
The ARTS Real-Time Agent Architecture
Konstantin Vikhorev

School of Computer Science
University of Nottingham

Nottingham, NG8 1BB, UK
Email: kxv@cs.nott.ac.uk

Natasha Alechina
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

Email: nza@cs.nott.ac.uk

Brian Logan
School of Computer Science

University of Nottingham
Nottingham, NG8 1BB, UK

Email: bsl@cs.nott.ac.uk

Abstract—We present a new approach to providing soft real-
time guarantees for Belief-Desire-Intention (BDI) agents. We
define what it means for BDI agents to operate in real time,
or to satisfy real-time guarantees. We then develop a model of
real time performance which takes into account the time by
which a task should be performed and the relative priority of
tasks, and identify the key stages in a BDI architecture which
must be bounded for real time performance. As an illustration
of our approach we introduce a new BDI architecture, ARTS,
which allows the development of agents that guarantee (soft) real
time performance. ARTS extends ideas from PRS and JAM to
include goals and plans which have deadlines and priorities, and
schedules intentions so as to achieve the largest number of high
priority intentions by their deadlines.

Index Terms—BDI Agent, Real-time guarantees, Task Schedul-
ing, Priority, Deadline, Agent Real-Time System, ARTS.

I. INTRODUCTION

The design of an agent system which can operate effectively
in a real-time dynamic environment is a major challenge for
multiagent research. The main difficulty in building real-time
agent systems is how to specify real-time constraints and
how to ensure that the agent system meets these constraints.
As with other computational systems, agents are resource
bounded because their processors have limited speed and
memory. Traditionally, agents have been developed without
much attention to resource limitations. However such lim-
itations become important when an agent system operates
in a dynamic environment. The reasoning processes implicit
in many agent architectures may require significant time to
execute (in some cases exponential time), with the result that
the environment may change while the agent makes a decision
about which activity to pursue. Thus a decision made by
the agent may be wrong (incorrect, sub-optimal, or simply
irrelevant) if it is not made in a timely manner.

A number of agent architectures and platforms have been
proposed for the development of agent systems which must
operate in highly dynamic environments. For example, the
Procedural Reasoning System (PRS) [1] and PRS-like systems,
e.g., PRS-CL [2], JAM [3], SPARK [4] have features such as
metalevel reasoning which facilitate the development of agents
for real time environments. However, to provide real time
guarantees, these systems have to be programmed for each
particular task environment—there are no general methods
or tools which allow the agent developer to specify that a
particular goal should be achieved by a specified time or that

an action should be performed within a particular interval
of an event occurring. Rather each application has to be
individually tuned by the developer. There are also a number
of hybrid agent architectures such as ROACS [5] and SIMBA
[6]. A hybrid architecture consists of an AI subsystem and
a low-level control subsystem connected by communication
interface. Such systems attempt to improve responsiveness by
separating the ‘real-time’ aspects of the architecture from the
high-level control. However while such systems can simplify
the development of agents for real-time environments, they
provide limited high-level support for managing the timely
execution of tasks.

In this paper we present a new approach to Belief-Desire-
Intention (BDI) architectures for real-time agents. We develop
a model of real time performance which takes into account
the time by which a task should be performed and the
relative priority of tasks, and identify the key stages in a BDI
architecture which must be bounded for real time performance.
As an illustration of our approach we introduce a new BDI
architecture, ARTS, which allows the development of agents
that guarantee (soft) real time performance. ARTS extends
ideas from PRS and JAM to include goals and plans which
have deadlines and priorities, and schedules intentions so as
to achieve the largest number of high priority intentions by
their deadlines.

The remainder of the paper is organised as follows. In
section 2 we develop a notion of ‘real-time’ appropriate to
agent-based systems. In section 3 we present our method for
any BDI architecture. In section 4 to illustrate our approach
the new real-time agent architecture ARTS is introduced. In
section 5 we compare our methods with related approaches.
And, finally, in section 6 we conclude and outlined directions
for future research. discussion.

II. REAL-TIME GUARANTEES

In real-time programming a distinction is made between
hard real-time and soft real-time systems. In the context
of agent systems, hard real-time means that the agent must
process its inputs (i.e., facts and goals) and produce a response
within a specified time. For an agent system which provides
hard real-time guarantees there is therefore a strict upper
bound on the time to process incoming information and pro-
duce a response. In soft real-time, the agent may not produce a
response within the specified time in all cases, i.e. timeliness

constraints may be violated under load and fault conditions
without critical consequences.1 For BDI agents, we would
argue that the relevant notion of ‘response’ is the achievement
of a high level goal. However, for agents in open environments,
providing hard real-time guarantees for anything other than the
internal operations of the agent is typically not feasible, unless
we make strong assumptions about the characteristics of the
agent’s environment. In this paper we therefore focus on soft
real-time guarantees for achieving the agent’s top level goals.

We assume that each of the agent’s top level achievement
goals is associated with a (possibly infinite) deadline which
specifies the time by which the goal should be achieved. A set
of goals which can all be achieved by the deadlines is termed
feasible. Which sets of goals are feasible will depend on the
speed at which the environment changes, the capabilities of
the agent etc. In general, it may not be possible to achieve
all of an agent’s goals by their deadlines. For example, goals
produced by users or other agents, or autonomously generated
in response to an event in the agent’s environment, may result
in a previously feasible set of goals becoming infeasible, if
there is insufficient time to achieve each goal, or an agent may
have no plan to achieve a particular goal. In such situations,
it is frequently more important to achieve some goals than
others. For example, the goal of submitting a conference paper
on time may be more important than a goal to get coffee. We
therefore assume that each goal is associated with a priority
which specifies the importance of achieving the goal. Priorities
define a total preorder, �, over goals. A set of goals g is said
to be maximal if it is feasible and there is no other set of
goals g′ such that g′ � g for some suitable lifting of � to sets
of goals. We define a real-time BDI agent as an agent which
achieves a maximal set of goals, i.e., the largest number of
high priority goals by their deadlines.

III. CHANGES TO THE BDI ARCHITECTURE

In this section we outline the changes necessary to a BDI
architecture to implement a real-time BDI agent. We assume
a simple generic BDI architecture in which an agent has
beliefs and goals, and selects plans (sequences of subgoals and
primitive actions) in order to achieve its goals or in response
to new beliefs. Once the agent has adopted a plan it becomes
an intention, and at each cycle the agent executes a single
step of one of its current intentions. To implement real-time
BDI agents within such an architecture, two main changes are
required: we must add additional information about goals and
plans required to support real time guarantees, and we need
to change the BDI execution cycle to ensure that the agent’s
cycle time is bounded and that the maximum number of high

1Some computer systems (for example, real-time video) utilise a stricter
notion of real-time guarantees, where the precise time at which a response
is produced matters [7], [8]. Hard real-time for this type of system requires
a response at an exact time rather than before a deadline, and soft real-time
means that the response time lies within a defined uncertainty range around
the required time. However we would argue that, in agent based systems,
this stricter sense of real time guarantee is less appropriate; for many task
environments, the key requirement is that a goal is achieved before a deadline
rather than exactly at a specific time.

priority goals are achieved by their deadlines. We consider
each in turn below.

A. Additional Information

As discussed above, in order to provide real-time guaran-
tees, each top-level goal must be associated with a deadline
which specifies the time by which the goal should be achieved.
We assume that the deadline for a goal is specified when the
goal is generated by a user (or another agent), and is expressed
as a real time value in some appropriate units (milliseconds,
minutes, hours etc.).2 By default, the plan selected to achieve
a top-level goal (and its subgoals and subplans) inherit the
deadline of the top-level goal. However we allow the deadline
of the top-level goal to be advanced by a plan, if the execution
context of the plan is such as to suggest that an earlier deadline
should be adopted for the goal. For fact-invoked plans (i.e.,
plans triggered by the agent’s beliefs), the deadline is infinity.

Each top-level goal is also associated with a priority (e.g., a
non-negative integer value, with larger values taken to indicate
higher priority) which specifies the relative importance of
achieving the goal. Each plan also has a plan priority which
specifies the relative utility of the plan for the triggering goal
or belief. We assume that the agent always intends plans
with the highest priority and that goal and plan priorities are
commensurable.

Each plan is also associated with a duration, an estimate of
the real time necessary to execute the plan. In order to define
durations, we assume that each primitive action has a timeout
which specifies the maximum amount of real time required to
perform the action. Actions which do not complete by their
timeout are assumed to have failed. The duration of a non-
primitive activity within a plan is the sum of the durations of
its subplans (i.e., the duration of a top-level plan is the sum of
the durations of all subplans intended for the goal). Assuming
the plan library is of fixed size, we compute the durations of
subplans as follows:

1) For every agent’s plan, we compute all possible variants
of an intention, leading by this plan. This can be
represented as a tree structure. For the moment, we
assume that there are no loops or recursion within plans.

2) Leaf plans do not contain calls to other plans and include
only the addition and deletion of goals and primitive
actions, and their duration can be easily calculated from
the time required for basic agent actions (see below) and
the timeouts on primitive actions.

3) Starting from leaf plans we can estimate the duration of
each intention variant. The maximum and the minimum
duration are the upper and the lower bound of the plan
duration.

In case of plans with loops with undefined number of repe-
titions or recursion within the plan, the minimum duration is
the shortest path through the tree structure and the maximum
duration is infinity. In most cases, especially in a complex

2For simplicity, we do not consider agents which can generate their own
top-level goals—all top-level goals are therefore external.

system, we will not able to provide the exact upper bound
estimation of duration.

B. Changes to the BDI Execution Cycle

We assume that the internal operations of the agent—adding
or deleting a belief or goal, selecting a plan, adopting an
intention, selecting an intention to execute and executing a
single step of the intention—require time bounded by the size
of the agent’s program and its beliefs and goals. Adding or
deleting a belief or goal, adopting an intention, and executing
a single step of an intention can be assumed to take constant
time. However selecting a plan and intention to execute
are intractable in the general case, and it is necessary to
approximate the choices of an unbounded agent to limit the
agent’s cycle time.

To bound the time necessary to select a plan, we assume
that goals and plans are processed in order of priority. That
is, for each goal in priority order, the highest priority plan
for that goal is checked to see if it is both executable in the
current belief context and feasible (has a duration less than
the deadline of the triggering goal). If the plan is executable
and feasible, the agent immediately commits to the plan and
processing moves to the next goal. If the plan is not executable
or feasible matching continues for the current goal with the
next plan in priority order. Plan selection stops when a user
definable plan selection timeout is reached. At this point the
agent has zero or more executable, feasible plans, which are
merged into the intention structure, either as new top-level
intentions (for plans triggered by new top-level goals or facts),
or are added to existing intentions.

To bound the time necessary to select an intention to execute
at the current cycle, we utilise a deadline monotonic schedul-
ing algorithm which, while not optimal, gives preference to
urgent, high-priority intentions:

1) find the highest priority feasible intention, i.e., where
the remaining execution time is less than the deadline;

2) find the next most important intention which is feasible
for the existing schedule and assuming that tasks are
executed in deadline order, earliest deadline first;

3) repeat 2 until no more intentions can be scheduled;
4) execute the next step of the first intention in the sched-

ule.
An intention is feasible if it can be inserted in the schedule
in deadline order while meeting its own and all currently
scheduled deadlines. If all intentions in the schedule had the
same priority, then the resulting schedule must be feasible if
any schedule is, i.e., if a system is unschedulable with deadline
monotonic ordering then it is unschedulable with all other
orderings [13]. This algorithm has a worst case complexity
of O(n), where n is the number of the agent’s intentions.

There are two possible scheduling scenarios: pessimistic,
which is based on the upper bound of duration and optimistic,
which is based on the lower bound of duration. Pessimistic
scheduling has limited applicability, as in most cases the
upper bound on duration is equal to infinity. In many cases,
it is therefore more reasonable to implement an optimistic

scheduler as this places no restrictions on the structure of
plans.

IV. ARTS: AGENT REAL-TIME SYSTEM

In this section ARTS, an implementation of the real-
time BDI agent architecture described above. ARTS is an
agent programming framework for agents with soft real-time
guarantees; an ARTS agent will attempt to achieve as many
high priority tasks by their specified deadlines as possible.
The syntax and execution semantics of ARTS is based that
of PRS-CL [2] and JAM [3], augmented with information
about deadlines, priorities, and durations, and changes to the
interpreter to implement time bounded priority driven plan
selection and deadline monotonic intention scheduling. ARTS
is implemented in Java, and the current prototype imple-
mentation includes the core language described below, and
implementations of some basic primitive actions. Additional
user-defined primitive actions can be added using a Java API.
In the interests of brevity, we have omitted the meta-level
features of ARTS.

An ARTS agent consists of five main components: a
database, a goal stack, a plan library, an intention structure, and
an interpreter. The database contains the agent’s current beliefs
(facts). The goal stack is a set of goals to be realised. The plan
library contains a set of plans which can be used to achieve
agent’s goals or react to particular situations. The intention
structure contains plans that have been chosen to achieve goals
or respond to facts. The interpreter is the main component
of the agent. It manipulates the agent’s database, goal stack,
plan library and intention structure and reasons about which
plan to select based on the agent’s beliefs and goals to create
and execute intentions. Changes to the agent’s environment or
posting of new goals invokes reasoning to search for plans that
might be applied to the current situation. The ARTS interpreter
selects one plan from the list of applicable plans, intends and
schedules it, and executes the next step of first intention in the
computed schedule.

A. Facts

The database of an ARTS agent contains facts (beliefs) that
represent the state of the agent and its environment. Facts
may represent information about state variables, sensory input,
derived information or information about other agents, etc.

fact ::= wff
wff ::= pred name term exp∗ | (NOT wff) | (AND wff +)

| (OR wff +)
term exp ::= value | variable | function
value ::= integer | float | string
variable ::= “$”var name
function ::= (fun name term exp+)

where pred name, fun name and var name name predi-
cated, functions and variables respectively.

B. Goals

ARTS distinguishes two categories of goals: top-level goals
and subgoals. ARTS supports two top-level goal operators:

Fig. 1. The execution cycle of ARTS agent

ACHIEVE and CONCLUDE. An ACHIEVE goal specifies
that the agent desires to achieve a particular goal state. A
CONCLUDE goal inserts a certain fact into the database and
possibly invokes fact-driven plan. The form of top-level goals
is given by:

goal exp ::= achieve | conclude
achieve ::= “ACHIEVE” wff [pr] [dl]

{[by] | [not by]}“;”
conclude ::= “CONCLUDE” wff {[by] | [not by]} “;”
pr ::= “:PRIORITY” ground term
dl ::= “:DEADLINE” ground term
by ::= “:BY” plan name+

not by ::= “:NOT_BY” plan name+

where plan name is the name of a plan. The :PRIORITY field
is optional and allows the specification of either a constant
priority or an expression which allows the calculation of the
plan priority as function of plan variables (see below). The
default priority of a top-level goal is zero. The :DEADLINE
expression is also optional and allows the specification of the
deadline of the goal. By default the deadline is equal to infinity.
CONCLUDE goals have zero priority and an infinite deadline.

The developer can specify one or more top-level goals for
the agent as part of the agent’s program using the keyword
”GOALS:”. For example:

GOALS:

ACHIEVE PrepareLecture agents101 : PRIORITY 9 :DEADLINE 50;
ACHIEVE HaveLunch :PRIORITY 7 :DEADLINE 40;
ACHIEVE BorrowBook R&N :PRIORITY 2 :DEADLINE 30;

Subgoals are goals generated within plans. ARTS has the

following subgoals operators:
ACHIEVE C achieve condition C
CONCLUDE F add fact F to the database
TEST C test for the condition C
RETRACT F retract fact F from database
WAIT C wait until condition C is true

In contrast to top-level goals, the deadline and priority of
ACHIEVE subgoals are not specified but inherited from the
plan.

C. Plans

Plans define a procedural specification for achieving a
goal. In specifying plans we distinguish between plan trigger
variables and plan body variables. Plan trigger variables are
free variables appearing in the cue, precondition and context
fields, while plan body variables are variables appearing in
the body of the plan. Plan trigger variables must be ground
when the plan is selected, while binding of plan body variables
can be deferred to the execution of the corresponding plan
step. The agent’s plan library is introduced by the keyword
”PLANS:” followed by a list of plans of the form:

Name is an unique symbolic identifier of the Plan.
Documentation is an optional field which used to store a

descriptive text string.
Cue specifies the purpose of the Plan and is used to select

the plan for possible execution. The Cue field can contain
either an ACHIEVE or CONCLUDE goal. A ACHIEVE goal
in the Cue field means that the Plan may be used to achieve
some condition, while a CONCLUDE goal means that the Plan
may be chosen for possible execution when a fact is added to
the database.

Precondition specifies conditions that must be satisfied
for Plan to be applicable. This field is optional and can contain

both ACHIEVE and TEST goal expressions. An ACHIEVE G
precondition means that the system must currently have G as
a goal in order for the Plan to be applicable, while a TEST
C precondition means that C must be true for the Plan to be
applicable.

Context defines additional conditions (i.e. ACHIEVE and
TEST goal expressions) on plan execution. This field is
optional and has similar functionality to the Precondition
field, but in contrast to the precondition it must be satisfied
before and during Plan execution. As in JAM, this significantly
increases the reactivity of the agent.

Body defines a sequence of simple activities (i.e. primitive
actions, addition and deletion of goals and facts), and com-
plex constructs (e.g. loops, (non)deterministic choice, etc, see
below).

Priority specifies the relative utility of the Plan. The plan
priority is used to choose between the applicable plans for
a particular goal. The priority field is optional and allows
the specification of either a constant priority or an expression
which allows the calculation of the plan priority as function
of variables appearing in the plan trigger. The default priority
value is 0.

Deadline specifies a deadline for the plan. The deadline
field is optional and allows programmer to advance the dead-
line inherited from the triggering goal. The deadline can be
specified as a constant value or an expression which allows
the calculation of the plan deadline as function of variables
appearing in the plan trigger. If the specified plan deadline
is earlier than the deadline for this intention it becomes the
deadline for the intention during the execution of the plan (i.e.,
it effectively advances the deadline for this intention during the
execution of the plan). If the specified deadline is later than
the deadline for the intention, the plan deadline is ignored.

ARTS, like JAM, supports standard programming constructs
such as DO . . .WHILE (loop with postcondition) and WHILE
construct (loop with precondition), choice constructs specified
by OR (do any in order), AND (do all in order), DO_ALL (do
all randomly), DO_ANY (do any randomly), WHEN (conditional
execution), and ASSIGN (assignment to plan body variables).
The BNF for plans is given in table I.

D. Primitive Actions

The subgoal operators are implemented directly by the
ARTS interpreter. Other primitive actions are implemented
as Java methods. Each primitive action referenced in a plan
body must have Java code which implements the neces-
sary functionality. ARTS supports two mechanisms for defin-
ing primitive actions: writing a class which implements the
PrimitiveAction interface, and direct invocation of meth-
ods in existing legacy Java code. Primitive actions are executed
by using an EXECUTE action.

In contrast to PRS-CL and JAM, ARTS allows the agent
programmer to specify a timeout for each primitive action
by using the TIMEOUT keyword. The timeout specifies the
maximum amount of real time required to perform the action.
Actions which do not complete by their timeout are assumed

plan ::= “PLAN: {”p name [p doc] p cue [p precond] [p cont]
p body [p pr] [p dl] [p attr] “}”

p name ::= “NAME:” string“;”
p doc ::= “DOCUMENTATION:” [string]“;”
p cue ::= “CUE:” p goal exp “;”
p precond ::= “PRECONDITION:” p cond∗ “;”
p cont ::= “CONTEXT:” p cond∗ ”;”
p body ::= “BODY:” body elem∗

p pr ::= “PRIORITY”:” term exp “;”
p dl ::= “DEADLINE”:” term exp “;”
body seq ::= “{” body elem∗ “}”
body elem ::= activity | b and | b or | b parallel | b do all

| b do any | b do while | b while | b when
activity ::= prim act | misc act | subgoal “;”
b and ::= “AND:” body seq+“;”
b or ::= “OR:” body seq+“;”
b parallel ::= “PARALLEL:” body seq+“;”
b do all ::= “DO_ALL:” body seq +“;”
b do any ::= “DO_ANY:” body seq+“;”
b do while ::= “DO:” body seq “WHILE:” p cond“;”
b while ::= “WHILE:” p cond body seq “;”
b when ::= “WHEN:” p cond body seq“;”
p goal exp ::= “ACHIEVE” wff | “CONCLUDE” wff
p cond ::= “ACHIEVE” wff | “TEST” wff
subgoal ::= subgoal op wff ”;”
subgoal op ::= “ACHIEVE” | “CONCLUDE” | “TEST” | “RETRACT”

| “WAIT”
prim act ::= “EXECUTE:” function [“:TIMEOUT” ground term]
misc act ::= “ASSIGN:” term exp term exp

TABLE I
PLAN BNF

to have failed. For example:

EXECUTE move to $x $y :TIMEOUT 50

E. Interpreter

The ARTS interpreter repeatedly executes the set of activi-
ties shown in Figure 1.

1) New goals are added to the goal stack and facts corre-
sponding to CONCLUDE goals and external events are
added to the database.

2) The precondition and context expressions of plans with
a cue matching a goal on the goal stack are evaluated
against the database to determine if the plan is applicable
in the current situation. Goals and plans are matched
in priority order as described in section III-B. For
ACHIEVE goals, the interpreter checks to see whether
the goal has already been accomplished before trying to
invoke a plan.

3) The resulting set of applicable plans are placed on the
intention intention structure.

4) Intentions are scheduled according to their deadline and
priority value as described in section III-B. Intentions
which are not schedulable, i.e., their minimum remain-
ing execution time is greater than the time remaining to
their deadline, are either dropped or have their priority
reduced to zero.3

5) Finally, the interpreter selects the first intention from
the computed schedule and executes the one step of

3This choice is currently determined by a global flag, rather than per goal.

that intention. The result of the execution can be (5a)
execution of a primitive action or (5b) the posting of a
new subgoal or the conclusion of some new fact.

For ACHIEVE goals, the interpreter checks to see whether
the goal has already been accomplished before trying to invoke
a plan.

F. Example

In this section sketch as simple example ARTS agent
and show how it allows the specification of soft real-time
requirements. The agent has three goals: preparing a lecture,
having lunch and picking up a book from the library. Each
task has a different priority and deadline. For simplicity, we
assume that actions never fail and that the unit of time is the
minute.

GOALS:
ACHIEVE PrepareLecture agents101 :PRIORITY 9 :DEADLINE 50;
ACHIEVE HaveLunch :PRIORITY 7 :DEADLINE 40;
ACHIEVE BorrowBook R&N :PRIORITY 2 :DEADLINE 30;

CONCLUDE LectureNotes agents101 myNotes;

PLAN: {
NAME: ”Plan 1”;
DOCUMENTATION: ”Prepare for lecture”;
CUE: ACHIEVE PrepareLecture $x, y;
PRECONDITION: TEST LectureNotes $x, y;
BODY:
EXECUTE revise-lecture $y :TIMEOUT 35;

}

PLAN: {
NAME: ”Plan 2”;
DOCUMENTATION: ”Pickup a book from the library”;
CUE: ACHIEVE BorrowBook $x;
BODY:
EXECUTE goto library :TIMEOUT 10;
ACHIEVE Pickup $x;

}

PLAN: {
NAME: ”Plan 3”;
DOCUMENTATION: ”Pick up something”;
CUE: ACHIEVE Pickup $x;
BODY:
EXECUTE pickup $x :TIMEOUT 2;

}

PLAN: {
NAME: ”Plan 4”;
DOCUMENTATION: ”Have lunch”;
CUE: ACHIEVE HaveLunch;
BODY:
EXECUTE eat-sandwich :TIMEOUT 20;

}
EXAMPLE ARTS AGENT

The algorithm for estimating the duration of a plan is
executed when the agent is initialised. Plans have following
maximum and minimum durations: d1 = 35min, d2 = 12min,
d3 = 2min, d4 = 20min. Once the durations of plans have
been estimated, the agent begins the reasoning cycle. The
interpreter parses the initial top-level goals. It then attempts to
match them against the plan library in order to invoke suitable
plans. As a result Plan 1, Plan 2 and Plan 4 are added to

the intention structure. As explained above, plans inherit their
deadline and priority values from the triggering goal. This
means that the intention related to the prepare lecture goal
has the highest priority (9), the intention which corresponds
to the goal to have lunch has medium priority (7), and the
last intention related to the goal to pickup a book from the
library has the lowest priority (2). The scheduling algorithm
checks feasibility of each intention before adding them to the
schedule. The first most important intention is inserted into
schedule, because it is currently empty. Then the feasibility
of the HaveLunch intention is checked. It is obvious that
the intention is infeasible, because it can’t be inserted to the
schedule in deadline order together with first intention and it
will be dropped. On the other hand the low priority intention
is feasible and can be scheduled in deadline order together
with the first one. It is important to note that the low priority
task will be executed first, because it has an earlier deadline.
Once the schedule has been computed, the interpreter executes
one step of the first task, i.e., goto primitive action, and starts
a new cycle.

At the second cycle the interpreter executes next step, i.e.
the ACHIEVE Pickup goal. The goal invokes Plan 3 which
inherits the deadline of 30 and priority of 2 from the top-
level goal and extends the existing intention. The interpreter
then performs one step of the plan 3. In the same way it
performs action to revise the notes for the lecture from the
next intention.

V. RELATED WORK

The scheduling of intentions is key to realisation of real-
time agents and a variety of intention scheduling approaches
have been explored in the literature. For example, AgentS-
peak(XL) [10] and the Soft Real-Time Agent Architecture
[9] use the TÆMS (Task Analysis, Environment Modelling,
and Simulation) domain-independent framework [11] together
with Design-To-Criteria scheduling[12]. The TÆMS frame-
work assumes a worth-oriented environment, in which goals
are associated with a degree of achievement (i.e., a goal
may be not fully achievable or not achievable at all). The
TÆMS framework allows modelling tasks with deadlines. The
problem of using DTC for scheduling agent intentions is that
an agent which implements DTC will not perform tasks in
some fixed order and is unable to compute a set of feasible
tasks because the decision about which task (intention) will be
executed is based on some rating (real value between 0 and
1), which changes from cycle to cycle.

There has been considerable work on approaches to the
development of reasoning systems which must operate in
highly dynamic environments, e.g., [15], [17], [2], [3], [4].
Much of this work has focused on deliberation and reasoning
strategies involving metalevel plans and facts for reasoning
about applicable plans, the failure to achieve a goal, changing
the intention structure according to user specified criteria, etc.
While metalevel reasoning provides great flexibility to the
agent developer, it can be complex and has to be programmed
for each particular application. In contrast, ARTS has its

own well defined real-time reasoning mechanism for tasks
with different priorities and deadlines, which does not require
utilisation of metalevel capabilities.

VI. CONCLUSION

The main contributions of this paper are an analysis of
the meaning of real-time guarantees for a BDI agent, and
a proposal for a new BDI agent architecture, ARTS, for the
development of real-time BDI agents. ARTS is influenced by
the PRS family architectures, such as PRS-CL and JAM. How-
ever, unlike previous PRS-like architectures, ARTS includes a
duration estimation algorithm, priority driven plan selection
and a deadline monotonic intention scheduling algorithm.
These features enable an ARTS agent to produce an intention
schedule which achieves the greatest number of high priority
goals by their deadlines. While the resulting schedule is not
necessarily optimal, it is computable in bounded time, and
we believe that the kind of “optimistic bounded rationality”
implemented by the ARTS architecture provides a simple,
predictable framework for agent developers, facilitating the
development of agents which can perform tasks of different
complexity and scale while providing timely responses to
events in highly dynamic environments.

The current ARTS implementation has a number of limi-
tations. For example, the architecture currently assumes that
the agent must wait for the completion of each plan step
before recomputing the intention structure, i.e., the agent
can’t execute intentions in parallel. For plans containing asyn-
chronous primitive actions or WAIT goals, this is clearly not
the case. In future work, we plan to extend the scheduler to
handle asynchronous execution of intentions. Other directions
for future work include improved algorithms for duration
estimation and improvements to the basic BDI interpreter to
reduce the overall cycle time.

REFERENCES

[1] M. P. Georgeff and A. L. Lansky, “Procedural knowledge,” in IEEE,
vol. 74, no. 10. IEEE Press, 1987, pp. 1383–1398.

[2] K. L. Myers, PRS-CL: A Procedural Reasoning System. User’s Guide.,
SRI International, Center, Menlo Park, CA, March 2001.

[3] M. J. Huber, “JAM: A BDI-theoretic mobile agent architecture,” in
Proceedings of The Third International Conference on Autonomous
Agents, Seattle, WA, 1999, pp. 236–243.

[4] D. Morley and K. Myers, “The spark agent framework,” in Proc. of the
Third Int. Joint Conf. on Autonomous Agents and Multi Agent Systems
(AAMAS-04), New York, NY, July 2004, pp. 712–719.

[5] J. S. Gu and C. W. de Silva, “Development and implementation of a
real-time open-architecture control system for industrial robot systems,”
Engineering Applications of Artificial Intelligence, vol. 17, no. 5, pp.
469 – 483, 2004.

[6] C. Carrascosa, J. Bajo, V. Julian, J. M. Corchado, and V. Botti, “Hybrid
multi-agent architecture as a real-time problem-solving model,” Expert
Systems Applications, vol. 34, no. 1, pp. 2–17, 2008.

[7] J. Chakareski, J. Apostolopoulos, and B. Girod, “Low-complexity rate-
distortion optimized video streaming,” in Proceedings of the Interna-
tional Conference on Image Processing (ICIP), vol. 3, Oct. 2004, pp.
2055–2058.

[8] S. G. Deshpande, “High quality video streaming using content-
awareadaptive frame scheduling with explicit deadlineadjustment,” in
MM ’08: Proceeding of the 16th ACM international conference on
Multimedia. New York, NY, USA: ACM, 2008, pp. 777–780.

[9] R. Vincent, B. Horling, V. Lesser, and T. Wagner, “Implementing soft
real-time agent control,” in AGENTS ’01: Proceedings of the fifth
international conference on Autonomous agents. New York, NY, USA:
ACM, 2001, pp. 355–362.

[10] R. Bordini, A. Bazzan, R. de, O. Jannone, D. Basso, R. Vicari, and
V. Lesser, “Agentspeak(XL): efficient intention selection in BDI agents
via decision-theoretic task scheduling,” in In Proc. of AAMAS’02, 2002,
pp. 1294–1302.

[11] K. S. Decker and V. R. Lesser, “Quantitative modeling of complex en-
vironments,” International Journal of Intelligent Systems in Accounting,
Finance and Management, vol. 2, p. 215234, 1993.

[12] T. Wagner, A. Garvey, and V. Lesser, “Criteria-directed heuristic task
scheduling,” International Journal of Approximate Reasoning, vol. 19,
pp. 91–118, Jyly 1998.

[13] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard real-time environment,” JACM, vol. 20, no. 1, pp. 46–61, 1973.

[14] R. T. Dodhiawala, N. S. Sridharan, P. Raulefs, and C. Pickering, “Real-
time ai systems: A definition and an architecture,” in IJCAI, 1989, pp.
256–264.

[15] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning,” in
Proceedings of the Sixth National Conference on Artificial Intelligence,
AAAI-87, 1987, pp. 677–682.

[16] M. P. Georgeff and F. F. Ingrand, “Real-time reasoning: Monitoring and
control of spacecraft systems using procedural reasoning,” in Australian
Artificial Intelligence Institute, vol. 1, no. 03, Melbourne, Australia, May
1989.

[17] ——, “Managing Deliberation and Reasoning in Real-Time Systems,”
in In Proceedings of the DARPA Workshop on Innovative Approaches
to Planning, San Diego, California, 1990.

[18] D. J. Musliner, J. Hendler, A. K. Agrawala, E. H. Durfee, J. K.
Strosnider, and C. J. Paul, “The challenges of real-time AI,” University
of Maryland, Tech. Rep. CS-TR-3290, 1994.

	Introduction
	Real-Time Guarantees
	Changes to the BDI Architecture
	Additional Information
	Changes to the BDI Execution Cycle

	ARTS: Agent Real-Time System
	Facts
	Goals
	Plans
	Primitive Actions
	Interpreter
	Example

	Related Work
	Conclusion
	Bibliography
	References

