
 DAFJ09 0.21  -82 63.0 -68 1.79 0.41  -77 

1.13 0.29  191.8 69.6 DAGF10 
  221.4 93.9 -58 

 DAFJ10 -74   -64 1.77 0.36   225.6 99.2
 -90  -67 0.55  -58 

 DAFJ12 1.37   204.3 DAGF12 

-80  -56 
 DAFJ11 1.00 0.10  182.7 61.0 DAGF11 1.31   135.7 78.1 -42 

0.20  -85 59.4 -71 1.76 0.93  -47   -36 
1.39 0.22  DAGF13 1.79 0.70

248.5 160.2
 DAFJ13 -84   237.1 72.7 -69    243.5 124.3

 -81  
-61  -49 

 DAFJ14 1.06 0.20  191.6 87.9 -54 DAGF14 2.00 0.38  -81 
1.49   235.5 DAGF15 

  240.9 96.7 -60 
 DAFJ15 0.16  -89 67.9 -71 1.78 0.25  -86   -67 

223.2 82.3 DAGF16 1.83 0.26
268.5 89.6

 DAFJ16 1.19 0.17  -86   -63    275.5 
 DAFJ17 1.39 0.39  -72   193.8 95.8 -51 DAGF17 1.54

-86  89.4 -68 
0.42  -73 75.2 -59 

 DAFJ18 1.12 0.24  -79   205.5 79.6 -61 DAGF18 1.61 0.26  -84   240.0 83.7
0.77  -78   172.4 64.8 -62 DAGF19 1.52 0.51 -66   188.3 94.6 -50 

 DAFJ20 64.2 -66 DAGF20 0.54  -63   187.5 99.5 -47 
 DAFJ21 1.06 0.16  -85   206.1 66.4 DAGF21 1.51   176.6 93.0 -47 
 DAFJ22 1.48 0.25  -83 226.7 DAGF22 1.61 0.55  -66   217.4 116.0 -47 

0.29  181.1 103.6 -43 DAGF23 1.66 0.35  -79   215.9 87.2 -60 
0.22  -80   183.2 63.0 -66 DAGF24 1.73 0.58  -66   

1.32 0.16  -88  216.0 69.1 -68 DAGF25 1.88 0.36  -81   273.6 120.6 -56 
0.23  -83   203.3 66.4 -67 1.79

  184.1 
-65 

 DAFJ19 0.17  
1.06 0.17  -84   189.4 1.45

-68 0.67  -56 
  65.6 -71 

 DAFJ23 0.87  -67  
 DAFJ24 1.12 170.6 101.8 -40 
 DAFJ25  
 DAFJ26 1.34 DAGF26 0.34  229.0 94.0 -59 
 DAFJ27 1.30 0.26  -80   209.0 79.3 -62 DAGF27 1.97 0.35  -82   -61 

1.16 0.23  -80   195.9 75.1 -62 DAGF28 1.77 0.36

-81   
264.9 102.0

 DAFJ28    -58 
 DAFJ29 0.25  -79   215.7 71.1 -67 DAGF29 1.62 0.35  -78   205.8 78.8

-84   212.0 64.3 -70 1.12

-80  239.3 100.3
1.19 -62 

 DAFJ30 1.15 0.18  DAGF30 0.29  -74   
 DAFJ31  

156.9 63.8 -59 
0.85 0.19  -78  172.1 59.1 -66 DAGF31 1.56 0.46  -71   182.9 76.5 -58 

 DAFJ32 1.25 0.22  -82   191.8 75.4 -61 DAGF32 1.66 0.39  -77   218.8 70.6 -68 
 DAFJ33 1.34 0.18  -87   225.8 68.9 -69 DAGF33 1.39 0.17    63.4 -69 

1.30   230.4 DAGF34 1.54
-88 205.1 

 DAFJ34 0.26 -80  79.6 -65 0.32   74.0 -66 
 DAFJ35 0.19  72.2

-79  216.4 
1.21  -84  205.7 -65 DAGF35 1.54 0.28  196.2 72.9
1.07 0.17  179.9 DAGF36 

-82   -63 
 DAFJ36 -84   64.1 -64 1.20 0.28  -77 169.7 

0.20 -82 57.5 DAGF37 0.28  -85  279.5 106.1 -62 
1.22   57.6

  72.2 -57 
 DAFJ37 1.12    203.1 -72 1.88  
 DAFJ38 0.11 -91  216.9 -73 DAGF38 1.76 0.33  

0.19  61.3 1.62
-81   242.4 120.6 -50 

 DAFJ39 1.34  -86  239.2 -74 DAGF39 0.56  -65 185.6 -44 
     

  103.5
    DAGF40 1.56 0.48  206.0 

 
-69   113.4 -45 

 Average   -81   -65 DAGF41 1.94 0.32  -84   293.3 116.7 -60 
         DAGF42 1.88 0.44  -77   -51 

     0.36
226.6 110.4

    DAGF43 1.90   -81   271.0 107.3 -60 
 Figures are mean values over 100 replications DAGF44 1.85 0.49  -74 -43   237.7 135.3
 Total number of tables: 7 DAGF45 1.63 0.69  

0.20 0.38  90  25.1 38.3 53 
 SR - Synthetic reconstruction 

-58   222.5 177.0 -20 
 Total number of cells: 415 DAGF57  

DAGF58 0.48 1.35  64.3 181   100.7 57 
 CO - Combinatorial optimisation     
    -66 
   

    
Average    -51 

       

 University ward  

   RSSZ     TAE   RSSZ      TAE  
           

 DAFJ01 1.12 0.34  69.4 DAGF01 1.65 0.29  -82   235.3 99.2 -58 
0.93  58.0 -68 DAGF02 1.62 0.34  -79   230.1 103.8
0.70  -80   159.8 52.1 -67 DAGF03 2.05 0.42  -80 245.9 

 DAFJ04 1.10 0.29 -74   184.4 69.5 -62 DAGF04 1.79 0.59  -67   227.6 125.2 -45 
AFJ05 217.0 112.7 -48 DAGF05 1.80 0.40  -78   219.3 100.1 -54 

 DAFJ06 1.02 0.22    187.1 68.0 -64 DAGF06 1.73 0.22  -87 
 DAFJ07 0.33  -65   165.7 55.5 -67 DAGF07 1.93 0.30
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The two EDs that Pop91CO fail to produce better estimates than Pop91SR are the student 

EDs DAGF57 and DAGF58, in the aptly named University ward.  These two EDs are 

extremely atypical; their distance from norm have been identified as the second and third 

highest in England and Wales (Voas and Williamson, 2001b).  ED DAGF57 has only 20 

households but comprises approximate 171 rooms in total.  About 331 students were in 

this ED on the census night, but only 54 of them are classified as household residents, the 

rest being visitors (non-residents).  ED DAGF58 has similar characteristics, comprising 

46 households and 135 residents in households.  The reasons that the estimates of 

Pop91CO are not as good as that of Pop91SR for these highly atypical EDs are twofold.  

First, the required households might be so unusual that there are no records in the SAR 

that can match them.  In that case Pop91CO selects the household combination that 

produces the least discrepancy between the estimated and observed data within the time 

allowed.  The size of the discrepancy largely depends on the whether or not a closest 

match exists.  The test statistics for ED DAGF57 are actually very good, the mean RSSZ 

value is 0.38, slightly higher than the average figure (0.33) over the test area.  In contrast 

this figure is 1.35 for ED DAGF58, the highest in the test area, indicating that there are 

less households available in the SAR that match the ED’s characteristics.  Nevertheless, 

this statistic is still lower than the average RSSZ (1.41) for the test area produced by 

Pop91SR. 

 

Second, Pop91SR actually produces its best estimates for these two EDs.  The mean 

RSSZ statistics are only 0.2 and 0.48 for ED DAGF57 and ED DAGF58 respectively.  In 

Pop91SR, the generation of a variable depends on the conditional probability 

distributions and the random number. When a conditional distribution is so uneven that 

only one category is one and the others are zero, the assignment of the new variable will 

not be affected by the random number since there is only one choice.  EDs DAGF57 and 

DAGF58 consist of a small set of highly similar households.  Hence the constraining 

tables contain many empty cells, reducing the number of possible choices to sample from, 

so reducing the impact of random sampling error.       

 

The above tests were performed for each synthetic dataset generated by a different initial 

sample seed, and summarised giving the mean fit over 100 replications.  In constrast, 

Table 11 reports for each approach the overall RSSZ of their 100-run means, thereby 

giving the fit of the mean, rather than the mean fit.  These figures are all very small and  
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Table 11  Performance of synthetic reconstruction and combinatorial  
                 optimization (RSSZ of mean) 

      
 

 
      
 Cookridge ward  University ward 
      
   

 
    

 RSSZ of mean
 

 RSSZ of mean
   

EDCODE CO CO-SR EDCODE CO CO-SR

   
DAFJ01 0.21   0.21 0.00 DAGF01 0.14 0.16  

  
0.01

DAFJ02 0.10 0.06 -0.04 DAGF02 0.16 0.15  
0.05   0.29

-0.01
DAFJ03 0.07 0.02 DAGF03 0.22  

0.13  
-0.06

DAFJ04 0.16  0.03 DAGF04 0.20 0.28  
0.24  0.21 -0.01

 

0.09
DAFJ05 0.20 -0.04  DAGF05 0.22  
DAFJ06 0.12 0.12  0.01 DAGF06 0.13 0.08  

 DAGF07 
-0.05

DAFJ07 0.12 0.19  0.06 0.24 0.14  -0.10
-0.02DAFJ08 0.10 0.08   DAGF08 0.17 0.22  

0.10 0.22
0.05

DAFJ09 0.10  0.00  DAGF09 0.23  
DAFJ10  

0.01
0.15 0.15  0.00 DAGF10 0.16 0.15  

 0.22
-0.01

DAFJ11 0.09 0.05  -0.03 DAGF11 0.24  
DAFJ12 0.15 0.08 -0.08

0.02
  DAGF12 0.20 0.59  
 

DAFJ14 0.07 0.10  0.03 0.15 0.16 0.01
0.23 -0.16 DAGF15 

0.10 -0.10  DAGF16 0.13 
0.19  0.16 0.19 

DAFJ18 0.10 0.09  
DAFJ19   0.22  

0.07 0.28 
DAFJ21 0.17  

0.38
DAFJ13 0.14 0.09 -0.05  DAGF13 0.15 0.42  0.27

 DAGF14  
DAFJ15 0.08   0.14 0.11  -0.03
DAFJ16 0.20  0.17  -0.03
DAFJ17 0.17 0.02  DAGF17  0.03

0.12  -0.02  DAGF18 0.14 -0.05
0.09 0.09 -0.01 DAGF19 0.13 0.09

DAFJ20 0.09  -0.02  DAGF20 0.20  0.08
0.08  -0.10 DAGF21 0.21 0.38  
0.12 0.13

0.17
DAFJ22 0.10  0.02  DAGF22 0.29  0.15
DAFJ23  0.06  0.19 0.04
DAFJ24  0.25 

0.09 -0.01 DAGF25 0.13

0.11 0.16 DAGF23 0.14  
0.11 0.12 0.01  DAGF24 0.22  0.03

DAFJ25 0.08   0.16  
0.09  0.12 0.14 

DAFJ27 0.19 -0.06  DAGF27 

0.02
DAFJ26 0.12 -0.03  DAGF26  0.02

0.14  0.15 0.16  
0.11  DAGF28 0.12 0.17  0.05

0.18   0.19  -0.02
DAFJ30 0.10 0.09  -0.01  

0.01
DAFJ28 0.12  -0.01
DAFJ29 0.15 -0.03 DAGF29 0.21

DAGF30 0.14 0.14  
0.09  

0.00
DAFJ31 0.08 0.00  DAGF31 0.28 0.32  
DAFJ32 0.15 0.13  -0.03  DAGF32 0.23 0.16 -0.07
DAFJ33 0.16 0.09  -0.07  

0.04
 

DAGF33 0.17 0.11  
DAFJ34 0.15 0.13  -0.01  DAGF34 0.17 0.13  -0.04
DAFJ35 -0.07  DAGF35 0.21 0.15  -0.05
DAFJ36 0.10 0.10  -0.01 DAGF36 

-0.06

0.16 0.10  
 0.15 0.22  0.07

DAFJ37 0.11 0.10  -0.01  DAGF37 0.14 0.11  
0.11 0.05  -0.07  DAGF38 0.14 0.15  0.01

DAFJ39 0.15 0.09  0.29 0.14
     DAGF40 0.32  0.09

   

-0.03
DAFJ38 

-0.06  DAGF39 0.15  
0.22

 DAGF41 0.18 0.17  
Number of replications: 100  DAGF42 0.17 0.20  0.04
Total number of tables: 7  DAGF43 0.31 0.20  -0.12

DAGF44 0.29  0.10
 DAGF45 0.28 0.43  0.15

CO - Combinatorial optimisation  DAGF57 0.12 0.17  0.05
 DAGF58 

-0.01

Total number of cells: 415  0.19
SR - Synthetic reconstruction 

 
  0.07 0.98  

   
0.91

    

   
SR   SR  

    

 70



both models appear to produce similar levels of fit to the expected values.  For the dataset 

generated by Pop91SR the average values of the RSSZ of mean are 0.13 and 0.18 for 

Cookridge and University ward respectively.  For the dataset generated by Pop91CO 

equivalent figures are 0.11 and 0.23.  The greater gap in RSSZ between wards indicates 

that the output of Pop91CO is slightly more sensitive to location than that of Pop91SR. 

Our analysis suggests that both models can produce nearly unbiased estimates (i.e. the 

expected synthetic counts are equal or very close to the observed counts), but the 

variances are very different.  The level of variance of the synthetic data generated by 

Pop91CO is considerably lower than that of the microdata created by Pop91SR.  With 

hindsight, this finding can be readily explained.  The variance in the data generated by 

Pop91SR mainly arises from random sampling. The household combination generated by 

Pop91CO, however, is the final result of millions of iterations.  Although altering the 

sample seeds would produce a different final household combination, the effect on 

random sampling is not as great. 

 

 

Table 12 presents an example of the fit achieved by two models to SAS table 34 for ED 

DAFJ01 in the Cookridge ward.  Both models produce excellent results in terms of mean 

estimates.  The SSZ of the 100-run means show that two models present the same level of 

fit on the expected counts.  But tests on individual datasets reveal the difference in the 

degree of variability between the two sets of data.  Z statistic tests show that for the 

synthetic data generated by Pop91SR 31 out of 40 cells never fail the test; on average less 

than one cell produces data with a Z score exceeding the 5% critical values.  But the data 

generated by Pop91CO fit all 40 cells in all trials.  Further, we can see the difference from 

the estimated 95% confidence interval for each count (i.e., the range within which 95% of 

synthetic values lie).  As shown in Table 12a, the confidence interval for the data 

generated by Pop91CO is always less than that of the data generated by Pop91SR.  Only 

in two out of forty cells is the width of the 95% confidence interval for Pop91CO three, 

the remaining cells having intervals of two or less.  This suggests that the synthetic data 

generated by Pop91CO are more reliable since we can locate their usual value within very 

narrow bands.  At the tabular level the mean SSZ for the data generated by Pop91SR is 

12.8, which is considerably less than 55.8, the critical value.  But once again Pop91CO 

performs better, producing a mean SSZ of only 2.4. 
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Table 12  Comparing the fit of estimated population for ED DAFJ01 to SAS table 34 
  

  
 

 
 Combinatorial optimisation

    SAS Mean Mean   Top & bottom     % of 
  Table 34 synthetic of 95% interval |Z|>1.96 synthetic  of 95% interval   |Z|>1.96 

Male, single, widowed, divorced   
Employees-full time 17 18.8 23 14 0 18.0  19 17 0
Employees-part time 4 4.2 8 2 3 4.0  4 4 0
Self emp.-with employees 0.0 0 0.0  0 0
Self emp.-without employees 4 4.5 7 3 2 4.0  
On a government scheme 1 0.0 0 0 0 1.0  1 1

3 0 5 1.1  2 1 0

 8 7 0
Permanently sick 1 1.1 0 1 1 0
Retired 12 12.9 15  11 0
Other inactive 1 0.9 2  1 0

Male, married 
Employees-full time 63 63.4 68 60 0 62.3  64 61 0
Employees-part time 8 0 9.8  10 9 0
Self emp.-with employees 11 10.9 15 7 9.7  10 9 0

0 6.2  7 6 0
On a government scheme 0 0 0.0 0

1 1.0 0 7  2 1
0.7 1 1 1
5.5 8 0

Retired 44 41.1 40 0
Other inactive 0 0.0  0

26 0
Employees-part time 15 0

0 0.0  0
Self emp.-without employees 0 0 0

0 0.0 0 0 0
Unemployed 0 0.0 0 0 0 0
Students 10 10.5 13 8 0 10.7  11 10 0

0 4 1.0  1 0
Retired 17 18.1 21 16 17 0
Other inactive 9 9.5 13 6 2 9.3  10 9 0

  
Employees-full time 22.3 19 0 22.9  24 22 0
Employees-part time 38.3 0 38.5  39 37 0
Self emp.-with employees 2 0 1.4  2 1 0
Self emp.-without employees 7 6.2  7 6 0
On a government scheme 0 0.0 0 0 0 0.0  0 0 0
Unemployed 2 1.7 1  1 1
Students 0 0.0 0 0 0 0.0  0 0

3.0 6 1 0 3.0  4 3 0
31.2 34 28 31.5  33 30 0

Other inactive 34 32.9 38 29 0
  

 

0 0 0 0
5 4 0

0
Unemployed 1 1.0
Students 8 8.3 12 5 0 8.0 

3 8 1.0  
11 0 12.0 13

0 1 1.0 1
  

10 10.1 14
0

Self emp.-without employees 6 6.1 9 3
0.0 0 0  0 0

Unemployed 3 1.7 0
Students 1 2 0 1.0  0
Permanently sick 6 3 6.0  7 5 0

41 41.0 38 0  42
0.0 0 0 0 0 0

Female, single, widowed, divorced   
Employees-full time 21 21.5 18 20.6  21 20 0

10 10.6 6 0 9.8  11 9
Self emp.-with employees 0 0.0 0 0 0 0

0.0 0 0 0.0  0 0
On a government scheme 0 0 0.0  0

0 0 0.0  

Permanently sick 1 1.1 3 1
0 17.7  18

Female, married 
23 26
39 43 33

2.0 4 0
7.0 10 4 0

4 0 1.0 0
0

Permanently sick 3
Retired 32 0

0 33.7  35 33

 
(b) Tabular test Synthetic reconstruction  Combinatorial optimisation

SSZ of mean 1.8   1.6

Mean TAE 37.2   11.9
Mean SSZ 12.8   

  0
0.3 0

0   0

 
 

2.4
% of SSZ > Critical value* 0
Mean NFC   
Mean PFC 

  
* 5% chi-square critical value = 55.8;  Number of replications = 100,  

(a) Cellular test  Synthetic reconstruction 

  Top & bottom   % of 
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6.2 Comparison of outputs at ward level 

The second test for the synthetic populations is how well they fit the constraints at ward 

level.  In other words, is the fit degraded (or improved) if the synthetic data are 

aggregated to ward level?  Interestingly, this element of model fit has never been 

examined before.  We also wish to compare the two approaches’ performance at ward 

level in capturing the interaction between constraining variables. 

First, we examine the fit of both Pop91C and Pop91SR results to those tables that are 

available at both ward and ED level (i.e., excluding table L45).  As suggested in Section 

3.2, the observed ward-level counts are the taken to be aggregations of the corresponding 

SAS table counts within the ward, to avoid any data inconsistency between LBS table 

counts and aggregated SAS table counts due to data blurring.  Therefore, the synthetic 

data are aggregated to the SAS table format rather than the LBS format.  Table 13 reports 

the test results for the two sets of synthetic data.  The summary statistics over seven tables 

show that Pop91CO produces much more accurate estimates than Pop91SR.  The dataset 

generated by Pop91CO can fit not only all the tables but also almost every cell as well – 

on average only two cells out of 415 per replication are ‘non-fitting’ cells.  Given the 

level of fit at ED level it is perhaps not surprising that at ward level the degree of 

variation of Pop91CO’s output is considerably less than that of Pop91SR.   

Overall figures also show that, in general, at ward level the mean distribution of the 100 

synthetic reconstruction estimates is closer to the target distribution than that for 

combinatorial optimisation (RSSZ of mean).  However, in almost every other respect 

combinatorial optimisation offers superior performance, in particular offering markedly 

reduced variance (lower average numbers of non-fitting cells and tables).  The same story 

is true if fit is analysed at tabular level (Table 13b).  The extreme case is table S35.  For 

this table datasets generated by Pop91SR perform particularly poorly.  In University 

ward, even though the SSZ of mean is only 3.8 for Pop91SR, less than half of the value 

obtained using Pop91CO, out of 100 synthetic reconstruction trials 74% fail to fit ward-

level table 35 in University ward, compared to 0% for combinatorial optimisation. 

For most purposes only a single set of synthetic microdata will be used.  Therefore a 

guaranteed close fit (minimal variability) is to much to be preferred to assurances of 
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Table 13  Performance of synthetic reconstruction and combinatorial optimisation at ward level 
       
       

(a) Overall fit      
    University ward 
       

  

Cookridge ward 
 

  

 Overall Overall Number Number RSSZ  Overall Overall Number Number RSSZ
    TAE RSSZ of NFT

 
of NFC o

    
f mean  TAE RSSZ of NFT of NFC of mean

  
     0.31
     
    

      

Synthetic reconstruction 2307
1084

2.98
0.84

0.17 15.6
2.3

0.44 2701
1498

3.64 0.8 19.3
Combinatorial optimisation
  

0
 

0.64 1.28 0 1.9 1.05

       
   

  
  

 Number  SSZ and % of SSZ SSZ TAE Number

(b) Tabular fit   
  
  

Cookridge ward 
 

  University ward 
   

Table Critical TAE Number  SSZ and % of SSZ SSZ
 of cells  > critical value of mean o
Synthetic reconstruction 

value of NFC  
 

> critical value of NFC f mean
    
 39 41.3  6    0 
 88.3     74 
    .8   

180   141.1   835  8.9
 7    0.2  112  0.1
    3.7  164  0.3
   31.8  1.4  348  1.4

      
       
 41.3      
 68      0.0
 55.8     
 8       1.6 60.2
   0.9    
 26.3   0 .1  
 76   0    
       
       

28 0 0 0 0 6 0.1 0.0 0.1
3.835 68

40
687 67.5

29.6
14
3

4.3 3.3
2

836
399

108.4 7.7
0.934 55.8 401 1.1 28.1 2 1.8

 8 212.3 768 0
0

8.4 40.2 161.7 4 40.6
42 14.1 85 3.0

12.7
0.1 4.3 0 0.1

49 16 26.3 99 0 0.5 11.7 0 0.8
86 76 97.4 262 0 1.2 38.1 0 0.9

  
Combinatorial optimisation

39 28 50 0.6 0 0
0

0.4 68 1.0 0 0 0.6
35 88.3 240 7.8 0 5.5

5.3
 273 12.3 0 8.9

1434 40 197 4.8
60.3

0
0

0  260
505

12.9 0
0

0.2
180 212.3 393 1.7 39.1 86.4

42 7
16

14.1 40
28

0
0

0 0.7
2

 100
 75

3.2
2.3

0 0
0

2.9
1.849 2.8 0

086 97.4 138 18.9 0.7 14.9 218 15.7 0.1 12.1

Critical values are table-specific 5% critical values (degrees of freedom = number of cells)   
 Test statistics are averages over 100 replications.  Number of cells in all tables = 415  



minimum bias in the estimation process (best 100-run mean).  The main cause of the 

greater variability in results obtained from synthetic reconstruction across all tables is the 

impact of random sampling at ED level, which is amplified when cumulated from ED to 

ward level.  Table S35 suffers from the additional problem that, during synthetic 

reconstruction, its counts were constrained to agree to coarser age groupings in table S39 

(to eliminate discrepancies introduced by census data blurring).  The adjustment process 

improves fit to S39, but at the expense of some marginal decrease in fit to S35.  At ED 

level this is unimportant, but once again becomes magnified when cumulated to ward 

level. 

 

A second test is to examine the fit of the aggregated ward-level data to LBS table 45.  

L45 cross-tabulates four variables: age, sex and economic position of household head and 

tenure, from which we can derive four tables.  L45a contains all four variables, L45b 

comprises age and sex of head and tenure, L45c includes age, sex and economic position 

of head, and L45d gives only tenure by economic position of head.  When measuring the 

fit to these tables some errors may be contributed by the data inconsistency due to data 

blurring and the restrictions of the synthetic dataset.  For example, populations in special 

EDs are not included in the synthetic data, so the total of L45 (the number of households 

in the ward) and the synthetic total may be not identical.  Nevertheless, these tables allow 

us to examine how well the synthetic data capture the interactions between different 

variable combinations.   

 

Table 14a reports the test statistics for the datasets generated by Pop91SR.  Although 

most of the synthetic data fit the tables L45a-d, the failure-to-fit rates are higher than 

previously found in other tables.  The numbers of synthetic data failing to fit L45a are 

38% and 32% for the Cookridge and University wards respectively.  The fit is slightly 

improved when the table is collapsed into L45b, L45c and L45d.  The best fit is found in 

the Cookridge ward on L45b, where all the synthetic data passed the test of tabular fit.  

An explanation is that the housing tenure in this ward is dominated by owner occupied, 

representing 72% households.  So the variance of allocating this variable is relatively 

lower, resulting in good fit on tenure.    

 

If we don’t use L45 as a constraining table in Pop91SR, then we can assess the model’s 

ability, unaided, to reassemble the interrelationship between the variables contained in 
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Table 14  Fit to LBS Table 45 
  

 
  

      University ward 
 

 Cookridge ward
 LBS  TAE SSZ of SSZ and % of SSZ SSZ and % of SSZ Number TAE Number SSZ of
 Table  > critical value of NFC mean
    

 > critical value 
 

of NFC
 

mean
 

(a) Synthetic reconstruction  
L45a 119.6 66 663 113.9 7.2 60.7
L45b 31.1 0 22.8  26 2.6 30.1

 L45c 33.2 34  
 278 16.6

  
 

10.5 114.1 8 1 20.7 203

 L45b 220 27.6 3 1.2 17.8 527 95.9 83.9
L45c 258 35.1 37 2.9 21.1 321 32.4 20.1

210 18.8 32 1.4 10.5 314 29.3 83 2.6 20.1
  

(c) Combinatorial optimisati   
 L45a 777 252.6 100 201.4

 L45b 319 37.4 16 1.8 28.1 463 62.8 93 4.1 49.8
2.7 25.1 350 39.0 65 34.7
1.6 257 33.6 98 31.4

   

 
Critical value 

     
 96  119.9

 
  

  
 526 38 7.5 32 
 297 

255 
1.2
2.6

418 41.3
19.3 292 23.2 12 

21 
1.1
1.1

11.3
7.7L45d 198 

  
18.7 35 

 
1.3 10.7

(b) Synthetic reconstruction (without using L45 as constraint) 
 L45a 478 174.6 99 

 
7 261 100 

100 
32 

7.6
2.4 

 L45d 
  

on 
 
 

503 190.3 100 13.6 147.3 17.6

 L45c 
 L45d 

217 
150 

30.2
22.8

13 3.0
2.062 20.9

  
Note: The four tables are all drawn from L45.  Each table's variables, number of cells and critical chi-square value for are as follows: 

 (age, sex, and economic position are for the heads of household)     
  Variable   Number of cells 

 L45a Age/sex/economic position/tenure
Age/sex/tenure 

 
 L45b 
 L45c 

 32  46.2  
Age/sex/economic position 24

12
 36.4  

L45d Economic position/tenure 
 

 21.0  
 



L45.  Among the four variables in L45 only the relationship between age and sex of head 

is constrained.  The univariate distribution of tenure is also a constrained variable.  

Economic position of head is not constrained, but economic position of household 

residents is.  Therefore, L45b (age/sex/tenure) can be viewed as a cross-tabulation of 

constrained variables, whilst the remaining three include only unconstrained (L45c, L45d) 

or partially constrained (L45a) variables.  Table 14b reports the test results based on 

synthetic data created by Pop91SR without L45 as constraint.  It is apparent that the fit is 

not as good as that previously found with L45 as constraint.  In particular the synthetic 

data fail to fit L45a in almost every trial, highlighting the difficulty of capturing the 

interactions of all four variables. 

 

Table 14c reports the test results on synthetic data created by combinatorial optimisation.  

In general the fit is similar to the result of the dataset generated by Pop91SR without 

using L45.  Figure 12 highlights the difference in performance between the three sets of 

synthetic data. This time we plot the figures of the mean RSSZ and RSSZ of mean 

estimates so that the average error and bias of the three datasets can be compared directly.  

SR1 is the data generated by Pop91SR, SR2 is the data generated by Pop91SR without 

L45 as constraint, and CO is the data generated by Pop91CO.  The performance of SR1 is 

generally acceptable, as all the values of mean RSSZ are less than one and the figures of 

RSSZ of mean are significantly lower than one.  The performances of SR2 and CO on the 

tabulation of constrained variables (L45b) are as good as SR1 for the Cookridge ward, but 

worse than SR1 for the University ward.  Between SR2 and CO, the fit of SR2 to L45b is 

significantly poorer than that of CO.  The fits of SR2 and CO on the other tables 

containing unconstrained variable are generally poor.  

 

Unless the variables are highly correlated with those that were chosen, any unconstrained 

relationship produced by the synthetic data at lower geographical level tends to follow the 

distribution at higher geographical levels.  Without using L45 as the constraint the fit to 

this table, therefore, largely depends on how far the cross-distribution of the variables 

involved differs from the national distribution.  The greater the divergence, the less likely 

the synthetic data are to produce a suitable match.  For this reason it is no surprise that the 

fit on these tables for the University ward is poorer than that for the Cookridge ward.    

 

 77



  (A) Cookridge ward (Mean RSSZ)   (C) University ward (Mean RSSZ)

  (B) Cookridge ward (RSSZ of mean)   (D) Univeraity ward (RSSZ of mean)

SR1 - Synthetic reconstruction  SR2 - Synthetic reconstruction (without using L45 as constraint)  CO - Combinatorial optimisation

Figure 12  Comaprison of the fit to LBS table 45
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Previous work by Voas and Williamson (2000a) demonstrate that synthetic data 

generated by combinatorial optimisation can produce very good fit on unconstrained 

cross-tabulations of variables involved in the original set of constraining tables at ED 

level.  But the fit to tabulations of variables not used as constraints is generally poor, 

suggesting the problem of fitting tables with unconstrained or partially variables is 

unavoidable.  Our test at ward level suggests that for a typical area, such as Cookridge 

ward, synthetic data generated by combinatorial optimisation can still produce good fit on 

unconstrained tables between constrained variables at ward level (L45b).  This provides 

us with some confidence when using the synthetic data to estimate the unknown 

relationships.  But for atypical areas, such as University ward, the fit on unconstrained 

tabulations of constrained variables may be degraded if the data are aggregated from ED 

to ward level geographies.  On the other hand, even this negative conclusion should not 

be overstated, as it is partly a product of the stringent nature of our definition of fit.  Table 

15 allows further examination of the fit of Pop91CO output to L45b at cellular level for 

University ward.  This reveals that on average only four out of 32 cells produce synthetic 

counts with Z scores exceeding the 5% critical value.  The discrepancies are most 

apparent for female heads between 45 and personable age, living in the their own house. 

In view of the heavy concentration of students in the area it is unsurprising that the actual 

count is less than estimates.  But even for this difficult to fit ward, it is perhaps reassuring 

to note that the general distribution of the unconstrained relationship between age/sex and 

tenure broadly follows the expected.  Mean synthetic counts are low (~50) when expected 

counts are low and high (~500) when high. 

 

6.3 Efficiency  

The development of a small-area population reconstruction model takes a considerable 

period of time.  It took four to five months for an experienced programmer to develop 

Pop91SR, which currently includes ‘only’ nine attributes.  It is estimated that at least one 

week would be needed to add an additional variable.  Each additional conditional 

probability has to be specifically tailored to fit available data at ward and ED levels, 

including counts in previously added constraining tables.  The combinatorial optimisation 

approach, however, is easier to standardise to suit different constraining tables.  There is 

no need to adjust the constraining tables, because the selected household combination is 

the one producing the smallest discrepancy between estimated and observed data within  
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Table 15  Fit of synthetic data generated with combinatorial optimisation to table L45b 
    

   

   
       

Age of head  16  - 29   pensionable age   
      
        

30  - 44  
  

 45  -  pensionable age 
   

Tenure Owner Rented Rented Rented Owner Rented Rented Rented  Owner Rented Rented Rented Owner Rented Rented Rented  
Occupied (Privately/ (housing (council) Occupied (Privately/ (housing (council)  Occupied (Privately/ (housing (council) Occupied (Privately/ (housing (council)  

 with a job) assoc.)   with a job) assoc.)    with a job) assoc.)   with a job) assoc.)   
       
       

(a) Male heads        
       

Actual count 198 637 122 339 318 321 108 506  349 152 687 143 84 46 598  

Mean synthetic 183 628 113   64 698 76 47 576  

Top of 95% interval 200 650 126 360 376 314 122 166 75 716 58 

611 327 93 462  678 131  

0.23 2.08  0.23 -0.23 0.19 -0.86 0.20 

% of |Z| > 1.96 1 0 2 0 3 1  

       
(b) Female heads        

   
  501 209 369 112  125    

Mean synthetic   401 145   105 48 113 84 109   

   137      

  466 187 385 108 338  297 101    

Z of Mean   4.15 0.38 -1.05 -0.37 -  

% of |Z| > 1.96 67 7 1  100 6 1 0 5 0 1 0  

     

65

343 354 297 107 482 353 149 145

503  372 162 86 590  

Bottom of 95% interval 165 101 331 279 337 132 50 64 36 557 

Z of Mean -1.07 -0.39 -0.83 -1.37 -0.07 -1.09 -0.19 0.45 -0.94  

6 0 1 0 67 10 2  0 2 6

    
Actual count 134 154 105 377 70 45 48 312 87 115 917

107 484 203 131 120 355 45 321 899

Topof95%interval 124 503 221 420 160 147 372 119 62 55 340 128 94 118 916

Bottomof95%intvl 94 126 118 91 39 35 73 99 883

-2.37 -0.78 -0.44 1.72 -0.76 2.57 0.79 -1.19 -0.37 0.49 0.58 -0.62 

0 0 44 7 73

  



the time allowed.  The time taken to develop the main Pop91CO program suite is 

estimated to have taken not less than that of Pop91SR, but adding another constraining 

table only takes one or two days.  The average computing time over the test area with 

Pop91SR is 1.3 seconds per ED.  The running time with Pop91CO is 69.6 seconds per 

ED, considerably higher than Pop91SR, if within acceptable limits for generating 

microdata for a large area. 

 

A distinguishing characteristic of combinatorial optimisation is its flexibility of selecting 

the constraining tables.  Synthetic reconstruction modelling is a step by step process, with 

data created following in a fixed order.  Combinatorial optimisation does not have this 

restriction, so users are able to select constraining tables/variables according to their own 

requirements, hence producing bespoke microdata.  Another strength of combinatorial 

optimisation, which cannot be overemphasised, is that the synthetic individuals are 

automatically nested into families and households (when using household SAR as the 

parent population).  In contrast, the dataset created by Pop91SR, as described in this 

paper, comprises simply a list of individuals.  Going a step further to generate family and 

household membership would be highly problematic.  Assumptions, typically subjective, 

would have to be made about the nature of the relationships between the family members.  

For example, a spouse might only be assigned to a married head if they share the same 

ethnic origin (see Birkin and Clarke, 1988).  This will certainly affect the accuracy of 

model output.  An alternative solution is to generate the attribute of household 

composition given the household head attributes already captured, and then to add 

appropriate family members to match.  The problem with this is that there is a shortage of 

data that link household composition with the characteristics of the household head.  Only 

one SAS table (S43) links household composition with ethnic group of household head.  

Consequently, most of the relationships required for generating household composition 

would have to be assumed to follow national distributions.  In addition, as already 

demonstrated, the fit of synthetic data to unconstrained relationships is not always 

satisfactory.  The error generated at this stage would certainly affect the estimates of 

family structure such as spouse, dependants and non-dependants.   
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7. Conclusion 
 

The work reported here offers for the first time a thorough comparison of two established 

methodologies, synthetic reconstruction and combinatorial optimisation, for the creation 

of small area synthetic microdata, presenting at the same time new developments in each 

approach.  Two computer models, Pop91SR and Pop91CO, have been developed for the 

reconstruction of ED level populations drawing upon 1991 Census data.  Pop91SR is a 

new model based upon the synthetic reconstruction method, whilst Pop91CO is the latest 

version of combinatorial optimisation model.  Each model benefits from methodological 

innovations designed to improve the accuracy and consistency of the outputs. 

 

Compared with previous synthetic reconstruction models, Pop91SR employs the 

following new techniques: (a) using the SAR to examine the relationship between 

variables and determine the ordering of conditional probabilities; (b) employing a three-

level modelling approach to create the conditional distributions, combining data from the 

SAS, LBS and SAR; and (c) adopting a modified Monte Carlo sampling procedure. These 

techniques maximise the use of information and greatly reduce the sampling error, 

thereby increasing estimation accuracy. 

 

The major improvements in Pop91CO are: (a) using a new criterion (RSSZm) for the 

selection of household combination;  (b) increasing the regional representation of the 

selected households by using regional SAR at the first stage; and (c) designing a set of 

stopping rules to control the number of iterations and improve the consistency of outputs.  

Using RSSZm as the selection criterion is the major breakthrough in combinatorial 

optimisation modelling, yielding significant improvements in the quality of the synthetic 

data generated. 

 

An assessment of outputs from the two rival approaches, produced using the same small 

area constraints, suggests that both can produce synthetic microdata that fit constraining 

tables extremely well.  But further examination of the dispersion of the synthetic data has 

shown that the variability of datasets generated by combinatorial optimisation is 

considerably less than that for datasets created by synthetic reconstruction, at both ED 

and ward levels.  The fundamental problem for the synthetic reconstruction approach is 
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that it is a Monte Carlo based approach subject to sampling error.  In contrast, the outputs 



of separate combinatorial optimisation runs, arising from an intelligent search heuristic, 

are much less variable and, hence, individually much more reliable.  In addition, 

combinatorial optimisation permits much greater flexibility in selecting small area 

constraints.  Perhaps of even greater importance for many uses, combinatorial 

optimisation automatically places synthetic individuals within families and households 

whilst reflecting local area circumstances, a feat beyond synthetic reconstruction given 

1991 Census data limitations.  Synthetic reconstruction is also more complex and time-

consuming to program, particularly if ward level constraints are to be included.  In 

conclusion, therefore, to generate a single set of synthetic microdata, combinatorial 

optimisation is greatly superior to synthetic reconstruction. 

 

The final result of this paper has been an integrated model, called POP91, for the 

reconstruction of the population microdata.  The structure of the model is shown in Figure 

13.  It contains a set of programs design to extract data, estimate the SAS 10%-based 

table counts, convert the data into table vector format, and use combinatorial optimisation 

approach to select the best households combination for each EDs.  Another two tables 

(S43: household composition by ethnic group of head and S42b: household composition 

by number of car) have been added to the model, leading to a total of 16 possible 

constraining tables, which cover a wide range of individual and household variables in the 

census.  The outputs are two files: one contains the selected household combinations and 

the other accompanying test results at both ED and ward levels, which allow users to 

assess the reliability of the dataset.  POP91 has been used to generate a microdata for 

each ED (1379 in total) in Leeds metropolitan district.  Adopting 14 constraining tables, 

the overall computer time is 33 hours on an 800 MHz PC (approximately 86 seconds per 

ED).  Work is currently under way to extend this coverage across the UK, and to make 

the resulting population microdata available to users via a simple windows-based 

interface.  Further details and progress reports may be found on the project website, 

http://pcwww.liv.ac.uk/~william/microdata . 
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SAS data for 10%-based 
constraining tables 
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data into table vectors 

All constraining SAS 
table vectors  

AssignJ:  a programs 
used to assign the table 
cell number for each 
cases in the SAR 

A vectorised SAR 
dataset for Pop91CO 

Pop91CO: 
a suite of programs of 
using combinatorial 
optimisation approach to 
create synthetic EDs 
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program to test the 
goodness-of-fit 

Model controlling 
parameters 

The combination of SAR 
households that best fit the 
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Test results of the 
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Figure 13  POP91: A model for the reconstruction of small-area population microdata 

 

 84



References 
 

Birkin M and Clark M (1988) SYNTHESIS – a synthetic spatial information system for 

urban and regional analysis: methods and examples, Environment and Planning A, 

20, 1645-1671.  

Birkin M and Clark,G P (1995) Using microsimulation methods to synthesize census 

data, in Openshaw S (ed) Census users’ handbook, GeoInformation International.  

Bishop, Y.M.M., Fienberg, S.E. & Holland, P.W. (1975) Discrete Multivariate Analysis: 

Theory and Practice. Cambridge: MIT Press. 

Clark,G P (1996) Microsimulation: an introduction, G Clarke (ed) Microsimulation for 

urban and regional policy analysis, Pion, London.  

Dale, A. & Marsh, C., Eds. (1993) The 1991 Census User’s Guide. London: HMSO. 

Dale, A (1998)  The value of the SARs in spatial and area-level research, Environment 

and Planning A, 30, 767-774. 

Duley C J (1989)  A model for updating census-based household and population 

information for inter-censal years. Unpublished Ph.D. Thesis, School of 

Geography, University of Leeds.  

Huang Z and Williamson P (2001) A Modified Sampling Procedure for Small Area 

Population Simulation, Working Paper 2001/1, Department of Geography, 

University of Liverpool.  

King and Bolsdon (1998)  Using the SARs to add policy value to household projections, 

Environment and Planning A, 30, 867-880. 

Knudsen, D.C. and Fotheringham, A.S. (1986) Matrix comparison, goodness-of-fit, and 

spatial interaction modeling. International Regional Science Review, 10, 2, 127-

147.  

Loh, W.-Y. and Shih, Y.-S. (1997), Split selection methods for classification trees, 

Statistica Sinica, 7, 815-840. 

Voas D and Williamson P (2000a) An evaluation of the combinatorial optimisation 

approach to the creation of synthetic microdata, Internal Journal of Population 

Geography, 6, 349-366.  

Fienberg S E (1970) An iterative procedure for estimation in contingency tables, Annals 

of Mathematical Statistics, 41, 349-366.  

Norman P (1999) Putting iterative proportional fitting on the researcher’s disk. Available 

from author at School of Geography, University of Leeds, Leeds LS2 9JT 

 85



Voas D and Williamson P (2000b) The scale of dissimilarity: concepts, measurement, and 

an application to socio-economic variation across England and Wales. 

Transactions of the Institute of British Geography, 25, 465-481.  

Voas D and Williamson P (2001a) Evaluating goodness-of-fit measures for synthetic 

microdata, Geographical and Environmental Modelling, 5(2), 177-200 

Voas D and Williamson P (2001b) The diversity of diversity: a critique of 

geodemographic classification, Area, 33(1), 63-76. 

Williamson P (1992) Community health care policies for the elderly: a microsimulation 

approach, Unpublished Ph.D. Thesis, School of Geography, University of Leeds.  

Williamson P (1993) MetaC91: a database about published 1991 Census table contents, 

Windows 3.1 version, Working Paper 93/18, School of Geography, University of 

Leeds, Leeds LS2 9JT  

Williamson P (1996) Community care policies for the elderly, 1981 and 1991; a         

microsimulation approach, in G Clarke (ed) Microsimulation for urban and 

regional policy analysis, Pion, London, 64-87. 

Williamson P (2002) Synthetic microdata. Ch 17 In The Census Data System, Rees P, 

Martin D and Williamson P (eds.). Wiley: Chichester, 231-241. 

Williamson P, Rees P and Birkin M (1995) Indexing the census: a by-product of the 

simulation of whole populations by means of SAS and SAR data, Environment 

and Planning A, 27, 413-424 

Williamson P, Birkin M and Rees P (1998) The estimation of population microdata by 

using data from small area statistics and samples of anonymised records, 

Environment and Planning A, 30, 785-816 

Wong D W S (1992) The reliability of using the iterative proportional fitting procedure, 

Professional Geographer, 44, 340-348. 

 86


	Department of Geography
	Abstract
	
	Acknowledgements   The work reported in this pape


	Contents
	Introduction
	2. Synthetic reconstruction vs. combinatorial optimisation
	2.1 Synthetic reconstruction
	
	
	
	Household head


	Unemployed: 0.9


	2.2 Combinatorial optimisation
	
	Figure 2  A simplified combinatorial optimisation process


	2.3 Problems of generating small area microdata
	3. Approach to evaluation
	3.1 Assessing performance
	3.2 Testing statistics
	4. The synthetic reconstruction model (Pop91SR)
	4.1 Data for the construction of Pop91SR
	4.2 Methodologies
	4.2.1 Iterative proportional fitting
	4.2.2 Inflating 10%-based tables
	4.2.3 Augmenting cross-classifications
	4.2.4 Random sampling: a modified procedure
	4.3 The Pop91SR reconstruction process
	4.3.1 Variables and their ordering
	
	
	
	Step
	Head
	Non-head
	Overall





	Figure 6  Sequence of steps in population reconstruction
	4.3.2 Population reconstruction
	Categories
	Sex

	Categories
	Categories
	Head or Non-head
	P-value=0.0000, Chi-square=1720.5888, df=9
	Non-head
	Head
	Non-head
	Head

	Categories
	Categories
	Categories
	Categories
	Figure 7 Two-level decision-tree map
	
	
	
	
	
	
	
	Variables








	5. The combinatorial optimisation model (Pop91CO)
	5.1 Model components and method employed
	
	
	
	
	
	
	
	Variables                                                            Used for comparison of








	5.2 New developments in Pop91CO
	5.2.1 Selection criterion
	5.2.2 Using region-specific SAR
	5.2.3 Stopping rules
	6. Evaluation and comparison of the two approaches
	6.1 Comparison of outputs at ED level
	6.2 Comparison of outputs at ward level
	6.3 Efficiency
	7. Conclusion
	References

