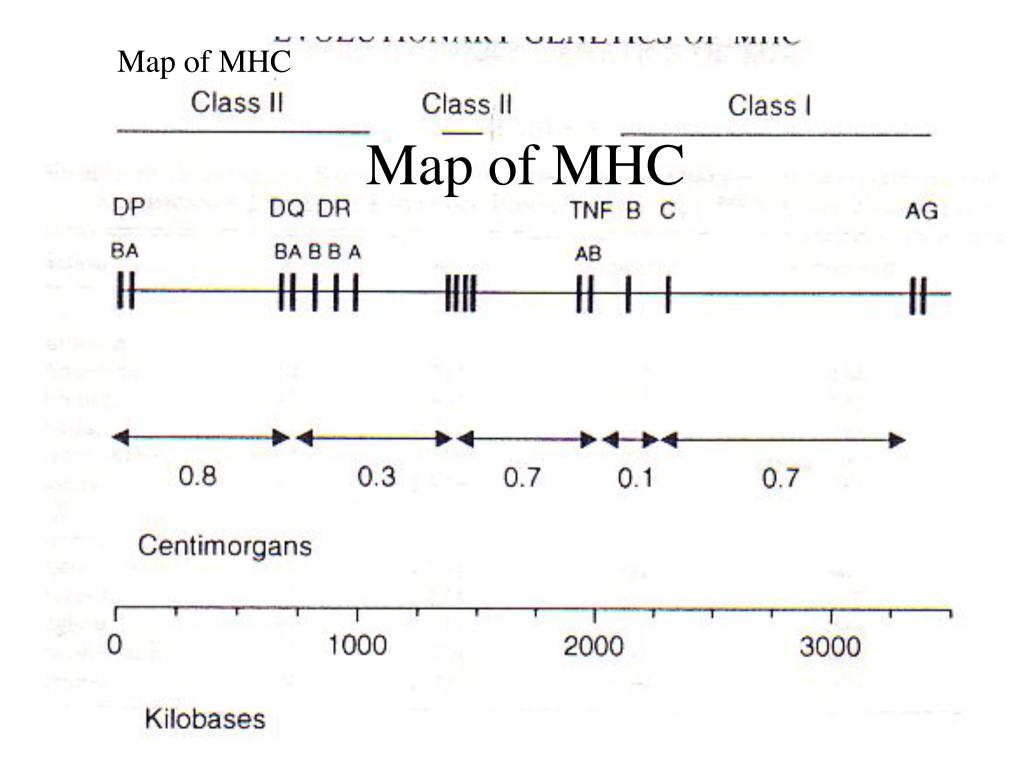
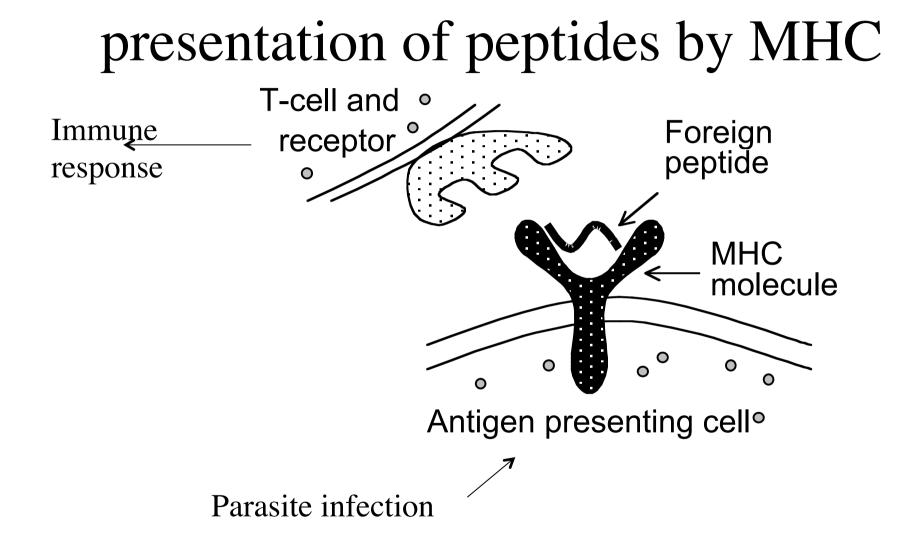

Human survivorship

Bob May (2007), TREE 22: 497-503



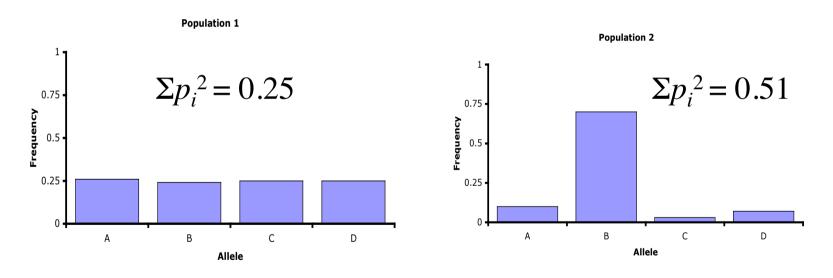

Diseases for which at least 99% of the global burden fell on low- and middle- income countries in 1990

Disease ^a	Deaths per year	DALYs (thousands)
Diarrhoeal diseases ^b	2 124 032	62 227
Malaria	1 079 877	40 213
Measles	776 626	27 549
Pertussis	296 099	12 768
Tetanus	308 662	9766
Syphilis	196 533	5574
Lymphatic filariasis	404	5549
Anclyostomiasis and necatoriasis (hookworm)	5650	1829
Leishmaniassis	40 913	1810
Schistosomiasis	11 473	1713
Trichoriasis	2 123	1640
Trypanosomiasis	49 668	1585

Evolution of infectious disease #1 Evolution of the MHC

Steve Paterson rm 202, s.paterson@liv.ac.uk

MHC & peptide



MHC polymorphism

- Most polymorphic region of vertebrate genome, >100 alleles at some loci
- Evidence for positive selection
 - Allele frequencies very even
 - Excess of coding substitution
 - Diversity maintained through speciation events

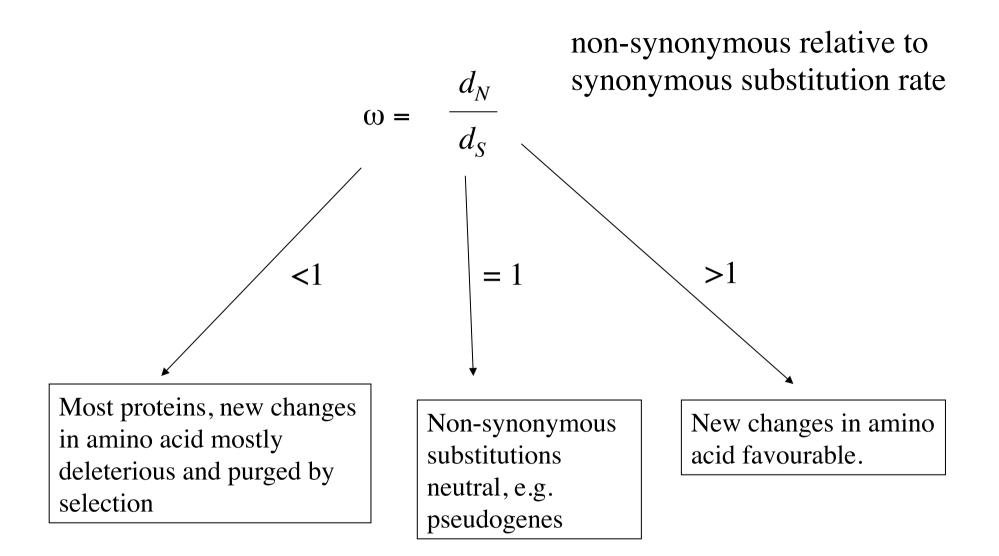
Allele frequencies

• Take a locus with 4 alleles, <u>average</u> allele frequency equals 0.25, but genetic drift makes it unlikely all alleles will have a frequency of 0.25, <u>unless</u> balancing selection

Allele frequencies, $\mathbf{p} = \{p_1, p_2, ..., p_i, ..., p_n\}$. Expected homozygosity = Σp_i^2 . Given number of alleles, one can calculate probability of allele frequency distribution.

MHC allele frequencies

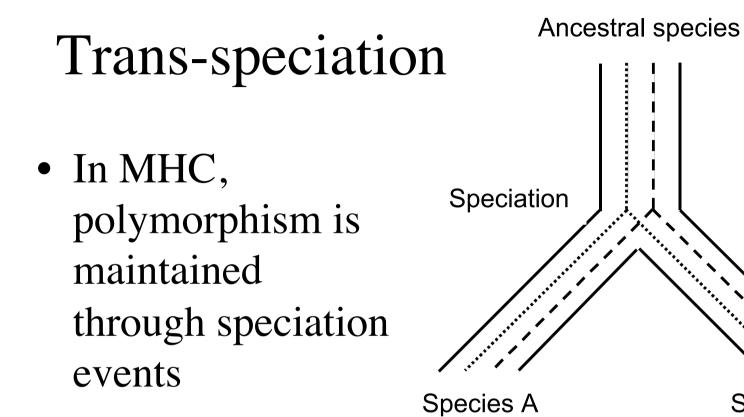
Positive selective on gene sequence


Human DRB exon 2

<< <c> >></c>	Exon	2																									17	xon2
Codon Nr.	54	_	56	57	5.9	5.0	60	61	62	63	64	65	66	67	6.9	60	70	71	72	73	74	75	76	77	7.9	70		
DRB1*010101																												
DRB1*0103																												
DRB1*030101																		-A-		-G-	CG-			-A-				
DRB1*040101																		-A-										
DRB1*0411				AGC																	-A-							
DRB1*0423																												
DRB1*0437																A	G-C	GA-										
DRB1*070101			· · ·				-													-								
DRB1*080102			•••																									
DRB1*0810			•••																									
DRB1*0823			•••																									
DRB1*090102							-																					
DRB1*1102			•••																									
DRB1*1115			•••											-														
DRB1*1206 DRB1*1309							-												-						-			
DRB1*1309 DRB1*1429																		GC-										
DRB1*1429 DRB1*150105																												
DRB1*150105																												
DKB1~100501				C	1									A		A	0-C		0									
Legend: "-"	Legend: "-": identical to reference ".": deletion "*": not sequence																											
				Substitution C <-> A												Sub	sti	tuti	on	<mark>G <</mark>	<->	A						
					CTC = Leu							GAG = Glu																
					ATC = Ile										GAA = Glu													
					NON-SYNONYMOUS										SYI	NO	NY	/M	OU	S								
													-												-			

Involved in antigen binding

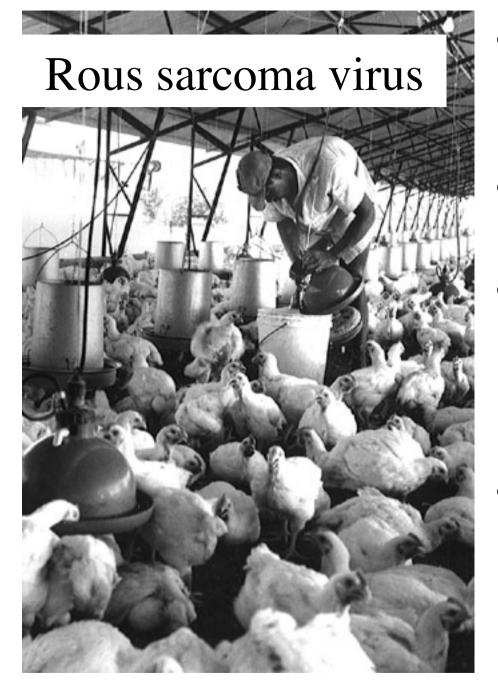
Substitution rate


- Calculate synonymous substitution rate (d_S) from number of synonymous substitutions per synonymous site. (Ditto non-synonymous substitution rate, d_N .)
- We expect d_S to be dependent only on the mutation rate.
- We expect d_N to be dependent on the mutation rate <u>and</u> selection.

Positive selection at the MHC

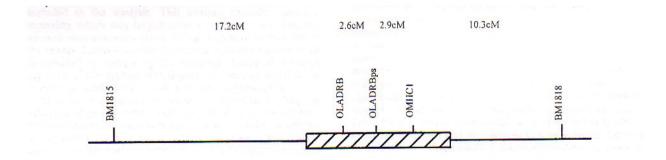

	n	$d_{s}\left(\mathrm{x100}\right)$	$d_n(x100)$	Р
DPB1	6	1.7 ±2.4	9.8 ± 3.0	<0.05
DQB1	9	7.3 ± 4.2	19.3 ± 3.6	<0.05
DRB1	23	6.1 ± 3.9	24.7 ± 3.5	<0.001
DRB3	4	4.5 ± 4.5	10.3 ± 3.3	n.s.
DRB5	4	4.3 ±4.4	10.8 ± 3.7	n.s.

antigen presenting site only - Hughes et al (1994)


 dotted and dashed, different allelic lineages

What is the selective force on the MHC?

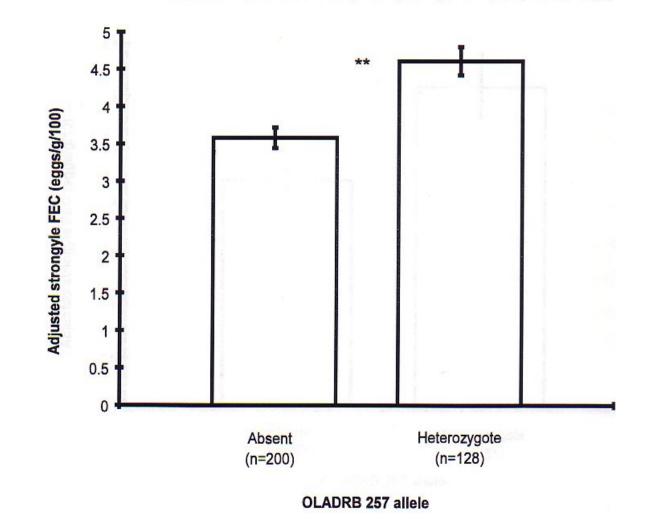
- causes uncontrollable tumours in chickens, eventually death
- caused by small RNA virus (retrovirus)
 - 2 strains of chicken, different MHC types
 - CC susceptible
 - CB resistant
- anchor residues used by the MHC molecules in these different strains known


RSV & MHC

- RSV genome sequenced
- predict peptides in genome that can bind to MHC in 2 strains
- predicts that resistant CB strain can bind many more peptides than susceptible CC strain
- test by generating synthetic peptides and using as vaccines
- synthetic peptides provide protection in resistant CB strain but not susceptible CC strain

MHC in Soay sheep

- show even allele frequency distribution
- increased rate of non-synonymous vs. synonymous substitution


MHC and worms in sheep

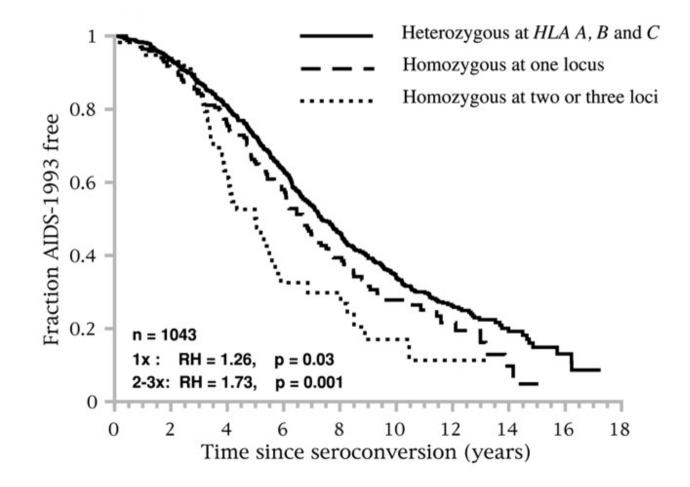
- population of feral Soay sheep on St. Kilda
- unmanaged, often high mortality in certain years
- nematode parasites contribute to this
 - if sheep are cleared of infection they survive better
- genotype microsatellite markers within MHC in linkage disequilibrium

MHC and parasite resistance

Association between lamb strongyle FEC and OLADRB 257 allele

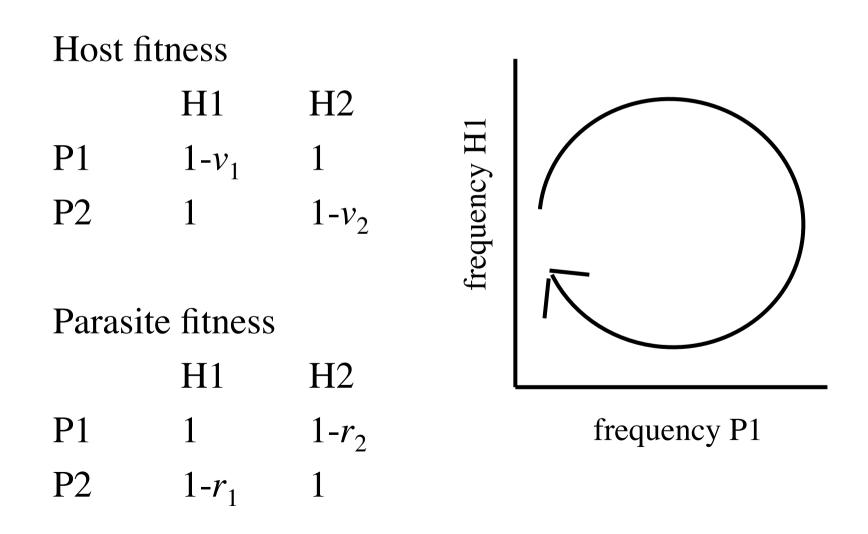
MHC and survivorship

DRB allele	lamb survivorship
205	0.026 (±0.310)
213	0.005 (±0.050)
257	-0.181 (±0.061)
263	0.085 (±0.053)
267	0.091 (±0.080)
276	-0.029 (±0.057)


WHO/TDR

MHC and malaria

- malaria kills 1/20 of all children in sub-Saharan Africa before the age of 5
- Adrian Hill showed association between cerebral malaria and HLA-Bw53 (MHC type) Nature 352:595-600


	Serology	PCR
Severe malaria	15.7%	16.9%
Mild malaria	_	22.6%
controls	24.3%	25.4%

HIV/AIDS progression and MHC

Carrington and O'Brien, 2003 Annu. Rev. Med. 54; 535-51

Frequency-dependent selection

