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Summary. The effect of amplitude and rate control constraints in active flutter suppression is analysed
for a number of different state feedback control laws considering mathematical model of two degree-of
freedom nonlinear aeroelastic airfoil system with trailing and leading edge flaps. The size of region
of attraction is used as an additional metric to select a set of acceptable control laws designed by
eigenstructure assignment and nonlinear dynamic inversion methods.

1 Introduction

Different control techniques have been successfully applied for suppression of flutter instabil-
ity of BACTM (Benchmark Active Control Technology Model) and nonlinear wing section
model in wind tunnel experiments [8, 10, 9, 12, 2]. However, in all these studies the prob-
lem of control constraints and their effect on the size of region of attraction was not clearly
presented. The qualitative investigation of the closed-loop dynamics for nonlinear wing sec-
tion model is presented in [6]. In this paper stabilization of flutter instability of nonlinear
wing section system [9] is investigated with saturated state feedback control laws designed
by eigenstructure assignment and nonlinear dynamic inversion (NDI) methods. The size of
the closed-loop system stability region is evaluated by computation of critical magnitudes
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of state variables leading to instability. The continuation of Limit-Cycle Oscillations (LCO)
using MATCONT package [11] and computation of non-local stability maps illustrate effect
of deflection limit and rate saturation on the size of stability region.

2 Wing Section Mathematical model

The equations of motion of nonlinear aeroelastic wing section system (see Fig. 1a) have the
following form [9]:

[
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+
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γ (2)

where α, h are the pitch angle and the plunge displacement, L and M are the quasi-steady
aerodynamic force and moment, respectively, U is the flow speed, β, γ are the trailing- and
leading-edge flap control deflections, kα(α) = k0 + k1α + k2α

2 is the stiffness coefficient
nonlinearly dependent on the pitch angle, all parameters representing mass, geometry, stiff-
ness and aerodynamic characteristics of the wing section system are taken from [9]. Equations
(1) and (2) can be represented in a compact vector form:

Fig. 1 The wing section model (a). The actuator model: deflection and rate saturation constraints (b).
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Mẍ + Dẋ + K(α)x = Cu (3)

where x = (h, α)T , u = (β, γ)T and matrices M ,D,K and C can be found in [6]. Trans-
formed to the Cauchy form equations (3) have the following state-space representation:

[
ẋ
ẏ

]
=

[
02,2 I2,2

−M−1K(α) −M−1B

] [
x
y

]
+

[
02,2

M−1C

] [
β
γ

]
(4)

where y = (α̇, ḣ)T , 02,2 and I2,2 are second order zero and identical matrices, respectively.
The leading- and trailing-edge flaps can be actuated by servomotors, as in [3, 9], or hy-

draulic actuators, which both have physical limitations on rate and amplitude of deflection.
For example, the aeroelastic apparatus in the Texas A&M University [3] has the following
deflection and rate constraints |β|, |γ| < 15 deg. |β̇|, |γ̇| < 273 deg/s (4.75 rad/s). These con-
straints, represented by saturation functions in actuator model shown in Fig. 1b, do not affect
local dynamics in the closed-loop system, but can produce significant changes in closed-loop
dynamics at large amplitudes due to saturation of control effectors. We will consider a state
feedback control law: [

βc

γc

]
= Acx + Bcy + Gc(x) (5)

where gain matrices matrices Ac and Bc are specified by eigenstructure assignment method
and vector function Gc compensates system (3) nonlinearities when the leading- and trailing-
edge flaps are used simultaneously. For example, the following nonlinear dynamic inversion
(NDI) control law linearizes and simultaneously decouples the system dynamics in the case
of unsaturated control deflections:

Ac = −C−1MK∗; Bc = C−1(D −MD∗); Gc(x) = C−1K(α)x

D∗ =
[

2ξhωh 0
0 2ξαωα

]
; K∗ =

[
ω2

h 0
0 ω2

α

]
; ẍ + D∗ẋ + K∗(α)x = 0

(6)

Gain matrices Ac and Bc in (5) can be also designed using the robust pole assignment method
[5] applied for the linearised system (3), when k1 = k2 = 0. This control law optimizes the
choice of eigenvectors so that they minimize the sensitivity of the closed-loop poles to per-
turbations of the linearised system matrices. The robust pole assignment algorithm is imple-
mented in Matlab as function place. This linear state feedback control law can be used with
and without nonlinear compensation function Gc(x).

3 Computation of non-local stability maps

State feedback control law (5) guarantees stabilization of flutter instability only locally. Due
to saturation of control effectors the region of attraction of a stabilized equilibrium may be
bounded and its size can vary significantly. The closed-loop cycle or additional equilibria
existing in the closed-loop system (see [6]) will attract dynamics after action of disturbances
exceeding their critical level. The region of attraction as a nonlocal characteristic of control
law (5) depends both on feedback matrices Ac, Bc, stiffness nonlinearity k2, k3 and control
constraint parameters βmax, β̇max (γmax, γ̇max).
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To simplify search of stabilizing control laws (5) which maximize stability region we
will use several design scenarios for eigenstructure assignment. The first scenario #1 for pole
placement implies that two stable open-loop eigenvalues will remain unchained λcl

1,2 = λol
st

and two unstable ones are placed in different points of selected region in the left half of the
complex plane λcl

3,4 = ς± jω, where ς ∈ (−15, 0), ω ∈ (0, 15). This scenario stems from the
property of sub-optimal control law for trailing-edge flap, which provides practically max-
imum region of attraction under action of only deflection limit. This linear state-feedback
control law can be obtained using the LQR design when J =

∫∞
0

uT (t)u(t)dt [4, 1, 7]. In
terms of pole placement the sub-optimal control law leaves unchanged two stable open-loop
eigenvalues and reflects to the stable half of the complex plane two unstable eigenvalues, i.e.
they change only sign of their real parts. Rate constraints β̇max, γ̇max and stiffness nonlin-
earities (k2 6= 0; k3 6= 0) will affect this optimality condition. To find out corrected feedback
matrices in (5) maximizing the size of stability region under action of both constraints and
nonlinear stiffness the proposed scenario provides freedom in pole placement of unstable
eigenvalues.

The second scenario #2 for closed-loop pole placement implies that two identical complex
conjugate pairs are placed in different points of specified region in the left-half of the complex
plane λcl

1−4 = ς ± jω, where ς ∈ (−15, 0), ω ∈ (0, 15). For leading- and trailing-edge flaps
there is an additional freedom for choice of closed-loop eigenvectors. Another two scenarios
will be used to define them. The first one will use the robust pole placement [5], implemented
by Matlab function place, and the second one will decouple the pitch and plunge airfoil
motion as implemented in (6).

The control law (5) designed locally considering different scenarios for eigenstructure
assignment is validated in this paper by estimation of its region of attraction. This involves
simulation of dynamic processes under action of large amplitude disturbances which lead
to control saturation. For every design point the size of region of attraction is evaluated by
computing critical disturbances αcr and hcr (see Fig. 2), which belong to the boundary of
region of attraction. The isolines αcr or hcr are plotted in the considered design region of pole
placement (for example, see Fig. 3 and 4). The maps of isolines αcr or hcr reflect non-local
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Fig. 2 Critical disturbance in pitch angle αcr (convergence to stabilized equilibrium or to large ampli-
tude oscillations with saturated control).
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stability properties of locally designed control law (5), so we will call them as Non-Local
Stability Maps (NLSMs).

4 Computational examples

Nonlocal stability maps (NLSMs) presented in this section for several design scenarios pro-
vide control law design solutions which can be acceptable for flutter stabilization including
conditions with large level of external disturbances. Continuation of periodical oscillations
(LCO) and analysis of their multipliers using MATCONT package [11] shed light on the
nature of significant enlargement of region of attraction at the best design conditions.

4.1 Trailing-Edge Flap
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Fig. 3 Nonlocal stability map for αmax. Pole
placement scenario #1, trailing-edge flap without
rate constraints β̇max = ∞.

Fig. 4 Nonlocal stability map for αmax. Pole
placement scenario #1, trailing-edge flap with rate
constraint β̇max = 273 deg/s.

The NLSMs presented in Figs. 3 and 4 demonstrate that the aeroelastic wing section
model can be effectively stabilized using only the trailing-edge flap control. The NLSM in
Fig. 3 corresponds to the sub-optimal control law [1, 7] and does not take into account rate
saturation effect (β̇max = ∞). The NLSM in Fig. 4 is computed for the same control law
with account of rate saturation when β̇max = 273 deg/s (this rate constraint is taken from
[3]). Isolines in these two figures separate pole placement regions which are characterized by
different level of critical disturbances αcr (NB: the isoline level changes from one degree to
twenty degrees with increment ∆αcr = 2.5 deg).

Critical disturbance αcr for sub-optimal control law with pole placement, shown by star
and circle markers in Figs. 3 and 4, drops significantly when β̇max = 273 deg/s. Placement
of open-loop unstable eigenvalues across the selected part of stable half of the complex plane
reveals pole placement regions with very high critical disturbances αcr À 20 deg. The ef-
fect of rate saturation leads to a significant decrease and relocation of the broad region with
practically global stability shown in Fig. 3 (see [6]). However, the NLSM in Fig. 4 shows that
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Fig. 6 Transition between two types of control
saturation.

even with rate saturation the acceptable design region is still big enough for a proper selec-
tion of control law. Fig. 5 presents results of the closed-loop LCO continuation with increase
of βmax at design point λcl

3,4 = −7.5 ± 7.5j (diamond marker in Fig. 4). The closed-loop
LCO, stable at βmax < 16 deg, after two saddle-node bifurcations is transformed to slightly
unstable LCO which is surrounded by stable toroidal attractor. The LCO transformation leads
to the change in character of control constraints from the tooth-type to the saw-type (see Fig.
6). The critical disturbance at this design point αcr = 16 deg. The continuation of the closed-
loop LCO vs amplitude βmax at another design point λcl

3,4 = −5± 5j (square marker in Fig.
4) is presented in Fig. 7 with associated multipliers shown in Fig. 8. At βmax = 7.67 deg
the LCO becomes highly oscillatory unstable as the complex conjugate pair multipliers travel
far outside from the unit circle (Fig. 8). In this case the LCO is destabilized and the toroidal
attractor exists only in the close vicinity of the Neimark-Sacker bifurcation (see [6]). As a
result the region of attraction in the selected design point becomes practically global.
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4.2 Trailing- and Leading-Edge Flaps

Figs. 9 - 12 show computed NLSMs for flutter stabilization using the leading- and trailing-
edge flaps simultaneously. Pole placement scenario #1 is used in the first two examples and
pole placement scenario #2 is used in the second two examples. Figs. 9 and 11 correspond
to the case when the eigenvectors are decoupled accordingly with (6). Figs. 10 and 12 corre-
spond to the case when the eigenvectors are assigned using Matlab place command provid-
ing parameteric robustness properties. There is no difference between decoupling and robust
assignment when pole placement scenario #2 is applied. Example in Fig.12 includes also
nonlinear dynamic inversion (NDI) accordingly to (6).
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Fig. 9 Nonlocal stability map αmax for two
flaps. Pole placement scenario #1, decoupled as-
signment, rate constraint β̇max = 273 deg/s.

Fig. 10 Nonlocal stability map αmax for two
flaps. Pole placement scenario #1, robust assign-
ment, rate constraint β̇max = 273 deg/s.

−15 −10 −5 0
0

5

10

15

0.5
1

12.5

2.5

5

5

7.
5

7.5

7.
5

10

10

10

12.5

12.5

12.5

15

15

15

17
.5

17.5

17.5

20

20

20

Re λ

Im
 λ

V=20 m/s; Multiple pole placement

α
cr

 isolines

Practically global
   stability region

−15 −10 −5 0
0

5

10

15

0.5
12.5

5

5
7.

5

7.5

10

10

12
.5

12.5
15

15

17.5

17
.5

20

20

Re λ

Im
 λ

V=20 m/s; Multiple pole assignment + NDI

Practically global
   stability region

α
cr

 isolines
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Fig. 12 Nonlocal stability map αmax for two
flaps. Pole placement scenario #2, decoupled and
robust assignment + NDI, rate constraint β̇max =
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The presented results clearly show that in flutter stabilization using two flaps scenario
#2 for pole placement is much better, the decoupling and the robust eigenvector assignment
work equally well for scenario #2 and additional application of NDI improve the control law
design significantly (see Fig. 12).

5 Conclusion

Flutter of the nonlinear aeroelastic wing section system with actuator constraints can be ef-
fectively stabilized under action of large external disturbances using only the trailing-edge
flap. The broad region for pole placement of the open-loop unstable eigenvalues in this case
has been identified when stable eigenvalues remain unchanged. The best control law design
for simultaneous use of the leading- and trailing-edge flaps for flutter stabilization requires
the multiple pole placement and additional nonlinear dynamic compensation of system non-
linearities.
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