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Modern biology increasingly integrates disparate disciplines.
Here, Steve Paterson and Mark Viney examine the interface
between epidemiology and population genetics. They argue
that infection and inheritance can be considered as
analogous processes, and that epidemiology and population
genetics share many common features. They consider the
potential for existing population genetic theory to dissect
epidemiological patterns in field studies and they consider
other relationships between genetics and epidemiology that
provide a research challenge for the future.

Epidemiology is the study of disease dynamics within
a population. Current models of infection dynamics at-
tempt to describe the process of infection from one host
to another and the consequence of this process on host
and parasite populations1. Population genetics is con-
cerned with the inheritance of genes at the population
level2. There is, therefore, a clear analogy between in-
heritance – the transmission of genes from one gener-
ation to the next – and infection – the transmission of
parasites from one host to another – and the popu-
lation-level consequences of each of these processes.
Inheritance and infection both occur within populations
and, in this respect, both population genetics and epi-
demiology are concerned with problems of scale;
specifically, to extend a basic biological process (inher-

itance or infection) that occurs at the individual level to
the population-level consequence of that process3. 

The interface of inheritance and infection
Modeling drug resistance in parasite populations is

one area where population genetics and epidemiology
come together4,5. The task is to construct a model that
combines both the spread of drug-resistance genes
through a parasite population and the spread of drug-
resistant parasites through a host population (Box 1).
Recent work by Smith et al.6 provides a good example of
how this can be achieved. Here, the basic unit of the
model is the parasite itself, rather than the infected host.
Parasites of different anthelmintic genotypes (eg. RR, Rr
or rr, where R is the anthelmintic-resistance allele) were
modeled deterministically within a host population that
was subjected to various anthelmintic dosing regimens.
In each parasite generation, adult parasites mate and
produce progeny whose genotype frequencies are deter-
mined by Hardy–Weinberg processes from the allele fre-
quencies of the parents. This mating function allowed
the frequency of the anthelmintic-resistant and -sensitive
alleles to be followed within the parasite population.
One important prediction from this model was that there
was little difference in the rate of spread of anthelmintic-
resistant parasites under chemoprophylatic or chemo-
theraputic dosing regimens. Therefore, this model di-
rectly uses population genetic and epidemiological
modeling to understand the movement of anthelmintic
parasites through a host population subject to different
dosing regimens and, thus, is powerfully predictive.
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Transmission and gene flow
Parasite transmission at the individual scale de-

scribes the infection of one host by another. Although
this is the scale at which it is often considered, this
process also extends to the population level and, at the
largest scale, can describe the spread of a parasite
species, strain or genotype across a continent. The con-
cept of gene flow in population genetics describes the
movement of genes through or between populations2.
In this respect, it is analogous to parasite transmission at
the population level. Just as parasite transmission at this
scale arises from a combination of individual infections,
gene flow arises from a combination of the mendelian
inheritance of genes at the individual scale. Thus, popu-
lation genetics can help build theoretical models of
infectious disease and can also be used empirically to
understand patterns of parasite transmission in the field.

The measurement of transmission rates in the field is
difficult. The ability to make such measurements can be
used to predict the spread of an epidemic or the effec-
tiveness of a vaccine or other therapy at the level of a
community, country or continent. The central problem
is determining the origin of a new infection because a
naive individual might be exposed to many carriers. An
additional problem is that hosts can be superinfected,
and it can be difficult to know when a host acquires a
new infection, let alone the origin of that infection.

A common form of population genetic analysis is to
partition genetic variation within a hierarchical struc-
ture, ie. to assay genetic variation at the level of the in-
dividual – the ‘subpopulation’ and the total popu-
lation2,7. This approach has been used successfully in
several field studies using genetic markers8. It not only
provides a description of the structure of genetic vari-
ation found within a parasite population, but also
gives estimates of the rates of gene flow in the popu-
lation and, hence, transmission through the host popu-
lation. A good example of this style of analysis is the
work by Blouin et al.9 Here, genetic variation of tri-
chostrongylid nematodes within populations of white-
tailed deer and domestic cattle across the USA was
compared. Greater genetic structuring was found
within the parasite population of deer compared with
that of cattle. It was concluded that this resulted from
the higher rates of gene flow in the parasites of cattle
which was, in turn, caused by the movement of cattle
by humans. Conversely, the lower rates of gene flow in
parasite populations of deer was thought likely to re-
flect the fact that populations of wild deer showed less
geographical movement. Another example is a study
by Anderson et al.10, which determined that there was
little gene flow between the Ascaris populations of pigs
and humans in Guatemala, even though infected pigs
and humans could both be found in the same commu-
nity. The authors concluded that two populations of
Ascaris exist, which are separated by host preference.

As parasites are also compartmentalized within hosts,
could partitioning genetic variation be used to measure
between-individual transmission dynamics between
hosts? Unfortunately this is not the case: genetic differ-
entiation and, hence the power of this analysis, is
quickly lost except under very low rates of gene flow11,12.
Thus, this style of analysis appears best suited to assay-
ing genetic structure over large geographical areas or
between parasite populations, as in the examples above.
The assay used to analyse genetic variation must be

appropriate to the scale of the study. A successful ap-
proach to dissecting microepidemiological patterns has
been used to determine the transmission of HIV. As HIV
replicates, mutations accumulate in its genome, and this
genetic variation can be identified by sequencing. From
sequences of HIV isolates taken from infected individ-
uals in the UK and Ireland, this genetic variation can be
used to construct a phylogenic tree that mirrors the
spread of the virus through the population. This work
identifies distinct lineages of HIV grouped within
haemophiliacs and within intravenous drug users,

Box 1. Modeling Anthelmintic Resistance 

Modeling both the frequency of anthelmintic-resistance
alleles and the density of anthelmintic-resistant parasites
presents a problem. This is because the frequency of
anthelmintic-resistance alleles rises at the expense of
anthelmintic-sensitive alleles according to their relative
fitness. However, the density of the parasite population
increases according to its absolute fitness.

First, consider the genetics. Following anthelmintic
treatment, the frequency of a dominant allele for anthel-
mintic resistance (solid line) increases rapidly, as shown in
Fig. I (below). As the frequency of the anthelmintic-resist-
ance allele increases, so too does the proportion of anthel-
mintic-resistant progeny produced in each generation
(dashed line). Note that, even after anthelmintic treatment,
anthelmintic-sensitive progeny can still be produced by
the union of two gametes carrying the recessive, anthel-
mintic-sensitive allele. However, all such anthelmintic-
sensitive progeny are killed before they can reach maturity
and therefore cannot contribute to the next generation. The
proportion of anthelmintic-resistant progeny produced
can also be viewed as the mean fitness of the parasite
population. Thus, the mean fitness of the parasite popu-
lation increases with the frequency of the anthelmintic-
resistance allele. This view is in contrast to standard epi-
demiological models, which tend to view parasite
populations as homogeneous and use a constant absolute
parasite fitness, R0. Because the rate of increase of the para-
site population (and therefore the density of the parasite
population) depends upon R0, the epidemiology of
anthelmintic resistance cannot be determined without a
model that incorporates the underlying genetics of resist-
ance. This can be achieved by considering the absolute
fitness of the different parasite genotypes within an epi-
demiological framework and linking these genotypes with
a mating function based on the underlying genetics6.
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whereas homosexuals show a more diverse origin of
HIV13,14. At the finest scale, this approach has identified
the transmission of HIV from one individual to another
– in one notable case showing infection of five individ-
uals by a dentist15. The estimation of small-scale trans-
mission patterns from field data is an essential first step
to understanding the influence of other contact networks
on the movement of infection through a population.

Transmission heterogeneity
Many of the theoretical challenges faced by epidemi-

ologists and population geneticists are problems of
scale. How does one go from a mechanistic explanation

of an underlying process at the indi-
vidual level to the population-level
consequences of that process? A par-
ticular challenge common to both
epidemiology and population genet-
ics is the introduction of hetero-
geneity into the underlying process 
– infection or inheritance – and its
consequence upon population-level
dynamics3.

The use of genetic markers in field
studies has highlighted the impor-
tance of population structure within
host populations. This structure leads
to heterogeneity in between-individ-
ual transmission rates. The simplest
models of micro- and macroparasitic
infection assume that individuals of
the host population mix freely, and
that infection of an individual might
be the result of a contact with any
other individual in that population.
In reality, a host population might be
distributed spatially and temporally
and might be split into demographic
groups. Infection is, therefore, most
likely to occur between spatial neigh-
bours or between individuals in the
same demographic group. A current
focus of epidemiology is to model
spatial and demographic heterogen-
eity, with the aim of understanding
the fundamental processes under-
lying infection dynamics and of pro-
viding a framework for evaluating
potential control strategies for infec-
tious disease. The difficulty is how to
model the population-level dynamics
of heterogeneous populations accu-
rately without retaining the details of
every member of the population3.

To do this, it is crucial that theo-
retical models are directed by obser-
vations from the field. A good ex-
ample of modeling demographic
heterogeneity comes from measles.
This is an excellent test-bed for
many models of epidemics because,
as a notifiable disease, accurate
records exist of every case of
measles since World War II. By con-
sidering the biology of the system,
the importance of social and geo-

graphical structure in the contact network has become
apparent, ie. heterogeneity in transmission rates
within families, between children at the same school
and between communities16–18. Incorporating such het-
erogeneity into theoretical models has led to important
improvements in the fit of these models to empirical
data, confirming that heterogeneity is indeed an im-
portant factor in generating the observed patterns of
measles outbreaks.

Modeling spatial heterogeneity is also an important
issue in epidemiology. Populations are composed of
individuals that interact with only a limited number of
other individuals. Nevertheless, every member of 
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Box 2. Contact Networks in Epidemiology

Contact networks (Fig. I, below) can be used in epidemiology to model trans-
mission. In these networks, a host (circle) interacts with several other hosts
within the population, which in turn are connected to a wider network of hosts.
In Fig. Ia, the number and strength of contacts experienced by each member of
the population is equal. However, this model is unrealistic because it does not
take into account spatial heterogeneity in transmission. In Fig. Ib, the contact
network arises from a random arrangement of connections between individuals,
which generates spatial heterogeneity in transmission. Each individual can be in-
fected by, and transmit infection to, neighbours to which it is connected. The
mean number of connections between individuals and the interconnectedness of
individuals (the number of triangular or circular network paths) determines the
transmission dynamics of the system16,17. Other forms of heterogeneity, such as
increased probability of transmission with decreased separation between indi-
viduals can, in principle, also be accommodated within this network33. A square
lattice model of epidemics is shown in Fig. Ic. Each site is either unoccupied
(blank), uninfected (open circle) or infected (closed circle). At each time point, in-
fected individuals transmit infection to neighbouring uninfected individuals
with a fixed probability. Infected individuals then become immune to further in-
fection and are lost from the lattice to leave an unoccupied site. At the next time
point, these unoccupied sites are filled again by uninfected individuals. This
model has been applied successfully to measles epidemics21,34. A small-world
network is shown in Fig. Id. Most contacts are between adjacent individuals, but
occasional long-range contacts also occur. The network is constructed by first
generating contacts between adjacent individuals in a ring lattice, then randomly
rewiring a small proportion of these contacts elsewhere in the network20. In prac-
tice, simulations of the square lattice (Fig. Ic) and the small-world network (Fig.
Id) typically involve more than 1000 individuals, rather than the few shown here.
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the population can ultimately be linked to every other
via a contact network. Several possible contact net-
works are shown in Box 2. An extremely regular
system of contacts (Box 2 Fig. Ia) is biologically unreal-
istic. Empirical evidence from studies of HIV trans-
mission highlights the importance of structure within
contact networks, with the number of contacts between
individuals varying through space and time. Box 2 
Fig. Ib–d gives alternative schemes that attempt to
capture features of spatial heterogeneity in contact
networks16,19–21.

Modeling spatial heterogeneity is a topic where epi-
demiologists have sought inspiration from outside the
traditional ecological literature. In this regard, the physi-
cal sciences have provided some interesting ap-
proaches. One problem from physics concerns predict-
ing the large-scale properties of individual interacting
elements, such as grains of sand in a sandpile or the
alignment of magnetic moments in ‘spin glasses’ (an
otherwise unappealing group of metal alloys)22. A suc-
cessful approach has been to set out a lattice of cellular
automata, each of which acts according to a set of sim-
ple probabilistic rules depending upon the state of its
neighbours. Rhodes and Anderson used this method to
describe measles epidemics21. They constructed a lattice
consisting of sites that were either unoccupied, occupied
by uninfected individuals or occupied by infected indi-
viduals (Box 2 Fig. Ic). Infected individuals could infect
their neighbours with a certain probability. They were
able to show that the size of epidemics, in both simu-
lated studies and using data from the Faroe Islands, fol-
lowed a characteristic power law distribution; ie. a dis-
tribution that shows an inverse straight-line relationship
between the log of the frequency of an event and the log
of the size of that event, in this case epidemic size. Such
power laws have been found in a wide range of natural
phenomena, such as earthquakes and extinctions in the
fossil record, and are highly indicative of complex,
dynamic systems poised between stasis and chaos22.

Another interesting example of spatial modeling of
disease epidemics comes from the ‘small-world’ net-
works of Watts and Strogatz, which attempt to mimic
social interactions20. An example of such a network is
shown in Box 2 Fig. Id. Interactions are most likely be-
tween near neighbours, but occasional long-range in-
teractions also occur. These long-range interactions re-
duce the average distance between any two
individuals within the network, while the fact that
most interactions are still with near neighbours main-
tains the spatial clustering of the network. They
showed that an epidemic can move through such a net-
work more easily than through a regular lattice.

Heterogeneity in infection patterns is a biological real-
ity and must be incorporated into epidemiological mod-
els. As outlined above, there are several approaches to
modeling heterogeneity in disease transmission, and the
approach used will depend upon both the disease and the
questions one wants to ask. However, the crucial test of
any model is how well it explains observed patterns of
data. In the future, these models will not only have to ex-
plain the incidence of disease (as for the measles exam-
ples above), but also the observed patterns of genetic vari-
ation exhibited by genetic markers in field studies. As
these epidemiological models succeed in explaining the
population genetics of parasites, their power as predic-
tive tools of infectious disease will increase enormously.

Emergent properties and epistasis
Spatial modeling in epidemiology has highlighted

the importance of interactions between individuals for
infection dynamics. Interactions between genes might
play just as an important role in population genetics.
Genetically complex traits such as weight, height, etc.
are governed not by a single locus, but by a large num-
ber of loci. How do these loci act to produce a complex
trait? In the simplest case, the effect of each locus is ad-
ditive (Fig. 1a) – the sum of the effects of all the loci
gives the expected value of the trait23. In this case, the
population-level dynamics, ie. the response of the trait
and of the allele frequencies to selection, are well un-
derstood. The situation is considerably more compli-
cated if the loci governing a complex trait interact with
each other (Fig. 1b). This is called epistasis. Here, the
value of the trait is a complicated function of all loci,
reflecting the number and strength of interactions
among all of the loci24. The population-level conse-
quences of epistatic interactions at just two or three loci
are still poorly understood, but it is a pressing concern
given current genome research, which offers the po-
tential to investigate the genetic architecture underlying
complex traits3,25,26.

The root of the problem of understanding epistatic
interactions is somewhat similar to the problem of mod-
eling spatial dynamics in epidemiology. In the case of
epistasis, genes act as part of a network of interacting el-
ements. In the case of epidemiology, individuals infect
each other within a contact network. The problem is one
of scale. The evolution of an entire genome or the tem-
poral dynamics of an epidemic is likely to be an emer-
gent property of the system that is not readily apparent
from the small-scale process of inheritance or infec-
tion22,27,28. Understanding how such emergent proper-
ties can arise is, therefore, a challenge common to both
epidemiology and population genetics.

Infection and disease
Epidemiology studies the population dynamics of

disease; however, infection per se is not equivalent to

Fig. 1. Epistasis in population genetics involving a complex trait gov-
erned by a large number of loci (squares) is represented here. In
(a), the loci contribute additively to the value of trait whereas in
(b) the loci interact with each other (positively or negatively) and
the value of the trait is a complicated function of all the loci. Note
that, owing to the epistatic interactions in the underlying genetic
architecture of the trait, in (b) predicting the response to selection
of a locus or of a trait is more complicated than in (a)25,27,28.

Trait value (phenotype) =
additive effects

 _  _+ + + _

(a) Loci
     genotypes

(b) Loci
      genotypes

Trait value (phenotype) =
additive effects + epistatic interactions
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disease. Infection is the presence of infectious agents in
a host, disease is the deviation from normal health.
Thus, disease is a possible, but not a necessary, out-
come of infection. Consider hookworm infection. To
understand hookworm disease, it is not enough to
know whether a patient is infected. Rather, one also
needs to know how many hookworms are present
within a patient. An infection of 50 worms can cause
mild symptoms, whereas an infection of 1000 worms
will result in severe symptoms29. The state of an indi-
vidual’s immunity is also an important factor in the
progression of a disease. With malaria infection, indi-
viduals with clinical immunity can have a malaria in-
fection but have no disease or pathology. In contrast,
those without such immunity will have disease and
pathology for similar levels of infection.30

Therefore, an epidemiological model should follow
not only the progress of an infection, but also the poss-
ible consequences of infection, namely disease. To some
extent, the impact of infection is considered in epidemi-
ological models that monitor the immune status of a
host31 or that consider several different parasite
strains32. In practice, the disease associated with the in-
fection of an individual will be a complex result of
many factors, including the genetics of both the host
and the parasite, the nutritional or physiological state of
the host and the history of host exposure to both con-
specific and non-conspecific infections. There might be
no simple, linear relationship between these factors and
disease; disease is, therefore, best viewed as an emer-
gent property of infection. Earlier, we stressed the im-
portance of emergent properties in epidemiology and
population genetics. Disease is an emergent property of
infection and belongs to the same class of problem.

Working at the interface
What benefits will result from work at the interface

of population genetics and epidemiology? First, popu-
lation genetic and epidemiological models are now be-
coming integrated, especially in models of anthelmintic
resistance. This is a trend to be welcomed because it
helps to produce predictive models for use in parasite
control programmes. Second, field studies using mol-
ecular markers and population genetic theory should
encourage the development of epidemiological models
that provide a deeper understanding of the impact of
heterogeneity on the processes of transmission. Third,
genetics, epidemiology and, indeed, disease all show or
have the potential for emergent properties. These
properties are not yet understood and are an important
area of current and future research.
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The Society for Tropical Veterinary Medicine (STVM)
(http://www.cvm.okstate.edu/~stvm/) and the Wildlife Disease
Association (WDA) (http://www.wildlifedisease.org/) are
announcing an International Joint Conference ‘Wildlife and
Livestock Disease and Sustainability: What makes sense?’ 
22–27 July 2001, Kwa Maritane and Bakubung, Pilanesberg
National Park, South Africa. The event is coordinated by Event
Dynamics, see http://www.eventdynamics.co.za and http://www.
eventdynamics.co.za/stvm/index.html for more details.
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