UNIVERSITY OF LIVERPOOL

ELEC450

MENG GROUP PROJECT

Robot Object Search and
Retrieval Team

Authors:

Jason PRICE

Gareth WALLEY
Peter HILL

Lyudmil VLADIMIROV
Tsvetan ZHIVKOV

Supervisors:
Prof. Simon PARSONS
Dr. Elizabeth SKLAR

May 18, 2015

Abstract

This document contains the report for the Robot Object Search and Retrieval
Team. Included are sections outlining the aims and objectives, background theory;,
methods and design, results and conclusions. The project covers 5 sub-projects;
mapping and navigation, object location, multi-robot communication, object re-
trieval using a robotic arm and iPad interface to display data. The robot team is
able to map the arena, and retrieve objects from the arena using pose’s uploaded
through a server. The future work and conclusions section summarise the report
and propose future work.

Contents

Introduction

1.1 Aims and Objectives
1.1.1 Ground-Based Robot Team Objectives
1.1.2 Quad-copter Objectives
1.1.3 Robot Arm Object Manipulation Objectives
1.1.4 Multi-Robot Communication Objectives
1.1.5 iOS Application Objectives

1.2 Industrial Relevance

Theoretical Background

2.1 Robot Localization
2.2 Robot Mapping
2.3 Robot Navigation
2.4 Robot Arm Background L.
2.5 Quad-copter Research00
2.5.1 ARDrone2.0
2.5.2 Nano Quad-copters
2.6 Motivation to use Natural User Interface
2.6.1 Choice of Device L.
2.6.2 i0S Application Objectives:
Materials and Equipment
3.1 Hardware
3.1.1 uFactory uArm
3.1.2 Turtlebot 2
3.1.3 ARDrone2.0
3.2 Software
3.2.1 ROS Packagesused
3.2.2 Other Software
Design and Methodology
4.1 Ground Robot Team
4.1.1 Mapping Robot o
4.1.2 Pickup/Arm Robot oL
4.1.3 Carrier/Bin Roboto oo
4.2 Robot Arm Methodology

4.2.1 Arm Assembly and Modifications

14
14
14
16
17
18
18
19

4.2.2 Coloured Blob Detection 27

4.2.3 Controlling the Arm 28
4.3 Communications and Server 33
4.3.1 Server State Machine 33
4.3.2 Server NS Chart 34
4.3.3 ArmBot Client NS Chart 36
4.3.4 BinBot Client NS Chart 37
4.3.5 MapBot Client NS Chart 38
4.3.6 FlyBot Client NS Chart 39
4.4 Simulator Research 39
4.4.1 Install and Setup 39
4.4.2 Simulations 40
4.5 ARDrone 40
4.5.1 Connecting 40
4.5.2 Colour Detection 40
4.5.3 Navigation 41
454 Localisation 41
4.6 iPad Application Methods 42
4.6.1 Design view and properties: 43
Results 50
5.1 Ground Robot Team 50
5.1.1 Mapping Robot oo 50
5.1.2 Arm and Carrier Robots 54
5.2 Communications and Server 62
5.2.1 Design Files o 62
5.2.2 Server Results 63
5.2.3 Client Results 66
5.2.4 ArmBot Client Results 68
5.2.5 BinBot Client Results 70
5.2.6 MapBot Client Results 70
5.2.7 FlyBot Client Results 71
5.2.8 ROS Data Transformations 71
5.3 Robot Arm 72
5.3.1 Flashing Code to the Arm 72
5.3.2 Accuracy and Repeatability 73
5.3.3 Final Design of State Machine for the Arm 75
5.4 Simulators 78
54.1 Imstall and setup 78
5.5 Quad-copter 79
5.5.1 Connecting 79
5.5.2 Colour Detection 80
5.5.3 Navigation oo 80
5.5.4 Localisation 82
5.6 10S Applicationo 83

5.6.2 Receiving Pose, State and Images from Server 84
5.6.3 Warping Image and Unsuccessful Loading of Image in image-

VC: 85

6 Discussion and Conclusions 88
6.1 Future Work 88
6.2 Conclusions s, 89

References s 93

Chapter 1

Introduction

1.1 Aims and Objectives

The aim of the project is to build and program a robot team, using any resources
within the laboratory that will be able to locate, pick-up and remove ‘objects’ from
the robot arena. There are 5 main parts to the project, with each part being com-
pleted by one person. These are TurtleBot mapping and navigation, Quad-copter
navigation and object location, iOS application development for data analysis,
communication between robots and robot arm control and object recognition.

1.1.1 Ground-Based Robot Team Objectives

e Develop an approach for localisation, mapping and navigation of an unknown
environment.

e Use these methods to develop a:

— Robot to map the arena and share the map with the other robots.

— Robot with an arm to move to and pick-up objects in the arena after
receiving the locations of the objects from the quad-copter.

— Robot to collect the object from the arm robot and return it safely to
base.

1.1.2 Quad-copter Objectives

e Modify an existing quad-copter to run ROS.
e To implement a navigation stack on the quad-copter.

e The quad-copter must be able to locate objects of interest in the map, and
pass their positions to the other robots.

1.1.3 Robot Arm Object Manipulation Objectives

e Integrate the arm with ROS so that it can send and receive data over serial
connection.

e Use a camera mounted to the end of the arm to identify objects and the
container to place them in.

e Pick-up objects and place them within the container on the carrier robot.

1.1.4 Multi-Robot Communication Objectives

e Develop a communication protocol for data transfer between robots.
e Co-ordinate robot actions using a server state machine.

e Interact with the iOS application to allow the user to control the system
when necessary.

1.1.5 iOS Application Objectives

e Graphically display information from the system within an iOS application,
such as the position of the robots on the map.

e Allow the user to control the robot team manually when required.

1.2 Industrial Relevance

With some of history’s most significant technological advancements taking place
over the past decade, one major example being the rapid increase in computer
CPU performance, autonomous robotic systems become an increasingly important
trend within the modern market environment. Due to this reason, a significant
portion of today’s research into state of the art robotics focuses on both entirely
autonomous systems, as well as systems that promote human-robot interaction,
which can provide solutions to a wide variety of emerging tasks.

Some of the most trending research topics, involve the development of efficient
algorithms for performing essential robotic tasks, such as those of robot localiza-
tion, navigation and mapping. Another subset of the undergone research focuses
on multi-agent interaction, including inter-robot communication, as well as argu-
mentation and auctioning mechanisms, which can be readily applied to a collective
team of robots to ensure successful co-operation of its members. Commercial de-
velopment makes use of the outcomes stemming from the above research fields, in
order to avoid ‘re-inventing the wheel’ and to identify the most suitable compo-
nents, which shall provide the optimal solution to the application’s specification
and require the least amount of time and effort in order to be implemented.

The task of locating and retrieving target objects from an unknown environ-
ment, using a cooperative team of heterogeneous robots, can be thought of as
having a wide range of profound applications. First and foremost, the scenario
of emergency situations, where deployment of a human team to perform such a
task can impose a great risk on the lives of involved members. One example of
such situation is in the case of a terrorist bomb-threat where the detection, pickup
and transportation of suspicious objects is required. Another example applica-
tion could be the retrieval of objects from hostile/hazardous environments, such
as a burning buildings or a nuclear plant following a catastrophic event (e.g. fire,
nuclear reactor meltdown etc.). Looking at the situation from a different perspec-
tive, such a team of robots could be utilized in order to implement autonomous
collection and disposal of trash from indoor environments, such as a home or an
office.

As it becomes obvious, the different possible applications of the target system to
be developed can range to a great degree and the system functionality can be easily
extended depending on the exact end requirements for each application. To the
best knowledge of the authors, at least at the time of formatting this paper, there
do not exist any open-source implementations of a team with the same, or even
closely related, characteristics. Thus, the resulting developed system, stemming
from the work done in due course of this project, has a great potential of providing
the base groundwork and motivation for future research and development.

Chapter 2

Theoretical Background

2.1 Robot Localization

By definition, robot (objective) localization is the problem of estimating a robot’s
pose within an objective frame of reference, while it moves and senses it’s sur-
roundings. With the pressuring need for hands-off autonomous systems, having
knowledge of the robot’s position inside it’s environment becomes one of the most
basic requirements. This in turn, creates the need for robots that are equipped
with sophisticated sensors and algorithms, that shall allow them to build a suf-
ficiently detailed perception of their environment and make efficient use of this
perception to exhibit spatial behaviour.

Sensors are essentially information sources, which observe a certain process
and report the outcome in terms of organised and usable data. Just like in all
animals, including humans, the information sources available to a robot, can be
categorised into two main classes; idiothetic and allothetic. Idiothetic sources
(a.k.a. cues), produce data that emerge from internal sensors observing the robot’s
own behaviour. One major example of an idiothetic source is a servo motor, which
provides odometry data computed by keeping track of the angle of rotation or the
number of revolutions of a robot’s wheels. Even though this could be sufficient
to provide an absolute position of the robot within it’s environment, it is prone
to cumulative error which can grow rapidly (e.g. drifting wheels). On the other
hand, allothetic cues provide data which is acquired through observation of the
environment using sensors (such as a camera, radar or lidar system). Allothetic
sources suffer mainly by the problem of ‘perceptual aliasing’, where two entirely
different places could look, and thus be perceived as, the same. Examples of both
idiothetic and allothetic information sources on a popular robot platform, which
is also the one used extensively during the course of this project, are shown in
Fig. 2.1. Most biologically inspired models, including robots, use a combination
of the two sources to achieve spatial awareness. This can be achieved by the use
of either Kalman [1] or Particle [2] filters which allow for fusion and correction of
pose estimates from multiple sources. As a result, allothetic cues can be used to
compensate for cumulative errors from idiothetic sources, while on the contrary

idiothetic information can be used to disambiguate between different locations
with great morphological resemblance.

Idiothetic sources - Allothetic sources B

Gyroscope

R , j Microsoft Kinect stereo camera
Servo motors Bumper Sensor

— CLiff Sensors

TurtIeBot‘

Edited image from: youjinrobot.com

Figure 2.1: Examples of idiothetic and allothetic data sources illustrated on a
commercially available development robot platorm.

The robot localization problem can be broken down further into two sub-
problems. First is the problem of Simultaneous Localization And Mapping (SLAM),
in which case the robot has no previous knowledge about it’s environment and is
required to draw a map -or a floor plan- to represent it. This problem will be more
thoroughly discussed in Section 2.2. The second case builds on the assumption
that a priory -or previously learnt map- of the environment is already available
and tackles the problem of localization within it. One of the most successful lo-
calization approaches, namely Monte Carlo Localization (MCL) [3], makes use of
probability theory to build models of the uncertainty involved in all aspect of a
robot, including the current pose estimate and the data acquired by the sensors.
Classical kinematics provides the expected global trajectory of the robot, when
certain controls are applied to it. However, this motion is uncertain, since kine-
matics involve deterministic calculations, which in turn follow certain assumptions
that do not necessarily hold in practice. Similarly, there can exist many unforesee-
able and uncotrollable factors that may affect the readings coming from sensors,
which implies that sensor information is also uncertain. Probabilistic models of
these uncertainties provide the basis for application of Bayesian inference, which
constitutes the driving force behind localization. MCL, as described by F. Dellaert
and D. Fox [3], makes use of the concepts described above and is implemented by
recursive application of re-sampling and particle filtering processes to an initial
set of randomly generated particles, in order to effectively reject samples with low
weights/probability and promote once with high weights. The final result is a
relatively accurate estimation of a robot’s pose, including estimated covariance,
relative to a predefined frame.

2.2 Robot Mapping

As research into autonomous robots -and robotic theory in general- advances,
the need for acquiring and storing a more and more accurate perception of the
surrounding environment arises. Within nature, evolutionary shaped blind action
(such as triggered response) could be sufficient to allow some species to survive.
However, in order for a robot -or an agent- to be able to plan ahead, making
use of current perceptions and memorized events, while also foreseeing expected
consequences, a more cognitive approach is required. This is where representation
of the environment using maps comes in the spotlight.

In general, there are two different types of approaches for representing maps.
In the first case, that of topological maps, the produced map is essentially a graph,
in which different nodes are used to represent different places, while the edges
between them show the respective paths. Distances between nodes are generally
also stored, however this type of map is more concerned with the topological -hence
the name- relations between different places rather than the actual composition
of the environment. In contrast to the former type, metric maps provide a more
human-like approach, where objects (i.e. obstacles) are placed with precise co-
ordinates in a 2-dimensional (or even 3-dimensional) plane/grid. Since uncertainty
is always an issue when working inside non-ideal environments, many mapping
techniques, irrespective of the type of approach, use probabilistic theory to account
for fluctuations in the received perceptions. The majority of the most successful
mapping approaches involve a combination of both types of map representation
in order to capture both the topological and geometrical characteristics of the
environment.

I

Perception Motion

@'@ | Select Viewpoint |
Map

Prediction

| Data Association ‘v—@@

Robot Pose Correction
and Map Fusion

Figure 2.2: The general SLAM process. [4]

Having solved all the uncertainties involved around map representation, the
map learning problem can be explained as follows. The robot moves around it’s
environment and gradually discovers new places within it. Newly discovered ob-
jects (i.e. obstacles), perceived from a certain location must therefore be associated
and integrated with previously registered ones in a consistent manner. The out-

come of this integration is a map which represents the layout of the whole (or
parts of) the surrounding environment. As it becomes obvious, the problem of
map learning cannot be separated from the localization process, since information
about the robot’s position within it’s environment, or the constructed map, is nec-
essary in order to effectively perform the relation and integration of new areas.
Thus, the problem that needs to be solved is that of Simultaneous Localization
and Mapping (SLAM).

From it’s definition in the world of computer science and robotics, SLAM is
the computational problem of constructing and updating a map, while at the same
time keeping track of an agent’s location within it. While at a first glance, the prob-
lem seems quite similar to the widely known chicken and egg problem, intensive
research over the past few decades has given birth to several different algorithms
which manage to solve the problem, with high proximity and in tractable time.
The techniques used are somewhat similar to the ones for solving the sole problem
of robot localization, as described in 2.1, and again involve the use of particle or
extended Kalman filters to provide estimates of the robot’s location. S. Thrun
provides an accurate summary of the different approaches to SLAM, including a
rough comparison, in his article [5].The general SLAM process is depicted in Fig.
2.2, where the association and integration of the local perception to the global one
becomes clear.

2.3 Robot Navigation

Whereas the term Navigation originally applied to the process of directing a ship
to a certain location, over the past century the very same concept has been repet-
itively applied to all types of mobile devices. The general goal of navigation is,
given a set of start-end points on a plane, to find the shortest possible path be-
tween them and create a plan in order to guide a mobile entity through it. For
any autonomous platform, the ability to navigate it’s environment, while main-
taining spatial awareness and avoiding dangerous situations (i.e. collisions), is a
very crucial, but also quite, complex task.

Robot navigation essentially builds on the two previously mentioned processes;
robot localization (see 2.1) and robot mapping (see 2.2) and fuses the information
provided by the two in order to achieve its goal. Representation of the surrounding
environment using a map provides a robot with the ability to place itself within
it and then make plans about it’s actions. The navigation process could then be
conceptually divided into two sub-processes; Global Path Planning and Local Path
Following. Both sup-processes make use of the map and the robot’s pose in order
to compute their output. The first step involves the computation of the global plan
that the robot needs to adhere to in order to achieve it’s goal. This plan essentially
includes the core trajectory that the robot should follow. Following, during the
second step of the process the correct navigation instructions are provided to the
motors of the robot by a reactive controller, in order to safely, navigate through
the previously acquired path, while using sensory information in order to avoid

any obstacles met on the way. The two sub-processes generally interleave, since
generation of an alternative global plan could be required, in the case that a
previous one is deemed unachievable or too ‘expensive’ to achieve.

Even though change of robotic platform would imply that modifications in
the navigation process are necessary, the general outline of all approaches follows
the concept described in the previous paragraph. Path finding is generally im-
plemented with the use of search algorithms such as several variations of D* [6],
A* [7] or Dijkstra’s [8] algorithms. Implementation of reactive Path following and
obstacle avoidance include the use of concepts such as Vector Field Histograms
(VFHs) [9] in order to utilise sensory information and generate a direction for the
robot to head in, while velocity space approaches, such as the Dynamic Window
[10] or the Lane Curvature [11], are used to perform a search of and generate the
commands controlling the robot’s movement, such as translational and rotational
velocities.

2.4 Robot Arm Background

The four axes are controlled by:

e A motor in the base to rotate the arm 180° about the z-axis

e Two motors mounted to the side of the base to control the position of the
end effector in 2-dimensional space (shown in figures 2.3 and 2.4).

e A motor within the end effector to rotate manipulated objects.

The servo motors manipulating the arm are located in the base, providing the
required low centre of gravity. The end-effector is kept parallel to the floor by a
set of beams connected to the base in parallel with the main beams. The arm
has a much simplified work envelope to most robotic manipulators with higher
degrees of freedom (see figures 2.5). As such, there is only one combination of
joint angles possible to reach each location within the workspace. This makes
the overall movement of the arm simple to model in comparison to more complex
systems such as 6-axis arms where joints can be arranged in multiple ways to
achieve the same positioning of the end effector, and transition from one position
to another.

: Height (h)

Stretch (S)

Figure 2.3: Geometry of the robotic arm.

Figure 2.4: uArm with joints highlighted to show axes and joint rotation.

i

/—PR =340mm
280

R=T0mm

0 20 40 60 B0 100 120 140 160 180 200 720 240 260 280 200 320 340 360 m

Figure 2.5: Work envelope enclosing the robotic arm.

With one servo controlling the pitch of arm section A (in figure 2.3, rotates
about joint highlighted in red, connected to green bar) and another controlling
the pitch of arm section B(in figure 2.3, rotates about joint highlighted in red,
connected to blue bar) indirectly from the base. From figure 2.3, the required
angles 04, 0, and ¢ for given values of height(h), and stretch(s) can be calculated
by using the cosine rule:

A? = B* + C* — 2BC cos(64) (2.1)

Applying this to the model gives three equations which can be rearranged to
determine relationship between s, h and each angle:

(s* + h?) = A% + B* — 2ABcosf 4 (2.2)

(A% + B%) — (s* + %)

= 04 = arccos 5 AB (2.3)
B* = A + (s> + h?) — 2AVs2 + h2 cos b, (2.4)
A? + (s> + h?) — B?
= 6. = arccos 2.5
2Av/ 5% + h? (25)
The angle is given by:

h
tan GB = — (26)

s

10

h
= fp = arctan — (2.7)
s
The angle of the servo motor A, controlling section A of the arm can then be
determined as:

emotorA - GB + ‘90 (28)

To control the movement of section B of the arm, the servo motor B is reversed
as it is located on the opposite side to motor A. The angle is therefore determined
as:

Omotors = 180 — 04 — O — O (2.9)

This is implemented in the function setPosition(), within the UF_uArm.h
library provided by uFactory on GitHub [12].

2.5 Quad-copter Research

2.5.1 ARDrone2.0

The ARDrone is the easiest and most popular pre-built quad-copter which has a
ROS package to interface with it, this gives it a big advantage, as it is a robust,
reliable and well developed platform, which can be easily linked to and used with
ROS. The ARDrone has an onboard ARM Cortex A8 which allows linux 2.6.32 to
run, this can allow some customisation of on-board parameters. With this size of
quad-copter it would be simple to add a raspberry pi 2 that would allow on-board
running of ROS, also would allow more complex code to be run on-board due to
the added processing power.

2.5.2 Nano Quad-copters

Research into nano quad-copters has shown that they have very little on-board
processing, very few nano quad-copters have automated flight, as-well as this they
have a very small capacity for sensors, this often leads to nano quad-copters using
external sensors to give them position. The crazy flie is a nano quad-copter that
is designed to modified, this is advantageous as it has been built with extra flight
power than it needs so it can carry extra weight, extra processing power to allow
custom code to be run. Many people have used the crazy flie with ROS, however
most use external sensors such as the kinect to provide positional data, this is
demonstrated in this video [13]. There is a ROS package for the crazy flie, however
it would have very limited uses as an automated quad-copter due to its processing
power.

11

2.6 Motivation to use Natural User Interface

The need for a natural user interface in this project is an important stepping stone
to improving the interaction and usability of robotic systems in a conventional
environment. Human Computer Interaction has become very important with pro-
gression in technology and bespoke software, it is more common place to have
visual interfaces for controlling home/work automated systems i.e. internet of
things’. A GUI’s main function is to hide unnecessary complexity from the user,
allow for interaction with a computer system and display a simplified visual repre-
sentation of data using WIMP style interface. The most important aspect of this
is that a GUI interface can usually be interpreted by the user with a single glance.
In 2007 with the release of the Apple iPhone [14], it very quickly and dominantly
pushed forward the need for more powerful mobile devices. This popularised the
use of the post-WIMP method of interacting with multi-touch sensitive devices.
The post-WIMP method for interface design, also known as NUI goes beyond
the simple WIMP method and makes use of other natural human interactions
(i.e.touch, verbal commands, gestures etc.) to provide a natural experience [?].
The NUI interface reduces the need for full attention even further than that of
GUI does for the user, this allows for multiple tasks to be done on the device
even with fragmented observation. This kind of interface is becoming more useful
to users as it enables, on-the-go updates and increased productivity, permitting
attentiveness on surroundings while observing the interface and performing tasks.
This new type of interfacing allows greater human integration in interacting with
computer systems in many different respects which were not possible before. Peo-
ple with disabilities who did not have full control over such systems can now take
advantage of them as an able-bodied person can. The change in NUI method is
needed as mobile devices differ from traditional desktop computers [15] i.e.

Mobile devices are:

e Dynamically changing location
e Always connected
e Do not require continuous user attention

e Usually small screen and handheld

The need for improved human interaction with machines is due to:

Higher training costs for specialised customer/staff (complex systems, steep
learning curve)

Constant customer/staff re-training when system is updated to stay current

Higher usage and maintenance cost in the long run

Increased erroneous data, from erroneous input in the system

Lead to lower adoption, if too complex to use and understand

12

2.6.1 Choice of Device

Apple’s mobile operating system, revealed in 2007 with the release of the iPhone,
was quickly extended to support Apple’s other mobile device range, including the
iPad. The iPad is chosen as the mobile device for the NUI application program.
This is the case due to the notable popularity of the device and the large amount
of objective-C programming resources that can be found i.e. on iTunes store
alone there are 725,000 native iPad applications written [16]. The apple mobile
operating system, or also known as i0OS, interface is based on ’direct manipulation,
multi-touch gesture’ post-WIMP NUI. This style represents the rapid creation
of objects and continuous action and feedback provided by the interface. The
intention is that the user manipulates these objects, which closely correspond to
physical objects.

2.6.2 iOS Application Objectives:

e The aim of writing an application on the iPad, is to visually display infor-
mation from ROS to a remote device.

e The iPad will allow the user to control the robot team, graphically display
sensor data and provide feedback to the robot team from user decisions.

e The iOS-app and the communication server are used to capture and display
data, improve data analysis and integration of ROS in a variety of systems.

e The data will be used to display the positions of each robot in the map space
and simulate the movement on a map view in real-time, using the converted
map.png downloaded from the server.

13

Chapter 3

Materials and Equipment

3.1 Hardware

Table 3.1: Hardware Equipment used throughout the project

’ Equipment \ Description
Turtlebot 2 platform Robot Development Kit
(see 3.1.2)
Asus Xtion Pro Live Stereo Vision Camera sensor
Hokuyo URG-04LX-UGO01 Laser Rangefinder (lidar)
Dell N5010 laptop Intel Core i5 @ 2.5 GHz
6GB RAM
HP 250 G2 Intel Core i3 @ 2.4 GHz
6GB RAM
ASUS F201E Intel Celeron @ 1.1 GHz
2GB RAM
Apple iPad (iOS version 8.0.2) Tablet to display data

3.1.1 uFactory uArm

Most robotic manipulators are designed to allow for manipulation of objects within
a large, hemi-spherical work envelope. This requires that joints can rotate more
than 360 degrees. To achieve that, the control servos must be located at each joint,
giving 6 degrees of freedom. This makes the arm itself heavier as the servos add
significant weight. For the required purpose, at full extension, the arm could eas-
ily topple the mobile base it is mounted on. The servos rotating joints nearer the
base of the arm would also have greater power requirements as they would also be
required to expend more energy to support the weight of servos further up the arm.

14

Since the task specifically requires an arm to lift an object and place place it
into a container (a task that industrial pallet packing robots carry out), an arm
with a 4-axis parallel joint construction is ideal. It has the following advantages:

e Lower weight of the robot arm
e Increased payload capacity

e Reduced complexity

These have the effect of giving the robotic arm a low centre of gravity, reducing
power requirements, which is desirable when mounting the arm on top of a mobile
wheel base. It also allows quicker movements as reduced weight allows faster ac-
celeration from standstill; faster reaction times. Therefore, the robot arm selected
for this project is called the uFactory uArm [17], [18] (shown on right of figure 3.1),
a small 4-axis arm modelled on the ABB IRB460 [19], an industrial high speed
robotic palletizer (shown on left of figure 3.1). The uArm is constructed out of
laser cut acrylic, powered by standard hobby servos, and controlled by an Arduino
Uno. The physical arm itself has an action radius of between 70mm and 340mm,
however the servos are configured to reduce this to 120mm-320mm to prevent the
hardware from reaching or exceeding its limitations.

Figure 3.1: ABB IRB460(left)[20], Rendering of the uarm(right).

Not only does this arm have desirable mechanical traits, the software used to
operate the arm is open-source and can therefore be modified as required. This
would allow for commands to be sent to the arm over a serial connection through
a custom serial interface. With this open design, future modifications could be
made to the arm with the potential to upgrade servos, pump components, and

15

electronics.

The specific set of equipment used throughout the entire project is presented
and described in Table (3.1). Continuing, the core robotic platforms, available
during the design phase of the project, and their respective functionality shall be
presented in the following sub-sections.

3.1.2 Turtlebot 2

Turtlebot 2 is a relatively low-cost, personal robot development kit which is widely
supported by open-source software. One of it’s main advantages is that, at the
time of writing this paper, it is the cheapest readily available development platform
that embodies the Robot Operating System (ROS) architecture. What is more,
there exist a variety of packages within ROS specifically build to work with this
platform, which effectively minimizes the time and effort required to set-up and
start testing.

Figure 3.2: Structural layout of the Turtlebot 2 platform. (Edited image from:
http://www.robotnik.eu/mobile-robots/turtlebot-ros/)

The included hardware can vary from manufacturer to manufacturer and from
kit to kit, however a list of the main included modules, which also relates to Fig.
3.2, is presented below:

e Yujin Robot® Kobuki Differential kinematics mobile base (A);
o Microsoft® Kinect (inc. mounting hardware) (B);
e Turtlebot Structure Poles (C);

e Turtlebot Module Plates with 1-inch Hole Spacing Pattern (D);

16

http://www.robotnik.eu/mobile-robots/turtlebot-ros/

B Indoor Hull : H outdoor Hull :
14.820z / 420g 13.400z / 380g

Figure 3.3: ARDrone2.0 chassis http://ardrone2.parrot.com/ardrone-2/
specifications/

e Accessories, such as a 4S1P 2200 mAh battery, charger and interconnection
wires.

The Kobuki base provides a range of in-built sensors and actuators, as well
as power supplies to support expansion with external ones, including charging
capabilities for an additional computer (laptop). The highly accurate odometry
provided by the base, in conjunction with a factory calibrated gyro sensor, en-
able the platform to navigate precisely within an environment. Additionally, the
Turtlebot structure is highly modular, which allows for a vast variety of possible
structural compositions to be constructed. All the above mentioned capabilities,
combined with the advantage of full compatibility with ROS and a relatively low
cost, make this platform an ideal candidate for educational purposes and research
into state of the art robotics algorithms.

3.1.3 ARDrone2.0

The ARDrone2.0 is a light versatile quad-copter designed to be driven via a
mobile phone over wifi, also this quad-copter can be used with ROS using the
‘ardrone_autonomy’[21] package. This quad-copter features HD video streaming,
1GHz ARM Cortex A8 running linux 2.6.32 allowing custom code to be run on-
board on the linux OS, light weight durable chassis that allows for acrobatic flying
and gives a long lifetime.[22] The onboard Wifi adapter supports Wifi b,g,n which
allows for good quality of connections as-well as good speed, although this does not
support the 5GHz bandwidth. The above figure 3.3 shows the removable indoor
hull, this is made from polystyrene and plastic, this allows it to be flexible, so if
it does collide with something the hull bend, not break and the quad-copter will
bounce away.

17

http://ardrone2.parrot.com/ardrone-2/specifications/
http://ardrone2.parrot.com/ardrone-2/specifications/

3.2 Software

3.2.1 ROS Packages used

e ‘cmvision’ ROS package [23] - This package provides a node for the Color
Machine Vision Project[24], used for fast color blob detection. Additionally,
it includes an interface that provides a means for graphically selecting desired
colors for blobs.

e ‘cmvision_3d’ ROS package [25] - Cmvision_3d uses the /blobs topic pro-
duced by cmvision, in addition to 3D data from a registered depth image, to
publish both the position of each color blob relative to its camera frame and
frames in the tf stack for each color.

e ‘gmapping’ ROS package [26] - Provides a LIDAR based SLAM, which
allows for the creation of a 2-D occupancy grid map from laser and pose data
gathered form a mobile robot.

e ‘hector_mapping’ ROS package [27] - An alternative SLAM approach
which can be implemented without the use of odometry and produces a 2D
occupancy grid map, while also providing 2D pose estimates at scan rate of
Sensors.

e ‘hector_navigation’ ROS stack [28] - This stack provides packages related
to the navigation of unmanned ground vehicles in USAR environments. The
main packages are the following:

— ‘hector_exploration_planner’ ROS package - A planning library

that generates goals as well as paths for the exploration of unknown
environments.

‘hector_exploration _node’ ROS package - A package that provides
a ROS node using the hector_exploration_planner.

e ‘navigation’ ROS stack [29] - A 2D navigation stack that takes in in-
formation from odometry, sensor streams and a goal pose and outputs safe
velocity commands that are sent to a mobile base. The main packages used
are the following:

‘amcl’ ROS package - A probabilistic localization system for a robot
moving in 2D. It implements the adaptive (or KLD-sampling) Monte
Carlo localization approach (as described by Dieter Fox in [30]), which
uses a particle filter to track the pose of a robot against a known map.

‘map_server’ ROS package - Provides the map_server ROS node,
which offers map data as a ROS Service. It also provides the map_saver
command-line utility, which allows dynamically generated maps to be
saved to file. This package is included within the parent ‘navigation’
stack.

18

— ‘move_base’ ROS package - The move_base package provides an im-
plementation of an action (see the actionlib package) that, given a goal
in the world, will attempt to reach it with a mobile base. The move_base
node links together a global and local planner, while at the same time
maintaining a costmap for each one of the planners, to accomplish its
global navigation task.

— ‘robot_pose_ekf’ ROS package - Used to estimate the 3D pose of
a robot, based on (partial) pose measurements coming from different
sources. It uses an extended Kalman filter with a 6D model (3D position
and 3D orientation) to combine measurements from wheel odometry,
IMU sensor and visual odometry.

e ‘turtlebot’ ROS stack[31] - The turtlebot meta package provides all the
basic drivers for running and using any version of the Turtlebot platform.
The main packages used are the following:

— ‘“turtlebot_bringup’ ROS package - This package contains the stan-
dard launch files for initializing the nodes required to start the Turtle-
bot.

— ‘turtlebot_description’ ROS package - This package provides a
complete 3D model of the TurtleBot for simulation and visualization.

— ‘MORSE’ Simulator - [32] ‘MORSE is an generic simulator for aca-
demic robotics. It focuses on realistic 3D simulation of small to large
environments, indoor or outdoor, with one to tenths of autonomous
robots.’

e ‘Gazebo’ ROS package - [33] ‘gazebo_ros_pkgs is a set of ROS packages
that provide the necessary interfaces to simulate a robot in the Gazebo 3D
rigid body simulator for robots. It integrates with ROS using ROS messages,
services and dynamic reconfigure.’

e ‘ardrone_autonomy’ ROS package - [21] ‘ardrone_autonomy is a ROS
driver for Parrot AR-Drone quadrocopter. This driver is based on official
AR-Drone SDK version 2.0.1. The driver supports both AR-Drone 1.0 and
2.0. ardrone_autonomy is a fork of AR-Drone Brown driver. This package
has been developed in Autonomy Lab of Simon Fraser University.’

3.2.2 Other Software

e Xcode 6.1 (Object-C),
e GCDAsyncSocket library,

e Python Socket and Threading libraries.

19

Chapter 4

Design and Methodology

4.1 Ground Robot Team

During the design phase of the project, it was decided that the ground-based team
would be composed of a group of three heterogeneous robots; a) the Mapping
Robot, b) the Pick-up/Arm Robot and c) the Carrier/Bin Robot. All three robots
shall use the Turtlebot 2 platform as the base structure. However, each of the three
robots should have a distinct architecture which shall allow it to complete a unique
task. This shall involve correct rearrangement of the corresponding Turtlebot
platforms, in order to allow for the robots to conform to specification.

One other design problem, which shall be common for all the robots, is the
choice of a suitable sensor, which shall provide the ‘eyes’ of the system. Optimally,
when building a 2-D map or localizing inside one, a sensor is required that can
provide distance/depth information with relatively good accuracy and precision.
Ultrasonic sensors are generally the easiest approach to this problem, however
they are typically most suitable for short range sensing and the uncertainty in-
volved in the measurements is quite immense. Thus, considering the dimensions
of the Turtlebot 2 platform and the equipment readily available in the laboratory,
two main alternative types of sensors where identified: a) Stereo Vision Camera
(Microsoft Kinect/Asus Xtion) or b) Lidar (Hokuyo URG). The perceived depth-
image of the 3-D cameras can be segmented to provide a horizontal 2-D line, in
order to simulate a 2-dimensional beam, similar to that received by a lidar. With
a quick glimpse through the technical specification of each component, the advan-
tages of the lidar become relatively clear, given the significantly wider FOV (240°
compared to 57°) and sensing distance range(2cm - 5.6m compared to 0.7m - 6m).
However, in an effort to identify the optimal approach to combining the available
physical resources to the open-source ROS compatible packages, the suitability
and performance of both types of sensors will be evaluated for all the different
robot types, and the obtained results shall be reported.

20

4.1.1 Mapping Robot

The Mapping Robot was chosen to be the first robot to explore and simultaneously
create a 2-dimensional map of the unknown environment. Once the environment
has been fully explored and a complete map has been produced, the map shall be
forwarded to the rest of the team, through the server, to provide the main means of
localization. Finally, upon confirmation that the map has been correctly received,
the robot shall return to it’s initial position. As it becomes clear, the robot shall
be required to have the ability to navigate it’s way safely through an unknown
environment, while simultaneously mapping and localizing itself within it.

Within the ROS community, there exist a number of different approaches to
2-D SLAM, each one with it’s own advantages. The two most successful, and well
documented, packages that have been identified are: a) gmapping and b) hec-
tor_mapping. According to documentation, the two packages follow two slightly
different approaches to SLAM, they are however, easily interchangeable in terms
of interfacing. One key difference between the two packages, is the fact that hec-
tor_mapping does not make use of the odometry data provided by the motors,
which can be advantageous in cases of robots that lack this kind of information,
but could have a severe impact if odometry information is essential. Due to the
fact that both packages have been used intensively over the past, by a wide range
of people, this has resulted to a significant enrichment of the available documen-
tation. This documentation will be very helpful in the case of troubleshooting or
interfacing issues, during the development phase of the project. In order to reach
a final decision, the performance of both packages shall be thoroughly tested and
analysed, in combination with each on of the available sensors, and the results
shall be documented.

The final decision to be made is that of navigation. Again, one simple approach
would involve tele-operation of the platform by wireless means. However this so-
lution, apart from striping away any sense of autonomy from the robot, it is also
prone to fail in environments where performance of wireless communication with
the platform is detrimented by external factors. The next step from simple tele-
operation of the robot, would be to implement a point to point navigation system
which shall allow a human to simply pass a goal pose for the platform to move.
Again this scenario would involve wireless communication with the platform, how-
ever the amount of information communicated shall be significantly reduced and
possible latencies would only be observed in the process of sending/receiving a
pose, rather than the navigation process itself. The dominant ROS approach to
point to point navigation within a (partially) known environment is provided by
the move_base ROS package. In addition to being a finely documented package,
move_base also comes with premade launch files, specifically tuned for the Turtle-
bot 2 platform, to allow for a quick start up.

Finally, a further improved approach would require the robot to navigate com-
pletely autonomously, in which case the only communication required would be
the ‘start-end’ signal, followed by the inevitable map transmission. The ROS
meta package ‘hector_navigation’ seems to be the only formal implementation of

21

this concept within the ROS framework, making use of a frontier based approach
in order to autonomously identify unvisited regions on the map and, consequently,
plan a path in order to navigate to them. Unlike all the packages considered so
far, ‘hector_navigation’ does not come with great documentation and there is not
much evidence of it being widely used. However, since this feature is a trending
requirement for modern autonomous systems, efforts shall be made in order to
incorporate it within the design.

Having completed all the above, a fully detailed state machine model for the de-
sired behaviour of the Mapping Robot shall be developed and implemented within
ROS. The overall behaviour of the robot shall be tested against the specifications
and the results shall be analysed and presented.

4.1.2 Pickup/Arm Robot

The determined task for the Pickup/Arm Robot, involves the searching and picking
up of a target object, from within a directed place on the map. Initially, the robot
shall wait for the Mapping Robot to finish its task, after which it should use
the acquired map to localize itself within it. Once the Copter Bot has finished
scanning the arena for target objects and a target location has been specified, the
Arm Robot should proceed to navigating to it. Continuing, once the object has
been located, the Carrier Robot shall be invoked and upon arrival the robot shall
pickup the object and place it within the container of the Carrier bot. Finally,
upon disposal of an object the robot should remain in it’s position until another
target location has been received or all target objects have been removed from the
arena.

The ROS ‘navigation’ meta package, provides a number of packages which shall
allow the robot to utilize the received map from the Mapping Robot, in order to
both localize and navigate within the environment. To begin with, the ‘map_server’
package, via the ‘map_server’ node, provides the functionality of making a previ-
ously created map accessible to multiple robots. This is implemented by converting
the map - which is saved locally as a coupled set of an image and a configuration
file - into a data type which is ROS compatible and subsequently publishing this
information to a delegated ROS topic. Continuing, the ‘amcl’ package makes use
of the published map and, given an initial pose estimation, considers odometry
data together with the perceived image of the environment in order to continu-
ously localize within it. Finally, having achieved correct localization of the robot,
the previously mentioned ‘move_base’ package shall be used again, in order to pro-
vide the means of point-to-point navigation within the environment. The ROS
stack ‘hector_navigation’ is not considered in this case, since the robot shall be
required to travel from/to specific positions in the environment, rather than hav-
ing to explore an unknown area. What is more, all internal packages of the stack
have been strongly coupled, a fact which makes the ‘hector_exploration_node’ and
‘hector_exploration_planner’ packages very difficult to interface with individually.

As previously mentioned, color blob detection was chosen as the mechanism for
identifying target objects within the environment. The ‘cmvision’ package provides

22

a ROS wrapper for the approach developed by the Colour Machine Vision Project,
which allows for effective and efficient 2-dimensional tracking of colour blobs, using
almost any conventional camera. Furthermore, since distance estimation through
processing of a simple image is a highly complex and computationally expensive
process, an alternative approach to tracking the 3-D position of objects needed to
be identified. As an extension to the standard ‘cmvision’ package, ‘cmvision_3d’
uses the output of the former package and the input coming from a depth-image
- such as the ones produced by the Microsoft Kinect and Asus Xtion devices -
in order to effectively compute the corresponding 3-D position of a tracked blob,
relative to the objective frame of the camera. Making use of this package, however,
would imply the use of a Stereo Vision Camera as a compulsory requirement for
the developed Pickup Robot Base structure. As a result, the object detection
capabilities of both the Microsoft Kinect and the Asus Xtion devices shall be
tested and the results shall be reported.

Upon having implemented and tested all the approaches mentioned above, a
complete state machine model for the desired behaviour of the robot shall be
created, based on which, a ROS compatible implementation shall be developed.
Finally, the correct operation of the robot shall be evaluated and respective results
from test runs shall be presented.

4.1.3 Carrier/Bin Robot

The Carrier/Bin Robot was included in the ground-based team composition to
provide the means for transportation of the target objects. Just like in the previous
case, the robot shall initially wait to receive the map produced by the Mapping
Bot, upon which the localization process can be initialized. Once the Pickup/Arm
Robot has located an object, the Carrier Robot shall be invoked and should begin
navigating towards the Arm Robot’s location. Upon arrival to the target location,
the Carrier Robot should co-operate with the Arm Robot in order to collect the
target object. Finally, once the object has been successfully collected, the Carrier
Robot shall make its way back to its initial position, where it shall remain until
invoked again.

As it is obvious, one first requirement for the respective robotic platform is
to be equipped with a suitable container, where objects can be securely placed.
Continuing, since the robot shall be required to cooperate with the Arm Robot,
that implies the need for recognition between the two robots. The chosen solution
approach to this problem was again colour blob detection. By placing unique colour
identifiers on each different platform, the robots are given the ability to distinguish
one another from the rest of the environment. Optimally, depth information can
also allow the two robot’s to accurately track the position of position of each other,
when within FOV. As a direct outcome, both robots can reason and plan about
their interactions with each other. Thus, once again, the use of a Stereo Vision
Camera sensor becomes a necessary component of the overall robot structure.

By close observation of the Carrier Robot’s basic behaviour and functionality,
it can be identified that it resembles, to a high extent, that of the Arm Robot.

23

This implies that the core components that are used to provide the desired char-
acteristics to the Arm Robot, thus all the ROS packages, mentioned in Section
4.1.2, can be re-utilized and combined in the same manner as before, in order to
provide the underpinning software platform, based on which, the final (and fully
developed) Carrier Robot behaviour shall be programmed. Having completed all
the above, a state machine model of this behaviour can be produced and a ROS
compatible node, implementing that model, shall be created. Finally, standard
testing procedures on the behaviour and functionality of the developed robot shall
be carried through, in order to evaluate the robots conformity to specification, and
the obtained results shall be documented.

4.2 Robot Arm Methodology

4.2.1 Arm Assembly and Modifications

The arm was ordered as a kit to be assembled. To assemble the arm, detailed
instructions are provided on the uFactory website [34]. It is vital that the servos
are aligned properly during assembly, otherwise calibration will fail. The following
steps should be carried out once the arm is assembled:

1. Download the latest Arduino software to program the Arduino board

2. Install FTDI Drivers (The board is a custom built Arduino that uses an
FTDI FT232RL chip for serial communication)

3. Install uArm Arduino Libraries (can be downloaded at GitHub page[12])
4. Connect the Arduino Board via USB to PC

5. Connect power adapter to the motor shield (NOT TO ARDUINO) to power
the arm

6. Program the calibration example sketch from uArm Library to Board

(These are listed in greater detail in the Getting Started Document|[35]).
Calibration is required after assembly. The arm will make a beeping sound when
it is turned on signalling that it must be calibrated. This can be done by follow-
ing instructions in the getting started documentation[35]. The calibration data
is stored in the EEProm memory so that even when the board is turned off and
on, the data is kept. Once calibration is completed, the arm will no longer beep
during initialisation. The arm is now ready to be programmed.

Like many small microcontrollers, the Arduino is coded using a set-up function
and a super-loop. The set-up function is executed on start-up and the super-loop
is then looped until the board is powered down or reset. In order to interface the
arm with ROS, the package Rosserial was used. The package comes with an Ar-
duino library that allows for the set-up of a ROS node on the Arduino. This node

24

then communicates over serial with a python node that is run within the ROS
environment on the PC. Once set-up, this allows data to be sent and received by
the arm using standardised message formats. An outline of the Arduino code is
given in figure 4.1; a fully commented implementation can be obtained on GitHub
[36].

25

uArmRosNode

Initialise ROS Mode

Advertise topics:
Juarm/fjoint_states
Juarm/bid4
Juarm/bid7
Juarm/blls

Subscribe to topics:
Juarm/gripper
fuarmigripper_detach
fuarmijoint_commands

Setjoint state data to zero

while(1) {super-loop}

Read and Publish current angles of servos

Read currentvalue of each button on arm

(button value different
to previous loop?)

T

Puhlish the button value &

call ROS" spinOnce() function

delay by 20 ms
(loop operates at 50Hz)

Figure 4.1: Nassi-Shneiderman diagram of Arduino Node.

Since one of the objectives for the arm was to have a visual feedback mecha-
nism to help with alignment and object recognition, a camera can be affixed to the
end of the arm. At first, the TechNet C016 USB camera[37] was selected as it was
compatible with Ubuntu, a small form factor, and automatic white balance with
built in LEDs which would help with colour recognition. The outer casing was
removed and part of the monitor mount was attached to the arm as a mounting
platform for the camera’s bare circuit board. With further testing however, the
camera did not operate as required with excessive tearing when the arm was mov-
ing quickly due to low frames per second. The LEDs also proved to cause problems
when attempting to recognise coloured blobs in the image, washing out some of
the colour and thus removing the required information from the image. Also, the
camera could only conceivably be mounted to the end of the arm, which meant
it could easily collide with the back of the Bin robot when attempting to place
the block. With these problems in mind, a camera with better white balance, 30

26

fps, and better form factor was chosen; the Logitech C270 HD Webcam[38]. Once
stripped of its outer casing, the camera’s circuit board is long, with the camera
itself located at one end. This allows the camera to be mounted on the side of the
arm, providing the camera with a view of the container whilst the arm is holding
an object, without increasing the length of the arm. This modification is shown
in figure 4.2.

Figure 4.2: Camera attached to end of robot arm.

4.2.2 Coloured Blob Detection

As with other parts of this project, detection of coloured blobs in the image stream-
ing from the camera on the arm is crucial to the positioning of the arm. The pack-
age CMvision is a ROS node that, given an input raw image feed from a camera,
will locate coloured blobs in the image. It then publishes information about every
blob of a given colour in the image. This information includes an array containing
the x,y coordinates of the blobs and their areas (as well as other data). The area
can be used to filter out blobs that either be too small or too large to be the object
the arm is searching for. The message structure of the blobs message is as follows:

27

std_msgs/Header header

uint32

seq

time stamp

string

frame_id

uint32 image_width
uint32 image_-height
uint32 blob_count
cmvision/Blob [] blobs

string
uint32
uint32
uint32
uint32
uint32
uint32
uint32
uint32
uint32
uint32

name
red
green
blue
area
x
y
left
right
top
bottom

CMyvision has a node called colorgui that can be run to determine the settings
for colour detection. The object used in this project is a 70mmx70mmx70mm
cube painted pink which is a colour that can be recognised relatively easily even
in varying lighting conditions. To ensure that it does recognise it, the program
allows you to calibrate for varying lighting conditions, and shows a box around
any blobs it has recognised. The values it outputs can be put into the colors.txt
file which is then used by CMvision as a list of colours to look for.

4.2.3 Controlling the Arm

The positions passed to the arm are in the form of an array containing stretch,
height, base rotation, and hand rotation. The stretch and height values are con-
verted by the method shown in section 2.4. The arm then reads the current position
of the servos and publishes it. This data however does not match the data sent,
and as such cannot be compared like for like. Also, it seemed from testing the arm,
that the value returned from the servos was the target position it was moving to,
not the current position of the motor. This means that the feedback values are
useless for determining if the arm has reached its target position. It was decided
that this would therefore be simulated by sending incremental movements to the
arm, and keeping track of the current position in the controlling program. These
values are therefore only an approximation of the current position of the arm,
however for the purposes of this task, this is sufficient.

To control the arm, a python class was developed containing functions operate
on the current estimated position. These tasks are:

e Move: calculates incremental changes in position to move the arm toward a
given target at a given speed.

e AtTarget: Checks if current working position of controller is equal to target
position.

e UpdatePosition: Given a set of incremental changes, adjusts current esti-
mated position of the arm.

28

e Error: Given a colour of blob, and the required target position of that blob,
calculates the error between blob’s current position and target.

e CenterOnBlob: Given a colour of blob in image, and error between where it
is and where it should be, calculates incremental changes to align the blob
to target.

Outlines of these functions are shown as NS charts in figures 4.3, 4.4, 4.5, 4.6,
and 4.7.

Move(targ, speed)

fori« 0to3
(magnitude of error
hetween targefi] and
currentPos[i] = 0.01
T F
incrementi] =0 incrermentfi] = error*speed
Call UpdatePosition(increments)

Figure 4.3: Nassi-Shneiderman diagram of Move function.

AtTarget(target)
{currentPos = targef
T F
return true return false

Figure 4.4: Nassi-Shneiderman diagram of AtTarget function.

29

UpdatePosition(increments)

fori+ 0to 3

currentPosi] += increments[i]
(clamped between maxand min values)

Round current position as arm requires
integer values for target positions

Figure 4.5: Nassi-Shneiderman diagram of UpdatePosition function.

Error (colour, target)

fori + 0to number of blobs

(blobis coloun

T F

keep hlob discard hlob

find index of largest blok in
array of rermaining blobs

errar= position of largest bloh - target

Figure 4.6: Nassi-Shneiderman diagram of Error function.

30

CenterOnBlob (colour)

(colouris Blug)
T F

setflag if blue blob visible (colouris Pink)

set accuracy and speed
of alignrment set flag if pink blob visible

set accuracy and speed
of alignment

Calculate required incremental change to
slowly align to coloured blob

Within accuracy limits, and flag set

T F
Increment a counter reset counter

(counter>=10) call UpdatePaosition {increments)
T F

reset counter

return true

return false

Figure 4.7: Nassi-Shneiderman diagram of CenterOnBlob function.

31

As well as these functions, various functions are required to publish to topics.
Subscriptions are handled by callback functions that read the data from their top-
ics and store it in class-wide variables. All of this functionality is implemented in
python, in ArmNode_1_5.py.

32

4.3 Communications and Server

4.3.1 Server State Machine

The server requires a state machine to progress the object finding operation. The
state machine outlines the progress of the whole process, demonstrating what
conditions are necessary to progress. The server FSM is displayed in figure 4.8.

IDLE MAP_AT_SERVER BIN_TO_ARM
~USER INPUT> - BASEBOT: ™._ /\;\,:IT ?:Iggo;{:ma\q\
“._ START . IDLE - ST Ve

- . -) . P
True True True
" BINBOT: ™
START ~._ IBLE 7 BIN_AT_ARM
True
" MAPAT " True — | FINDING_OBJ _~" ARMBOT: ™.
“._SERVER | . VERFY _~
True
ARROTEN _OBJECT POSE-._
- T “.._INQUEUE _~
. AUTONOMY - ~he ~ ARM_PICKUP
True
True
FOUND_OBJ _XERIFY IMAGE-._
MAPPING_AUTO “_UPLOADED -~
-)
True
~ WMAPBOT: ™ /’/BASEBC’P N G—Tr—m\
L MaRROT S . NAVIGATE _~ PICKUP_GHECK f¢— USEFRLINPUT
. - - True N ; e
rue
ARM_TO_OBJ _USER_INPUT>.
MAPPING_MAN <. succ -
. ~
True
—I— " ARMBOT: ™.
~USER INPUT:~ < war -
<_MAP DONE ~ P ARM_DROPPING|
- - True
True
l -~ BASEBOT: .
<WAIT_FOR_ACTION > _~ ARMBOT: ™
MAP_DONE ~ - “._DROPPED _~
True h g
True
/—‘—\ ARM SEARCH /REMOVE OB,
_K{AP UPLOADED. True - | FROM QuEUE /
“._ TOSERVER .~
N T 1
OBJECT IMAGE-
/REMOVE OB, < b
| FROM QUEUE “\UPLOADED -~ BIN_TO_BASE
True
N P .
AUSER_INPUT™. USER_DEG TMEIN
N LEAVE < BIN_TO_BASE
I S \\ »20s8 //

]

True

AUSER_INPUT: True) .
_ PICKUP True OBJECT POSE-
—_— “._INQUELE -

—»(RESET

Figure 4.8: Finite state machine demonstrating the operation of the server and
the conditions/transitions.

33

4.3.2 Server NS Chart

Aside from the FSM, the server needs the functionality to send and receive the
appropriate messages. 3 main threads are needed for the server operation; a server
thread to listen for client connections and assign sockets, a new thread for each
incoming client connection and a thread to refresh and verify all server variables.
An NS chart for the main server thread is displayed in figure 4.9. The client
connection and data time-out thread NS charts are displayed in figure 4.10 and
figure 4.11 respectively.

START

Initialise server FSM

Initialise data time-out thread

Initialise and bind socket object to server address

WHILE (server is enabled)
Wait for incoming client connection. .

Start client thread to handle connection

Close server socket
END

Figure 4.9: NS chart for the main server thread.

START

Read message type from comnection
SWITCH (Message type)

ARMBOT BASEBOT BINBOT MAPBOT FLYBOT
R.ead state R.ead state R.ead state R ead state Read state
F.ead pose F.ead pose Fead pose Eead pose Eead pose
Send state Send state Send state Send state Send state
Setmessage time Setmessage time Setmessage time Setmessage time Setmessage time

START RESET INPUT SEND_STATES SEND_POSES
Set server state to Set server state to Eead userinput Send states of Bots Send (2{, ¥, 8) of Bots
START RESET and server to iPad to iPad
RECV_OBI_IM RECV_VER_IM RECV_MAP PGM RECV_MAP YAML

Feceive object image file

Receive verify image file

Receive map image file

Beceive map data file

Cotwert to " png'

Convert to "png’

Convert to " png’

SEND_OBJ PNG

SEND_VER_PNG

SEND_MAP PNG

SEND_MAP_PGM

SEND MAP YAML

F.ead data from file

F.ead data from file

Fead data from file

F.ead data from file

F.ead data from file

Send file data

Send file data

Send file data

Send file data

Send file data

RECV_OBJ_POSE

SEND_OBJ_POSE

E.ead object pose

IF (Object pose in queue)

Append pose to queue

Send object pose

Close client connection

END

34

Figure 4.10: NS chart for the client connection message handling thread.

START

WHILE (Server is enabled)
Get current ime { TIME)

Get server state { STATE)

IF (TIME > (ARMBOT message time + TIMEOUT })
Reset ARMBOT state

IF (TIME > (BASEBOT message time + TIMEOUT)
Reset BASEBOT state and pose

IF (TIME > (BINBOT message time + TIMEOUT))
Reset BINBOT state and pose

IF (TIME > (MAPBOT message time + TIMEOUT })
Reset MAPBOT state and pose

IF (TIME > (FLYBOT message time + TIMEOQUT J)
Reset FLYBOT state and pose

IF (Image files exist)
Set IMAGE FLAG

IF (Map files exist }
Set MAP FLAG

IF (STATE =—=ARM SEARCH or USER_DEC)
Remove image files

IF (STATE = ARM PICKUP or PICKUP_CHECK)
Remove image files

IF (STATE =RESET)

Reset server variables

END

Figure 4.11: NS chart for the variable time-out code.

35

4.3.3 ArmBot Client NS Chart

The ArmBot client node will run on a ROS core, and utilise the ROS functionality
to incorporate the required multi-process needs. The ArmBot client runs a number
of tasks in parallel, and needs to:

e initialise and complete actions based on the server state;

— move to object pose;
— download map from server;

— read server state;
e subscribe to ArmBot state topic;
e subscribe to BaseBot state topic;
e subscribe to BaseBot pose topic;
e subscribe to ArmBot camera image data topic;

e upload data to server.

The NS charts for ArmBot client are displayed in figure 4.12.

START

WHILE (Robot client running)
Wait for ROS topic data to publish state/pose..

Set state/pose of client to new state/pose

END

START

Read server and client seftings from file

START
WHILE (ArmBot client running)

Get server state from client { STATE)
Start ROS callback functions { threads to read state/pose pub.) [~ IF (STATE = ARM_SEARCH)

Initialise and start client node

Start client synchronization with server — IF (IMAGE FLAG not set)
WHILE (Robot client running }
Get server state from client (STATE)
Publish STATE on ROS topic
IF (STATE == FOUND OBJ)

IF (POSE_FLAG not set)

Read Image data from ROS topic

Convert ROS Image data to " ppm' format

Upload *.ppm’ data to server
Set IMAGE FLAG
ELSE IF (STATE ==ARM_PICKUP)
IF (IMAGE FLAG not set)
Read Image data from ROS topic

Receive pose from server

Convert pose to ROS "PoseStamped format

Publish pose to goal topic for robot
Set POSE_FLAG
IF (STATE = MAP_ AT SERVER)
IF (MAP_FLAG not set)

Convert ROS Image data to .ppm' format

Upload *.ppm’ data to server
Set IMAGE FLAG
ELSE
IMAGE FLAG = False

Download map files from server
Set MAP FLAG
Check and set all flags

END
Close client connections START
END WHILE (client synchronization is enabled)

Initialise socket object and connect to server

Send robot type. state and pose to server

Receive server state

Close socket connection

END

Figure 4.12: NS chart for the ArmBot client node.

36

4.3.4 BinBot Client NS Chart

The BinBot client node is identical to the ArmBot client node, with exception of
the functionality to upload images from the robot. The BinBot client needs to:

e initialise and complete actions based on the server state;

— move to object pose;
— download map from server;

— read server state;
e subscribe to BinBot state topic;
e subscribe to BinBot pose topic;

e upload data to server.

The NS charts for the BinBot client are displayed in figure 4.13.

START START
Read server and client settings from file _|| WHILE (Robot client running)
Initialise and start client node Wait for ROS topic data to publish state/pose
Start ROS callback functions (threads to read state/pose pub.) [~ Set state/pose of client to new state/pose
Start client synchronization with server -
WHILE (Robot client running) END
Get server state from client (STATE)
Publish STATE on ROS topic START
IF (STATE ==FOUND_OREJ) WHILE (client synchronization is enabled)
IF (POSE_FLAG not set) Initialise socket object and connect to server
Receive pose from server] Send robot type, state and pose to server
Convert pose to ROS "PoseStamped' format Receive server state
Publish pose to goal topic for robot Close socket connection
Set POSE_FLAG
IF (STATE = MAP_AT_SERVER) END

IF (MAP_FLAG not set)
Download map files from server
Set MAP_FLAG
Check and set all flags

Close client connections

END

Figure 4.13: NS chart for the BinBot client node.

37

4.3.5 MapBot Client NS Chart

The MapBot client node is simpler than the Arm and Bin nodes, and needs to:

e initialise and complete actions based on the server state;

— upload map files to server;

— read server state;
e subscribe to MapBot state topic;
e subscribe to MapBot pose topic;

e upload data to server.

The NS charts for the MapBot client are displayed in figure 4.14.

START

Read server and client settings from file

Initialise and start client node

Start ROS callback functions (threads to read state/pose pub.)

Start client synchronization with server

START

WHILE (Robot client running)

Wait for ROS topic data to publish state/pose.

Set state’pose of client to new state/pose

IF (STATE = MAP DONE)
IF { MAP FLAG not set)

End map process, save to map directory

Format map files

Upload map files to server
Set MAP_FLAG
Check and set all flags

WHILE (Robot client ranning) END
Get server state from client (STATE)
Publish STATE on ROS topic START

WHILE (client synchronization is enabled)

Initialise socket object and connect to server

Send robot type, state and pose to server

Receive server state

Close socket connection

END

Close client connections

END

Figure 4.14: NS chart for the MapBot client node.

38

4.3.6 FlyBot Client NS Chart

The FlyBoy client node needs to:

e initialise and complete actions based on the server state;

— download map from server;
— read server state;

— upload object pose to server;
e subscribe to FlyBot state topic;
e subscribe to FlyBot pose topic;

e upload data to server.

The NS charts for the FlyBot client are displayed in figure 4.15.

START

WHILE (Robot client running)
Wait for FlvBot node to publish object pose..

Upload pose to server

START

—| |END

Read server and client settings from file

START

WHILE (Robot client running)
Wait for ROS topic data to publish state/pose..

Initialise and start client node

Start ROS callback functions (threads to read state/pose pub_) [~

Start client synchronization with server =

WHILE (Robot client running)

Get server state from client (STATE)

Publish STATE on ROS topic

IF (STATE == MAP_AT_SERVER)

IF (MAP_FLAG not set)

Download map files from server
Set MAP FLAG

Check and set all flags

Set state/pose of client to new state/pose

END

START

WHILE (client synchronization is enabled)
Initialise socket object and connect to server

| Send robot type, state and pose to server

Receive server state

Close socket connection

Close client connections

END END

Figure 4.15: NS chart for the FlyBot client node.

4.4 Simulator Research

4.4.1 Install and Setup
A variety of simulators will be tested, the more sophisticated the simulator is the

more realistic it will be. Two simulator packages will be investigated, the MORSE
simulator and the gazebo simulator supported by ROS. These simulators will be

39

tested for ease of use, compatibility and predefined utility. Gazebo has a lot of
support and predefined simulations as it is available through ROS and is widely
used for simulations with ROS. Where as MORSE has less support due to it being
newer and less developed. However MORSE utilises the blender game engine for
3d rendering and for 3d modelling, blender is well developed and a very stable
platform. This could give MORSE higher accuracy and stability, using a more
sophisticated 3d rendering and modelling.

4.4.2 Simulations

These simulators will both be tested by using the ‘hector_mappping’ and ‘move_base’
packages to navigate and map an area. The same parameters will be used for the
packages on both simulators this will show if either perform differently, with re-
gards to CPU usage, map quality, problems running with ROS.

4.5 ARDrone

For the ARDrone to function as part of ROS based team, it will need to be able to
interface with ROS to allow it to use ROS messages to communicate with the rest
of the team. Its task in the team is to locate the garbage and give a pose which
it close to the garbage to the robot team, to do this the quad-copter will need to
know the garbage’s coordinates relative to the teams map.

For all testing on the ARDrone the tum_simulator [39] package will be used
this contains some basic simulations and setup files for the ARDrone in gazebo,
this simulation generates all the data as the ARDrone would.

4.5.1 Connecting

To connect the ARDrone to ROS the ‘ardrone_autonomy’ package will be used
this allows a ROS device to connect to the quad-copter via wifi and broadcasts its
data to ROS. This package will be tested on a variety of devices for compatibility,
if this is package is compatible with ARM devices this will allow the quad-copter
to have on-board intelligence.

4.5.2 Colour Detection

To detect the object in the arena colour detection will be used on the camera
facing downwards, this will be done using the ROS package cmvision. An extra
node will need to be developed that will receive the colour blob from ‘cmvision’
and convert it into a pose to send to the team.

40

4.5.3 Navigation

Initially a basic controller will be developed that converts an input from PlaySta-
tion controller using the ROS ‘joy’ package to target velocities for the quad-copter.
This will be used in initial tests of the quad-copter as it allows for human correc-
tion.

For navigation the quad-copter will need some external feedback of its position,
as any on-board sensor cannot track the quad-copters position over a long period
of time. For this coloured markers will be used, which have known coordinates.
The controller will be used to generate linear velocities for the quad-copter based
on what state and room the controller is in. The controller has a set path /sequence
of markers to follow by storing the current room the same colour can be used many
times, so long as the next coloured marker is different to the current colour. This
allows a path to be made around the arena only using 2 different colours. The
quad-copter will move towards the next coloured marker in the sequence, when the
marker is in sight of the down facing camera, the controller will align the quad-
copter over the marker then update the quad-copter’s 2D position to the markers
position.

Another possible controller that will be tested is to use 2 simple PID controllers
to generate x and y velocities based on the quad-copters current x and y position
and a given target position. This controller allows poses to be given to the quad-
copter which the quad-copter then moves to, this controller takes advantage of the
fact the quad-copter can move at any direction in a 2D plane.

4.5.4 Localisation

Localisation will be needed to allow the ARDrone to communicate the objects
position to the team. A node will be created to use the quad-copters linear velocity
target to track the quad-copter’s position, this should be accurate so long as there
are only negligible other forces acting on the quad-copter. This node will publish
the quad-copters position as a tf, this allows the quad-copter’s position to be
accessed by anything in ROS. This will be achieved by subscribing to the “cmd_vel”
topic, and summing the linear velocities while scaling them with the update period
of “cmd_vel”. This node however also needs a mechanism to allow updating of
position, this will be done by subscribing to the topic “/ardrone/poseUpdate”,
whenever a pose is given to this topic, localisation node will update its position to
the poses x and y coordinates.

To test localisation the node will be run, the position will be monitored while
the quad-copter is lown around. When it updates over the coloured markers that
will show the error in the calculated position.

41

4.6 iPad Application Methods

Application Design

e First storyboard design of View controller (ViewController.h/ViewController.m)

The first storyboard is used as a reference design, therefore it has poor
design layout. It does not have well distinguished features or a good layout
of the properties in the view and it has poor visual display of data. Ini-
tially a button-touch-event will open a separate popover view showing robot
movement data and options for the server. Each image button corresponds
to a different robot, when touched it will display the popover view tapping
anywhere on the screen after or touching done will pop the view off. The
limitations of this method are self evident, as it is noted that only a single
robot’s data can be viewed at a time and additionally shows options avail-
able for only that robot. Using this single popover-view method hides the
options available for every other button which is not selected by the user.

e Final storyboard design of View Controller (ViewController.h/ViewController.m)

The view controller is updated to display all the data from the server
about the robots, all in the main view as can be seen in Figure 1. The option
of a user inputting any data via a text-box on the application, is removed
and instead requires only a user to touch a button or perform touch and drag
gestures in response to an event/decision. As in the first storyboard design,
the map view location is similar but the positions of any buttons and labels
are now all at the top of the main view. This design decision improves a
lot of what was wrong with the initial storyboard. It gives the user a full
view of all the data, the properties have more importance as they are placed
higher on the application screen and it is better visualisation for the user.
For good design and future reference a higher priority placement of buttons
eliminated any typing issues in a text-box where the virtual keyboard can
cover the text-box.

42

INOAR] PUR USISOP MOIA 9DRLIIUT [RUL Q] 9INSL

v el
. i I L it . J50d
IS0d

—
@1:

—
l ..
¥ = A

ﬁ dew
UORIBULOD Op :SME)S Janieg @

suog depy dnyaid wapuon dnyoig pr=1-1- 18] HElg

- 500 Wd 21 & oL

(IT#82T) 1°8 SO! / € PEd! - ¢ Ped! - JoIB|NuiIS SO!

:sorja1odoad pue MoaIA USISO(T°9F

43

uoryest[ddy gOI Jo weISeIp 1IRYIMO[)] F 9INSL]

JEDEEE
Aaaeal#ndu), puas

Jangs ol
#dmedandu), puss

#aengsndu), puss

]]

JBANES W)
abEw pec

IBIES W)
alew| peo

Ianes o
.aunggndul, puas

Geip ysnoL

Beip yanog

Beip yznoL

Geip uznoL

ng de uoung deL
T (uoung vel] *
_ || | uogy dep

44

Pseudo code - Library Methods

A custom library is used for image receiving, it is well commented in the repository
please refer to [40].

A compulsory class or software library is required for communication with
sockets for the application. Such a library is not included in Xcode and online
research yielded a socket library that can be implemented for the application to
server socket communication. The socket library chosen for the task is the Co-
coaAsyncSocket Library/GCDAsyncSocket [41], only a select few methods are
needed from this library for message passing/receiving. In early testing phase a
separate library called square/SocketRocketLibrary [42] which when used in con-
junction with ROSbridge [43], uses industrial packages to enable non-ROS systems
to connect to ROS. Since many modern web browsers can connect to ROSbridge
using web sockets, this allows for communication between many of these systems.
However the project goal is to use the server as a communication medium for send-
ing /receiving messages and not necessarily directly linked to ROS. Since the server
passes all messages in string format, this can be achieved in objective-C without
the need for ROSbridge thus with no need for SR library. In turn this removes a
layer of complexity between communications, therefore the aforementioned socket
library (GCD) is used for the application. From the GCDAsyncSocket library only
certain methods are needed from it for message passing/receiving. These methods
are described below using pseudo code showing their functionality within the main
view controller. More detailed analysis of the methods can be viewed in the GC-
DAsyncSocket library, look up the comments written in the method called sections
within the library, obtained from below.

e Check socket connected:

method called didConnectHost;

e Check socket disconnected:

method called socketDidDisconnect;

Message sending pseudo code:
methods called connectToHost; writeData;

1. if socket is connectedToHost; andPort;
1.1. string encoded “SEND_MESSAGE#"
1.2. call function writeData:” SEND_MESSAGE#”

2. else if socket is not connectedToHost; andPort

2.1. print “No Connection available”

3. Done

Message receiving pseudo code:
method called didReadData;

45

set data length to zero

call function readData:data

New Array is equal to data with components separated by “#”
if object at index zero of New Array is equal to “STATE”

-~ W=

4.1. call function getStates: from New Array
5. else if object at index zero in New Array is equal to “POSE”

5.1. call function getPose: from New Array
6. Done

Pseudo code - Map Conversion

The map view in the iOS application has been set to a certain size of width 800,
height 650, pixels and ROS returns a certain range of x and y values respectively.
An analysis in ROS pose coordinates is performed from the initial map, using
stage in ROS to give an estimated pose at various locations around the map.
The locations for pose estimates are recorded from top and bottom left hand
corners, top and bottom right hand corners and a pose in the centre of the map.
A conversion is then performed to get an estimate of where the robot images
should be displayed on the simulated map space of the application. The pseudo
code below is used to describe these conversion methods for vertical, horizontal
and angular conversions.

ROS stage pose estimate results

e X-coordinate best estimate between ~ —1.0 and ~< +8.0
e Y-coordinate best estimate between ~ +1.0 and ~< —5.0

Because the position of the robots vary slightly with every new map created by
the map robot and the map can be displayed at different angles, it means this
conversion method will need to be calibrated for every new map space created.
As shown below in the pseudo code, only the ‘offset’ needs to be re-calibrated
to fix any incorrect movement of the robots on the map view. It may seem as
though the x or y coordinates contain a wasted if statement which is similar to the
sequential else-if but this is not the case. It is required for improved calibration of
offset values near the border of the map space, therefore should remain. Near the
border the robot-images seem to float away from the map view and go over the
border, this has to do with where the anchor position for the animation is. For the
method of animation used, all the images are anchored at the top left hand corner
therefore the offset is needed to account for that hence another critical reason for
needing the extra if statements.

Vertical, Horizontal and Angular conversion pseudo code:
method called convertXXXVariables (where XXX is replaced by Arm || Bin || Map)
1. if x is less than 6.5
1.1. x is equal to (x % 100) + 50
1.2. print x

46

. else if x is greater than or equal to 6.5 and less than 8.0
2.1. x is equal to (x % 100) + 25

2.2. print x

. if y is greater than 0

3.1. y is equal to (y * —100) + 100

3.2. print y

. else if y is less than or equal to 0 and y is greater than -4.5
4.1. y is equal to (y x —100) + 100

4.2. print y

. else if y is less than or equal to -4.5

5.1. y is equal to (y * —100) + 25

5.2. print y
. print z
, (z%m)
. convert degree to radian =
& 180°

. Done

47

Table 4.1: A table showing all properties on the Main VC

Property type Association Quantity Event Function
UIButton Robot-team 4 Touch up Inside | if UlButton
Image highlighted
Buttons and map view
tapped,
set pose of
selected
UIButton
UlLabel Under each 17 Display data Display robot
robot-team state and
image button pose
UlLabel Server Status 1 Display data Display
label Server
state
UlLabel Touch Events 1 Display data Display Map
tapped
Co-Ordinates
UIButton Start button 1 Touch up Inside | Send message
to
start server
UIButton Reset Button 1 Touch up Inside | Send message
to
reset
robot-team
UIButton Pickup Button 1 Touch up Inside | Unwind-segue
to
image-VC1
UIButton Confirm Pickup 1 Touch up Inside | Unwind-segue
to
image-VC2
UIButton Map Done 1 Touch up Inside | Send message
that
Map is done
to server
UlView Map View 1 Touch Events | Track touches
on
map view
UllmageView | Map View Image 1 Load Image Load Map
Image
over UlView
UllmageView Robot-team 4 Display Image Display

Image Views

Image when
pose exists

48

Table 4.2: A table showing all properties on Image-VC1 and Image-VC2

Property type

Association

Quantity

Event

Function

UIButton

Yes/Confirm

1

Touch up Inside

Send message
to
server Pickup
or Confirm

UlButton

No/Wrong

Touch up Inside

Send message
to
server No
Pickup or
Unsuccessful

UllmageView

Object View Image

Display Image

Display
Image
received from
server

49

Chapter 5

Results

5.1 Ground Robot Team

As mentioned in the previous chapter, (see Section 4.1), it was decided that the
ground-based robot team would be composed of three individual robots. The
following subsections serve to present, with the lowest possible level of abstraction,
the results received for each individual robot-member of the team, as well as to
report any difficulties encountered during the tests. It should be noted that, due
to the high similarity of the two approaches, the results subsections for the Arm
and Carrier robots shall be merged together, while the main differences shall be
highlighted. This is done in order to avoid repetitiveness of the same content, as
well as to retain the paper’s coherence and clarity.

5.1.1 Mapping Robot
Turtlebot 2 platform modifications

To begin with, the Turtlebot platform that would be used for the specific robot,
had to be modified in order to provide the robot with it’s desired functionalities.
Figure 5.6 depicts the main differences between the original platform (on the left)
and the modified one (on the right). Since the top plate was essentially not needed,
it has been removed from the platform, along with any poles used to support
it. This was done for two main reasons; 1) To minimize the dimensions of the
platform, which imply significant limitations to the movement of the robot, and
2) To effectively lower the weight and mass center of the platform, which should
result in a reduction of both, the overall power consumption and the danger of
wheel drifting. This modification was possible, since the low computational cost
of the ROS packages used for the mapping process, allowed for the default ASUS
laptop 3.1 to be used, the dimensions of which enabled it to be slid inside the gap
between the bottom and middle plates (see also Fig 3.2) Finally, the Microsoft
Kinect sensor has been replaced by a Hokuyo URG-04 lidar, the reasons for which
shall be described in the following sub-section.

20

Figure 5.1: Photos of both the original Turtlebot platform (a) and the modified
version (b), from which the main modifications can be observed.

Mapping approach

Continuing, the most effective combination of optical sensor and ROS package,
to be used for the mapping process, needed to be identified. The first case to
be examined was that of implementing ‘gmapping’ with the default Microsoft
Kinect sensor. Since there already existed predefined open-source launch files
for the use of this specific combination, it was expected that the results should
be relatively accurate. However, as it can be seen in Fig. 5.2a the map does
provide an consistent representation of the arena. Next, keeping ‘gmapping’ as
the underlying mapping approach, the Kinect was swapped for a Hokuyo URG-04
laser scanner. As it can be observed in Fig. 5.2b, although the overall accuracy
of the map has been improved, the map representation still does not seem quite
satisfactory.

The main issues that were identified to cause the ‘gmapping’ package to fail in
producing a sufficiently good representation of the arena were two; 1) The highly
symmetric characteristics of the environment and 2) The relatively small scale of
the arena. These issues, combined with the fact that ‘gmapping’ actively alters the
transform between the global and local frames, resulted in the algorithm falsely
altering the pose estimate of the robot, which in turn caused the robot to incor-
rectly place obstacles on the map. A fix to the above problems could be possibly
implemented, by making changes to the parameters of the underlying SLAM al-
gorithm. However, devoting all the time and effort in deeply understanding and
improving the specific algorithm could prove to be wasteful, before first testing all
the alternatives.

Since ‘gmapping’ was found to produce ambiguous map representations, ‘hec-
tor_mapping’ was identified as an alternative approach. This package does not

51

Figure 5.2: Map produced by implementing the ‘gmapping’ ROS package in com-
bination with a Microsoft Kinect (a) and a Hokuyo URG-04 lidar (b). Manual
teleoperation was used in both cases.

make use of odometry data in order to actively alter the global to local frame
transform, but it implements a scan matcher module which publishes separately
a current pose estimation of the robot based purely on the optical sensor data.
As a result, this pose estimate can be fused with other odometry data externally
using an algorithm (such as a Kalman filter) to provide an accurate pose estimate
for the robot. The ROS package ‘robot_pose_ekf’ provide this exact solution, by
making use of an extended Kalman Filter -hence the extension ‘ekf’- in order to
combine data from three different odometry sources -wheel odometry, IMU sensor
data and visual odometry- and produce an accurate pose estimate of the robot.

Figures 5.3b and 5.3a show the resulting map from using ‘hector_mapping’ with
and without implementing ‘robot_pose_ekf’, respectively. Due to the higher noise
and much smaller FOV provided by the fake Kinect laser scans, ‘hector_mapping’
was producing internal errors, and thus only the Hokuyo lidar was used in this case.
As it can be observed from the figures, use of ‘robot_pose_ekf’ showed a significant
improvement of the produced map, which illustrates an almost perfect representa-
tion of the arena. Continuous testing of this combination, showed consistent map
results which were not affected by the use of teleoperation or (semi)autonomous
navigation. For this reason, the final approach which was chosen to be used and
identified to produce optimal result was the combination of ‘hector_mapping’ and
‘robot_pose_ekf” ROS packages, with the Hokuyo lidar.

Navigation Approach

The next decision to be made was what would be the chosen means of naviga-
tion for the robot. As described in Section 4.1 the main choices were three; 1)
Fully manual teleoperation, 2) Semi-autonomous point-to-point navigation and 3)
Fully autonomous exploration. Due to the nature of the project, the first option
was automatically rejected and only used to test the mapping approach, where

52

v

Figure 5.3: Map produced by implementing the ‘hector_mapping’ ROS package
in combination with a Hokuyo URG-04 lidar with the use of the ‘robot_pose_ekf’
package(b) and without it (a).

navigation was not possible. One such example is the case of testing ‘gmapping’
where, due to the constant pose modifications of the robot and the misplacement
of obstacles, the internally produced costmaps had an overwhelming effect on the
navigation algorithm, causing a constant failure to identify possible paths.

In order to achieve the highest degree of autonomy, the last of the three op-
tions would be desirable. This approach would involve making use of the ‘hec-
tor_exploration’ package which makes use of a frontier-based exploration approach,
where frontiers are identified as cells on the grid map, which have been marked as
free of any obstacles and are adjacent to unknown (unexplored) cells. The closest
reachable frontier is then identified and a path to this frontier is created. In order
to create on obstacle free path to be followed, the path planner takes into con-
sideration a costmap derived from the created map, produced by expanding the
occupied cells of the map by a certain inflation distance. One major issue identi-
fied is the fact that the exploration path planner makes use only of this costmap
in order to generate a path, which consists of a series of waypoints to the given
location. The mapping package chosen to be used, ‘hector_mapping’, produces its
map relative to the internally generated scan matcher frame, which is not neces-
sarily the same as the actual pose estimation of the robot (robot frame), relative
to the global frame. For this reason, if the robot happened to drift at any point,
the robot frame would become different to the scan matcher frame, making the
robot prone to collide with obstacles.

The ‘move_base’ ROS package, provides a solution to this problem by creating
two separate sets of global and local costmaps and path planners. The global
set essentially performs the same operation as the ones used in the case described
above. The local costmap is produced solely depending on what the robot actually
sees and the local path planner utilizes this information to by-pass the global
planner and generate a path which is obstacle free but still adheres to the global
plan. Thus, a possible approach was identified to use ‘hector_exploration’ in order
to produce the initial path to the target frontier and then, extract the final pose
of that path and send it to ‘move_base’ which would then handle the point-to-

23

point navigation. Unfortunately, even though a script was created to interface
between the two packages, the overall concept did not eventually work, due to
inability to configure the ‘move_base’ package to plan to unknown regions of the
map. For this reason it was decided that the final approach would initially perform
an autonomous exploration of the environment and in the case of failure, control
could be taken over by a human operator using point-to-point navigation.

System Integration

The Finite State Machine model developed to describe the desired behaviour of
the Mapping Robot is presented in Fig. 5.4. Before initialization, all required
ROS packages, apart from the sub-packages for ‘hector_exploration’ are instanti-
ated. When initialized the robot shall enter the ‘FSM_WAIT’ state, where it shall
wait until a signal is received by the server to begin the mapping process. Upon
receival of the signal, ‘hector_exploration’ shall be instantiated and the robot shall
switch to ‘FSM_AUTONOMY" state. In the case that a user sent navigation goal
is received, the robot shall terminate all ‘hector_exploration’ sub-processes and
proceed to ‘FSM_MANUAL?’ state, where the robot uses the ‘move_base’ package
to perform point-to-point navigation to user-defined goals. Once a signal is re-
ceived by the server to stop the mapping process, the robot shall switch to state
‘FSM_MOVE_TO_BASE’, during which the robot sends itself the pose location of
its base, and navigates to that location. Finally, upon arrival at the base loca-
tion, the robot shall enter the ‘FSM_IDLE’ state in which it remains until shut
down. To allow for a more detailed examination of the underlying programs, a
Github repository has been created (see here [40]) and the internal README.txt
file provides a general guideline to the packages, as well as files, included and the
functionality provided by each one.

5.1.2 Arm and Carrier Robots

Turtlebot 2 platform modifications

A common characteristic of both the Arm and Carrier Robots is the fact that
they both need to accommodate external equipment. In order to allow for such
a functionality, the middle plate of the Turtlebot platform had to be moved back
from its initial position. Fig. 5.5 depicts a profile image of each one of the three
robots, from which main differences can be identified. In the case of the Arm
Robot, this modification shall allow for successful mounting of the uArm platform
and shall provide enough space for it to move freely. In the other case, that of the
Carrier Robot, the same modification shall allow for a container to be mounted
and provide sufficient clearance above the container so that the uArm can drop
items without the danger of collision with any part of the platform.

As mentioned previously (see 4.1), since 3-D colour blob tracking is essential,
both robots shall be equipped with a Stereo Camera Sensor. Instead of using
the default Microsoft Kinect, the robots were mounted with an ASUS Xtion Pro

o4

1 rm—

FSM_MANUAL

FSM_WAIT

Y Y
Start signal End signal
Received Received

Y Y

FSM_ FSM_MOVE_
AUTONOMY TO_BASE

) 4) A

Goal Goal
Received Reached

Y Y

End signal
Received FSM_IDLE
J

Figure 5.4: Finite State Machine (FSM) model developed to illustrate the basic
behaviour of the Mapping Robot.

Live device, mainly due to size limitations of the platform. The target objects were
chosen to be bright pink coloured cubes, which can be easily identified in the space
and handled by the uArm. Additionally, the Arm Robot platform was mounted
with a purple coloured stripe, to enable detection by the Bin Robot, while a blue
square was attached to the container to act as an alignment landmark for the
uArm. Finally, as identified in the process, the default ASUS laptops could not
supply the required computational power in order to run all the required packages.
For this reason, the top plate of the robots had to be utilized as a stand for the
bigger laptops (see 3.1 and 3.1) which were too bulky to fit between the bottom
and middle plates.

Localization and Navigation Approach

At an initial stage, it was essential for both robots to utilize a pre-existing map in
order to localize within their environment. Once the Mapping Robot has finished
mapping the environment, the ‘map_saver’ node of the ROS package ‘map_server’
is used in order to save the drawn map. The map is represented by an image (.pgm)
file and a configuration (.yaml) file. Once saved, the server shall transfer these files
onto the local machines for the two respective robots, and the ‘map_server’ node
will be used in order to make use of these files and publish the respective map on

95

Figure 5.5: Photos of both the original Turtlebot platform (a) and the modified
versions for the Arm Robot (b) and the Bin Robot (c), from which the main
modifications can be observed.

a ROS topic. By making the map available onto the local machine of each robot,
the localization approach can then be initialized.

The ROS package chosen for localization within a pre-existing map was ‘amcl’.
Just as the name implies this package provides a ROS wrapper implementation
of the Adaptive Monte-Carlo Localization algorithm. Figures 5.6a to 5.6f show
screenshots from the localization process of the Carrier Robot platform. Obser-
vation of the process is implemented using the ‘RViz’ ROS vizualization package,
where the green arrows around the robot indicate all the sample pose estimates pro-
duced by the localization algorithm. As the robot spins, the set of pose estimates
is continuously being resampled and a more accurate set of samples is drawn until
eventually the robot has successfully localized. The resampling process is executed
every time the robot travels a certain minimum distance or rotates by a minimum
angle. Optimally these values should be tend to 0, however such settings would
lead to the algorithm becoming too computationally intensive. This problem can
be observed in the case of the Arm Robot, where due to the additional packages
used for the implementation of the uArm platform, the pose estimate can be seen
to diverge significantly from the robot platform. At this point, it is worth noting
that a fix this problem was not identified and in its final form the Arm Robot still
suffers from minor localization problems, which sometimes cause it to oscillate
during navigation and rarely lead to collision with obstacles. Furthermore, due to
the highly symmetric characteristics of the available arena (see Fig. 5.3b) at very
rare occasions both robots were identified to suffer from ‘perceptual alliasing’, in
which case the robot falsely believes it is in a different room than were it actually
is, due to the perceived image in both rooms being nearly identical.

Coming to the navigation approach for the two robots, ‘move_base’ has already
been proven to work successfully during the testing phase of the Mapping Robot.
Thus, the same package has been used in order to handle point-to-point navigation,
while the navigation goals are processed via the package’s provided Simple Action
Server/Client API (see the actionlib documentation [44]). However, the observed

26

Figure 5.6: Screen shots taken during vizualization of the localization process of
the Carrier Robot platform, using ‘RViz’. The green arrows represent the pose
estimate samples at each stage and sensor readings are shown with red. The
process begins in sub-figure (a) with the initialization of the robot.

performance of the package, when used in combination with the ASUS Xtion
devices, was sub-optimal compared to the one achieved using the Hokuyo lidar.
From specification, the minimum sensing distance of the Xtion device is between
0.5 and 0.7 meters, compared to 2cm for the lidar. This fact, combined with
the small scale of the available arena have a tremendous effect on the overall
performance of the navigation process. One first example, is the case where the
robot has to perform recovery behaviours when stuck between a narrow corridor.

Recovery behaviours are implemented when the robot cannot identify a possible
plan to a given location. One commonly used recovery behaviour is that of costmap
clearing and rotate recovery, in which case all local costmaps are cleared and the
robot spins in order to get a new perception of the environment. When such a
recovery behaviour is executed inside a corridor of 1 meter width (such as the
ones located inside the arena), given the minimum sensing distance of the Xtion
device, it is very likely that at least one portion of the walls will not be detected.
In such a case, if it so happens and an optimal plan is found that crosses such an
undetected wall, then the robot shall collide. One possible solution to this problem
would involve mounting a Hokuyo lidar in addition to the Xtion, the output of
which shall be used as an input for the ‘amcl’ package, while the Asus Xtion shall
be used solely for colour tracking. However, due to the performance limitations
already being imposed on the underlying hardware, adding the necessary driver
ROS packages for the lidar could potentially cause a system overload. Testing
of this implementation was not executed, mainly due to time limitations of the
project, however a potential continuation should consider this as a priority task.

o7

Colour detection and tracking

In order to perform effective 3-D detection and tracking of colour blobs, a combi-
nation of two ROS packages was identified as the optimal solution. At a first stage,
the ‘cmvision’ package uses the RGB image provided by the Xtion devices in order
to produce a set of 2-dimensional coordinates, placing a detected color blob within
the received image frame. Continuing, the ‘cmvision_3d’ package is used to fuse
the depth image produced by the Xtion devices along with the data outsourced
by the ‘cmvision’ package. The resulting output is an extended version of the
output blob format provided by ‘cmvision’” with additional information about the
3-dimensional position of the center, as well as left end right edges, of each blob.
At this point, it should be noted that an internal modification was applied to the
underlying algorithm of ‘cmvision_3d’ (see the README.txt file in [40]), in order
to allow for all different occurrences of the same colour to be published, rather
than just the one with the largest area.

Due to color detection, as well as depth (infrared) registration, both being
processes which are highly dependant upon external (ambient) light conditions,
the outputed blobs from the above mentioned process were identified to have a
great degree of error associated with them. To begin with, the depth information
received by the Xtion devices was not always correct or consistent, which caused
significant fluctuations in the registered distance information or led to blobs ini-
tially detected by the ‘cmvision’ package to be rejected during the dimensions
validation phase of ‘cmvision_3d’. The result of this error prone process, was a
stream of color blobs which could not be guaranteed to be neither continuous or
correct. Since the behaviour of both the Arm and the Carrier Robot is closely
coupled to the correctness of this information, it was deemed necessary to apply
an additional filtering/coordinate correction algorithm before the data would be
considered by the robots.

The algorithm is described by the pseudo code presented inside Algorithm 1
in the Appendix Section. The time and resource complexity of the proposed al-
gorithm can be analysed as O(n), where n is the number of input blobs. From
repetitive examination of the output received by ‘cmvision_3d’, in several applica-
tion specific test cases, it has been identified that the number of returned blobs
is never higher than 20. Assuming that the above statement holds (without loss
of generality) the algorithm complexity can be simplified further to O(1). The
averaging approach for the x and z coordinates, has been implemented uniquely in
each case in order to achieve different goals. The x coordinate is corrected solely
depending upon the filtered blobs of each individual run, in order to smooth out
any abrupt changes, which shall be advantageous when centering of the blob is
essential. On the contrary, the z coordinate average is updated continuously upon
determination of the largest sensible blob and has been configured to favour the
smallest recorded distances. This shall optimally force saturation of the detected
distance to a minimum, which shall enhance the stability of the overall blob dis-
tance detection. Finally, in case of a sudden loss of tracked blobs, the algorithm
shall store the final tracked position of the blob for 10 individual runs before sig-
naling that no blobs are being detected. This correction has been implemented

o8

(b)

Figure 5.7: Figure illustrating effective tracking and centering of the Arm Robot
platform achieved by the Carrier Robot. Subfigure (a) shows the actual placement
of the two robots in the arena. Subfigure (b) shows a vizualization of the process
using ‘RViz’, where both the local transform frame of the robot (top plate link),
as well as the published tracked blob transform frame, are depicted.

in order to avoid undesired behaviour due to constant target loss. Fig. 5.7 shows
the visualized output of the algorithm during a test run, where the Carrier Robot
has achieved to effectively track and center the color strip on the base of the Arm
Robot.

System Integration

The Finite State Machine models used to describe the desired behaviours of the
Arm and Carrier Robots, can be viewed in Figures 5.8 and 5.9, respectively. As
it can be observed, the two behaviours are pretty much identical, apart from
the very final few state transitions. Upon initialization, all essential ROS pack-
ages are launched and both robots enter the initial ‘FSM_WAIT’ state. Once
the map files have been received on the local machines, the robots proceed to
‘FSM_LOCALIZE’ state, while at the same time launching the ‘map_server’, ‘amcl’
and ‘cmvision’ /’cmvision_3d’ packages. ‘FSM_LOCALIZE’ shall be executed for 20
seconds (the approximate time required for a 360° spin of the platform), after the
end of which the robots shall switch to the ‘FSM_IDLE’ state. Continuing, whilst
in ‘FSM_IDLE’ both robots wait for a navigation goal to be received by the server,
upon receival of which both state machines they advance to ‘FSM_NAVIGATE’.
If a some point during the navigation to the goal, a color blob is detected then the
robots shall immediately switch to ‘FSM_OPTIMIZE’. This specific state, makes
use of a PD controller in order to systematically send velocity commands to the
motors, such that the tracked blob is centered in the middle of the camera frame.
In case of sudden loss of target, ‘FSM_SEARCH’ has been put in place in order to
make the robots perform a searching spin in order to regain tracking control.

Once a tracked blob has been centered, the calculated distance shall be con-
sidered in order to determine whether or not final approach should be initialized.

29

FSM_
APPROACH_
0OBJ

FSM_WAIT_
FOR_ACTION

FSM_WAIT FSM_NAVIGATE

Goal
Reached

Map Blobs
Received Detected

FSM_FINAL _

Arm is
Idl >
FSM_LOCALIZE FSM_OPTIMIZE ﬁ —>»| APPROACH -

Blobs
Detected

A 4 A
Object Approach
< ek < Centered < Complete

FSM_SEARCH

Closer than)
1m to object,”

FSM_STABLE w

Figure 5.8: Finite State Machine (FSM) model developed to illustrate the basic
behaviour of the Arm Robot.

In the case that the distance is not sufficiently small, ‘FSM_APPROACH_OBJ’
shall be executed, in order to pass a waypoint to the robots which is 0.7 meters
away from the tracked blob. Upon arrival to the set navigation goal, the robots
reiterate through ‘FSM_OPTIMIZE’ upon completion of which, they shall move to
‘FSM_STABLE’, since they are now sufficiently close for final approach to be per-
forms. During ‘FSM_STABLE’, the robots should perform a 2 second wait in the
same position, which due to the structure of developed colour tracking enhance-
ment algorithm (see Algorithm 1), shall let the calculated distance to saturate to
a value relatively close to the minimum distance. This needs to be done before
the robot goes any closer than 0.7 meters from the tracked object, since due to
minimum sensing distance of the Xtion devices, any further approach shall risk
losing track of the target. Once this measurement is complete, the robot calculates
the amount of time that it needs to travel for in order to perform its final approach
to the target object, before spin behaviours are initialized.

It is at this point that the two behaviours begin to diverge from one another.
The Arm Robot, during its ‘FSM_SPIN’ state, spins until the Arm has detected
a target object. Once, this has been done, ‘FSM_WAIT_FOR_ACTION’ shall be
entered, during which the robot shall wait until the Arm has finished performing
its actions. These two states should be looped through twice for each object that is
being picked up. The first iteration is performed while the Arm is searching for and
picking up the target object, and the second iteration is performed while the Arm
is searching for and dropping an object inside the container. Upon successfully
dropping an object, the Arm should be enter an Idle state, which shall force the

60

FSM_ FSM_WAIT_

APPROACH_
OBJ FOR_ACTION

FSM_WAIT FSM_NAVIGATE

A
Map Blobs Goal Object
Received Dete Reached Gollected
FSM_FINAL _ FSM_MOVE_
FSM_LOCALIZE FSM_OPTIMIZE <—W APPROACH TO_BASE
Blobs
Detected
A 4 A A
Object Approach Goal
< ek < Centered < Complete < Reached
FSM_SEARCH
Closer than)
1m to object~ FSM_SPIN

Spin
Complete

FSM_STABLE @

Figure 5.9: Finite State Machine (FSM) model developed to illustrate the basic
behaviour of the Carrier Robot.

robot to loop back to ‘FSM_IDLE’, where it waits for a target navigation goal to be
passed by the server. For the case of the Carrier Robot, ‘FSM_SPIN’ makes use of
a PD controller which should force the robot to perform a 180° turn, once approach
to the Arm Robot has been completed. Upon successfully performing the turn, the
Carrier Robot advances to ‘FSM_WAIT_FOR_ACTION’, where it shall wait for the
server to signify that the target object has been successfully dropped within the
container. When the signal is received by the server, ‘FSM_MOVE_TO_BASE’
is invoked, during which the robot navigates back to its base location. Finally,
once the base location is eventually reached the Carrier Robot shall loop back to
‘FSM_IDLE’, from which the entire process can be repeated. It should be noted
that a reset state has been implemented for both robots, which is entered upon
receival of a reset signal by the server and during which state both robots are
instructed to fall back to their base locations. This state has been omitted by the
FSM diagrams to avoid congestion.

61

5.2 Communications and Server

5.2.1

A list and description of all the files in the robot communication module is given

Design Files

in table 5.2.1.

Table 5.2.1: Files contained within the robot communication package.

The files for the robot communication package are hosted as a ROS package

at [45].

’ File Name

\ Description

server.py

Python server, run to enable server.

server_fsm.py

Server state machine.

clientclass.py

Client /server comm. class.

arm_client_node.py

ROS node to comm. with ArmBot

bin_client_node.py

ROS node to comm. with BinBot

map_client_node.py

ROS node to comm. with MapBot

fly sim_node.py

ROS node to comm. with FlyBot

ipad_sim.py

Python script to simulate iPad in-
put/user decisions.

pose_dict_tf.py

Functions to convert between ROS pose
formats and python dictionaries.

ros_image_conv

Function to convert ROS sensor_msgs
Image format to ‘.ppm’.

read_settings.py

Function to read ‘setting.txt’ to deter-
mine host address, file directories, etc..

settings.txt

Text file used to edit server address,
server map/image directories, robot
map directories.

62

QT Uk W~

©ONTD U WN -~

5.2.2 Server Results

The server (‘server.py’) initialises using the settings specified in the ‘settings.txt’
file. When initialised, it pulls the host address, map file directory and image file
directory from the settings and sets the server variables (listing 5.1). The robot
data is stored in a dictionary object (line 13), and the object pose variable is a list
(line 31), in order to act as a first-in first-out queue.

Listing 5.1: Initialisation function for the server, initialises server variables/FSM.

Initialised with HOST-ADDR as tuple consisiting of {IP, PORT},
MAPDIR a string pointing to directory for map files ,
IMAGEDIR a string pointing to directory for image files.
def __init-_(self, HOST.ADDR, MAP._DIR, IMAGE.DIR):

Input variables

self .HOST.ADDR = HOST_ADDR

self .MAP_DIR = MAP_DIR

self .IMAGE_DIR = IMAGE_DIR

Initialise server FSM.

self .InitServFSM ()

Set dictionary for bot data.

self .DATA = {’STATES’>: {’ARMBOT’: {’NONE’},
»BASEBOT’: {’NONE’},
>BINBOT’: {’NONE’},
>MAPEBOT’: {’NONE’},
>FLYBOT’: {’NONE’}},
»POSES’: {’BASEBOT’: ’NONE’,
>BINBOT’: ’>NONE’,
>MAPBOT’: ’>NONE’,
>FLYBOT’: °’NONE’}}

Initialise server variables.

self .START_PROCESS = False

self .SYNC = False

self .USER.INPUT = None

self .COUNT = 0

Initialise MAP and IMAGE flags.

self .MAP.FLAG = None

self .IMAGE_FLAG = None

Initialise object location list.

self .OBJ_POSE = []

Initialise variables for bot data timeout.
self .ARM.TIME = 0

self .BASE.TIME = 0

self . BIN.TIME
self .FLY_TIME

0
0
self . MAP_TIME 0

The server is started using the ‘Run()’ function, which begins threads for the
‘Listen()” and ‘DataTimeout()’ functions. ‘Run()’ and ‘Listen()’ are shown in
listing 5.2 and ‘DataTimeout()’ is shown in listing 5.3.

Listing 5.2: Server functions to start the server and listen for incoming clients.

‘Run’ enables the server to listen for incoming connections
on one thread (‘Listen’) and spins ‘DataTimeout’ on another.
def Run(self):

self .SYNC = True

self .SERV.THREAD = threading.Thread(target=self.Listen)

self .SERV.THREAD. start ()

self .DATATHREAD = threading.Thread(target=self.DataTimeout)

self .DATATHREAD. start ()

Listens for incoming connections and assigns socket connections for
client —server communication (‘ClientConn’ thread started for each
client).
def Listen(self):
SOCK = socket.socket (socket .AF_INET, socket.SOCK.STREAM)
SOCK. bind (self .HOST_ADDR)
SOCK. listen (15)
SOCK. settimeout (3)
while (self .SYNC):
try:
CONN, ADDR = SOCK. accept ()
CONN. setblocking (1)
CLIENT_-THREAD = threading.Thread (
target=self.ClientConn, args=(CONN, ADDR))
CLIENT_.THREAD. start ()
except socket.timeout:

pass
SOCK. close ()
print ’Socket closed.’

63

The ‘Listen()’ function listens for incoming client connections and assigns a
temporary socket object to connected pairs. The socket connection that handles
incoming connections has a time-out of 3 seconds (listing 5.2, line 19), which means
the socket will re-establish every 3 seconds to check to see if user ended process.

Listing 5.3: Server function to refresh/reset server variables based on time-

QTR W~

outs/server state.

Reset robot data variables after TIMEOUT seconds of no new
data. Check and set IMAGE and MAP flags , allow user input
during allowed server states (USER-INPUT).
def DataTimeout(self):
while (self .SYNC):

Check if data is less than TIMEOUT seconds old,

reseting to ‘NONE’ if so.

CUR-TIME = time ()

TIMEOUT = 5

CURSTATE = self .FSM. curState.StateName ()

if (CUR.TIME > (self.ARM.TIME + TIMEOUT)) :

self .DATA[’STATES][’ ARMBOT’] = ’NONE’
if (CUR-TIME > (self.BASE.TIME + TIMEOUT)):
self .DATA[’>STATES][>BASEBOT’] = ’>NONE’
self .DATA[’>POSES’][’BASEBOT’] = ’NONE’
if (CUR-TIME > (self .FLY.TIME + TIMEOUT)):
self .DATA[’> STATES’>][’ FLYBOT’] = ’NONE’
self .DATA[’POSES’ |[’FLYBOT’] = ’>NONE’
if (CUR-TIME > (self.BIN.TIME + TIMEOUT)):
self .DATA[’STATES’][’BINBOT’] = ’NONE’
self .DATA[’POSES’][’BINBOT’] = ’NONE’
if (CUR.TIME > (self.MAP.TIME + TIMEOUT)):
self .DATA[’STATES’][?MAPBOT’] = ’NONE’
self .DATA[’POSES’][’MAPBOT’] = ’NONE’

Set map flag (check for .pgm and .yaml).
CON_1 = os.path.isfile(self .MAPDIR + ’/map.pgm’)
CON_2 = os.path.isfile (self MAPDIR 4+ ’/map.yaml?’)
self .MAPFLAG = CON_.1 and CON.2
Set image flag (check for png’s in image dir).
CON_1 = os.path.isfile (self . IMAGE.DIR + ’/object_image.png’)
CON_2 = os.path.isfile (self .IMAGEDIR + ’/verify_image.png’)
self .IMAGE_FLAG = CON.1 or CON_.22
Remove image files/reset user input if not in decision state.
if ((CURSTATE != °ARM_SEARCH’) and (CURSTATE != ’USER_DEC’)):
if (os.path.isfile (self .IMAGEDIR + ’/object_image.png’)):
os.remove(self . IMAGEDIR + ’/object_image.ppm’)
os.remove(self . IMAGEDIR + ’/object_image.png’)
if ((CURSTATE != °’ARM_PICKUP’) and (CUR-STATE != ’PICKUP_CHECK’)):
if (os.path.isfile (self .IMAGEDIR + ’/verify_image.png’)):
os.remove(self .IMAGEDIR + ’/verify_image.ppm’)
os.remove(self .IMAGEDIR + ’/verify_image.png’)
if ((CURSTATE != °USER_DEC’) and (CURSTATE != °’PICKUP_CHECK’) and
(CURSTATE != °’>MAPPING_MAN’)):
self .USER_INPUT = None
Reset pose list and start variable in RESET.
if (CURSTATE == ’RESET’):
self .START_PROCESS = False
self .OBJ.POSE = []
sleep (1)

The ‘DataTimeout()’ function ensures that the robot data is only valid for a
given period after receiving the data. The time-out is set to 5 seconds (listing 5.3,
line 5), which is sufficient time to show a dropped connection. Flags are set based
on whether map or image files exist in the server directories (listing 5.3, lines 27-33)
and unwanted files are removed (listing 5.3, lines 35-42).

64

© O U WN -

WO~ U R W~

The ‘Send()’ function is used to send data on a socket connection, shown in
listing 5.4.

Listing 5.4: Server function to send variable packet-size data over socket connec-
tion.

Send input DATA to socket connection CONN,
using packet size PACK_SIZE.
def Send(self, CONN, PACK_SIZE, DATA):

SIZE = 1len (DATA)

PACK = 0
INDEX = 0
SENT = 0

while (True):

INDEX = PACK % 1

CHUNK = DATA[INDEX:INDEX + PACK_SIZE]
CONN. send (CHUNK)

SENT = SENT 4 len (CHUNK)

PACK = PACK + PACK_SIZE

if (SENT == SIZE):

break

The packet size can be specified so the function can be used to send all data
types. There are 3 functions to receive data; ‘Recv()’, ‘RecvLine()’ and ‘Recv-
File()’, shown in listing 5.5.

Listing 5.5: Server functions to receive different data types over a socket connec-
tion.

Receive data from socket connection CONN,
using packet size PACK_SIZE.
def Recv(self, CONN, PACK-SIZE):

DATA = >
while (True):
CHUNK = CONN. recv (PACK_SIZE)
if (CHUNK) :
DATA = DATA + CHUNK
else:
break

return DATA

Receive data from socket connection CONN,
until end—of—line character ‘#’.
def RecvLine(self , CONN):
DATA = 7
while (True):
CHAR = CONN.recv (1)

if (len (CHAR) == 1):
if (CHAR == ’#’):
break
else:
DATA = DATA + CHAR
else:
break

return DATA

Receive data from socket connection CONN,
using packet size PACK_SIZE and save to
file specified by PATH.
def RecvFile(self , CONN, PACK_SIZE, PATH):
FILE = open (PATH, ’wb’)
while (True):
CHUNK = CONN. recv (PACK_SIZE)
if (CHUNK) :
FILE. write (CHUNK)
else:
break
FILE. close ()

‘Recv()” allows for a variable packet size string to be received from the client,
‘RecvLine()’ reads 1 character at a time and stops at an end-line character (i.e.
read until ‘#’) and ‘RecvFile()’ reads data from the client and writes it directly
to a file.

65

©COTDU s WN -

OO U WN -

5.2.3 Client Results

The client class (‘clientclass.py’) is used in each of the robot client nodes to com-
municate with the server. When initialised with a robot type, the client-server
synchronization can be started with ‘Start()’. ‘Start()’ begins a thread, ‘Sync()’,
which connects to the server and transmits data at 5 Hz while enabled. After ini-
tialising and starting the client, the user only needs to update the client state/pose
to upload the robot data to the server. The ‘Start()’ and ‘Sync()’ functions are
shown in listing 5.6.

Listing 5.6: Client functions to start and synchronise the client to the server.

Starts threads for ‘Sync’ and ‘DataTimeout’ functions
def Start(self):
self .SERV.SYNC = True
self .CLIENT_.CONN = threading.Thread(target=self.Sync)
self .CLIENT_CONN. start ()
self . TIMEOUT-THREAD = threading.Thread(target=self.DataTimeout)
self . TIMEOUT-THREAD. start ()

While sync’d update robot pose/state to server
and request server state.
def Sync(self):
logging.info(’>Synchronization started.?’)
while (self .SERV_.SYNC):
SOCK = socket.socket (socket .AF_INET, socket.SOCKSTREAM)
SOCK. setblocking (1)
SOCK. settimeout (5)
try:
SOCK. connect (self .HOST_ADDR)
DATA = self .BOTTYPE + ’#° + \
self .STATE + ’#’ + self .POSE + ’#°
self .Send (SOCK, 1, DATA)
self .SERV.STATE = self.Recv(SOCK, 32)
sleep (0.2)
SOCK. close ()
except socket.timeout:

logging .info (’Cannot connect, re-establishing \
connection to server...’)
sleep (0.2)

logging .info(’Synchronization stopped.’)

The ‘Sync()’ functions sends a string to the server containing the current robot
type, state and pose, before receiving the current server state (listing 5.6, lines
21-22).

Functions to read/write the client state/pose and read the server state are
shown in listing 5.7. When the state/pose is updated the time is recorded in order
to reset the variables after a period of no connection (listing 5.7, lines 6 and 10).

Listing 5.7: Client functions for accessing/setting state and pose variables.

Set client state and pose, read client
and server states.
def SetState(self, STATE):

self .STATE = STATE

self .STATE_.TIME = time ()

def SetPose(self, POSE):
self .POSE = POSE
self .POSE_.TIME = time ()

def ServState(self):
return self.SERV_STATE

66

© OO U R WN

OO U R WN

The ‘Send()’, ‘Recv()” and ‘RecvFile()’ functions are identical to the server ver-
sions (listings 5.4 and 5.5). The ‘RecvMap()’ and ‘RecvPose()’ functions retrieve
the map files and object pose from the server respectively, shown in listing 5.8.

Listing 5.8: Client functions for receiving poses and files from the server.

Depending on TARGET, requests and retrieves

pose string for ARMBOT or OBJECT.

def RecvPose(self , TARGET):
SOCK = socket.socket (socket .AF_INET, socket.SOCKSTREAM)
SOCK. connect (self .HOST_ADDR)

if (TARGET == ’0BJ’):
SOCK.send (> SEND_OBJ_POSE#’)
elif (TARGET == ’ARM’):

SOCK.send (> SEND_ARM_POSE#’)
POSE = self.Recv(SOCK, 32)
SOCK. close ()
if (POSE):

return POSE
else:

return None

Receive 2 map files , ‘map.pgm’ and ‘map.yaml’,
saving in directory specified by DEST. Using
threads to avoid holding up program.
def RecvMap(self , DEST):
SOCK.0 = socket.socket (socket .AF_.INET, socket.SOCKSTREAM)
SOCK.0. connect (self .HOST-ADDR)
SOCK.-0.send (> SEND_MAP_PGM#’)
THREAD O = threading.Thread(target=self.RecvFile,
args=(SOCK_0, 32, DEST + ’/map.pgm’))
THREADOO. start ()
SOCK.1 = socket.socket (socket .AF_INET, socket.SOCKSTREAM)
SOCK_.1.connect (self . HOST_ADDR)
SOCK-1.send (> SEND_MAP_YAML#’)
THREAD_1 = threading.Thread(target=self.RecvFile,
args=(SOCK_1, 32, DEST + ’/map.yaml’))
THREAD_1. start ()

‘RecvMap()’ starts 2 threads of ‘RecvFile()’, one for each map file downloading
from the server (i.e. ‘map.pgm’ and ‘map.yaml’). This is to ensure that the client
node isn’t halted while it waits for files to download. The ‘SendFile()” functions
enables the upload of map and image files to the server, as seen in listing 5.9.

Listing 5.9: Client function to send files to server via thread.

Send input DATA of type TYPE.
def SendFile(self , DATA, TYPE):

if (TYPE == °’MAP_YAML’):
MSG = ’RECV_MAP_YAML#’
elif (TYPE == > MAP_PGM’):
MSG = ’RECV_MAP_PGM#’
elif (TYPE == ’0BJ’):
MSG = ’RECV_0BJ_IM#’
elif (TYPE >VER’):
MSG = ’RECV_VER_IM#’

THREAD = threading.Thread(target=self.Send,
args=(None, 32, MSG + DATA))
THREAD. start ()

67

QT Uk W~

©OND U WN -

5.2.4 ArmBot Client Results

The ArmBot client node is initialised from ROS, and reads the ‘settings.txt’ file
to determine the server address and file directories. The ArmBot client node
initialisation is displayed in listing 5.10.

Listing 5.10: Initialisation function for the ArmBot client node.

Initialise client with server address HOST-ADDR and
map file directory MAPDIR. A client is initialised
for the ARM and the BASE, and any exisiting map files
are deleted on startup.
def __init__(self, HOST-ADDR, MAPDIR):
self .HOST.ADDR = HOST_ADDR
self .MAP_DIR = MAP_DIR
self .ARM_CLIENT = BotClient (HOST_ADDR, °’ARMBOT’)
self .ARM_BASE_CLIENT = BotClient (HOST_ADDR, °’BASEBOT’)
self .IMAGE_FLAG = None
self .PRINT_FLAG = None
self .POSE_FLAG = None
if (os.path.isfile (self MAPDIR + ’/map.pgm’)):
os.remove(self .MAPDIR + ’/map.pgn’)
if (os.path.isfile (self .MAPDIR + ’/map.yaml’)):
os.remove(self MAPDIR + ’/map.yaml’)
self .MAPFLAG = None
Subscriptions for ARM state , BASE state ,
BASE pose and ARM image data.
rospy . Subscriber (’/uarm/state’,
String ,
self . ArmStateCallback)
rospy . Subscriber (’/arm_bot_base/state’,
String ,
self . ArmBaseStateCallback)
rospy .Subscriber(’/amcl_pose’,
PoseWithCovarianceStamped ,
self . ArmBasePoseCallback)
rospy.Subscriber (’/usb_cam/image_raw’,
Image,
self.ImageCallback)
Publications for server state and object pose goal.
self .POSE_TOPIC rospy . Publisher (’/arm_bot_base/goal’, PoseStamped)
self .SERV_.STATE rospy . Publisher(’/client_node/serv_state’, String)

The ROS subscriptions for the ArmBot state, BaseBot state/pose and ArmBot
image feed are at lines 21-32 and the ROS publications for move goal and server
state are at lines 34-35.

The callback functions for the states and poses are shown in listing 5.11.

Listing 5.11: Callback functions to update client/upload to server.

Updates ARM state in client .
def ArmStateCallback(self , DATA):
self .ARM_CLIENT. SetState (DATA. data)

Updates BASE state in client.
def ArmBaseStateCallback (self , DATA):
self .ARM_BASE_CLIENT. SetState (DATA. data)

Updates ARM pose in client. Converts pose

to a dictionary , converts the data to euler

co—ords from quaternion and send to server.

def ArmBasePoseCallback(self , DATA):
POSE_DICT = PoseCovarianceToDict (DATA)
POSE_DICT_STRING = str (QuaternionToEulerDict (POSE_DICT))
self .ARM_BASE_CLIENT. SetPose (POSE_DICT_STRING)

The ArmBot and BaseBot states are uploaded to the server, and the BaseBot
pose is converted to a dictionary format (line 16), transformed to Euler co-ordiates
(line 17) before being uploaded to the server (line 18).

68

© WU WN -

The callback function for the ArmBot camera feed is displayed in listing 5.12.

Listing 5.12: Callback function for the ArmBot camera upload thread.

When the server is waiting for an image file to be
uploaded (for user decision), ROS geometry_msgs
Image converted to PPM and sent to server.
def ImageCallback(self , DATA):
CURSERV_.STATE = self.ARM.CLIENT. ServState ()
if (CURSERV.STATE == ’ARM_SEARCH’):
if (not self .IMAGEFLAG):
PPM.DATA = RosImageToPPMString (DATA)
self .ARM_CLIENT. SendFile (PPM_DATA, °>0BJ’)
self .IMAGEFLAG = True
elif (CURSERV.STATE == ’> ARM_PICKUP’):
if (not self .IMAGEFLAG):
PPM DATA = RosImageToPPMString (DATA)
self .ARM_CLIENT. SendFile (PPM.DATA, °’VER’)
self .IMAGEFLAG = True
else:
self .IMAGE_FLAG = None

An image is uploaded to the server for 2 user decisions; 1 to confirm a valid
object has been found and another to confirm successful pickup of the object. For
each upload, the Image data is read and converted to a ‘.ppm’ format (lines 9 and
14) and uploaded to the server (lines 10 and 15).

The main callback function for ArmBot client node is displayed in listing 5.13.

©OTDU A WN -

Listing 5.13: Main function for the ArmBot client node.

Work callback , executed at RATE (defined at top).
def WorkCallback(self):
Publish current server state.
CUR-SERV_STATE = self .ARM_CLIENT. ServState ()
self .SERV.STATE. publish (CUR_SERV_STATE)
Display current server state (if updated).
if (self .PRINT_FLAG != CUR_SERV_STATE):
self .PRINT_FLAG = CUR_SERV_STATE
rospy.loginfo (self .PRINT_FLAG)

Reset IMAGEFLAG when in un—related state.
if ((CURSSERV_STATE != > ARM_SEARCH’) or
(CURSERV.STATE != ’ARM_PICKUP’)):

self .IMAGE_FLAG = None
When object is found (server state FOUND.OBJ),
an object pose is downloaded, converted to PoseStamped ()
message type and published to necessary ROS topic.
if (CURSERV.STATE == ’>FOUND_0BJ’):
if (not self .POSEFLAG):
POSE_STRING = self .ARM_CLIENT.RecvPose(’0BJ")
rospy.loginfo (’POSE: ’> 4 POSE_STRING)
if (isinstance (POSE_STRING, str)):
POSE_DICT = ast.literal_eval (POSE_.STRING)
POSE_STAMPED = DictToPoseStamped (POSE_DICT)
self .POSE_TOPIC. publish (POSESSTAMPED)
self .POSE_FLAG = True
else:
self .POSE_-FLAG = None
If no map present, check server state for MAP_AT_SERVER
and download to MAPDIR if it’s available from server.
if (CURSERV.STATE == ’MAP_AT_SERVER’):
if (not self .MAPFLAG):
self .ARM_CLIENT.RecvMap(self .MAP_DIR)
self .MAPFLAG = True

else:
self MAPFLAG = os.path.isfile (self .MAPDIR + ’/map.pgm’) and \
os.path.isfile (self .MAPDIR + ’/map.yaml’)

69

QOO UE W~

5.2.5 BinBot Client Results

The BinBot client node is identical to the ArmBot client node with some reduced
functionality. Firstly, the BinBot client node only uploads 1 state to the server,
where-as the ArmBot client uploads state for the ArmBot and BaseBot. Secondly,
the BinBot client does not have the functionality to upload images, as only the
ArmBot requires this user-decision check.

5.2.6 MapBot Client Results

The MapBot client is similar to the BinBot client, except for a different work call-
back because of the different tasks for the robot. The main work thread (‘Work-
Callback()’) for the MapBot client node is shown in listing 5.14.

Listing 5.14: Main function for the MapBot client node.

Work callback , executed at RATE (defined at top).
def WorkCallback(self):
Publish current server state.
CUR-SERV_STATE = self .MAP_CLIENT. ServState ()
self .SERV_.STATE. publish (CUR_SERV_STATE)
Display current server state (if updated).
if (self .PRINT_FLAG != CURSERV._STATE):
self .PRINT_ FLAG = CUR_SERV_STATE
rospy.loginfo (self .PRINT_FLAG)
When server state is MAPDONE, the mapping is stopped,

the map is saved, the ‘.yaml’ file is amended and both
the ‘.pgm’ and modified ‘.yaml’ are sent to the server.
if (CURSERV_STATE == ’MAP_DONE’):

if (not self.MAPFLAG):

subprocess.call(’rosrun map_server \
#map_saver -f map’, shell=True)
YAMLDATA = self.ReadFile(self .MAP.DIR + ’/map.yaml’)
YAMLDATA = self.FixYAML(YAMLDATA)
self .MAP_CLIENT. SendFile (YAMLDATA, °’>MAP_YAML’)
PGMDATA = self.ReadFile(self .MAPDIR + ’/map.pgm’)
self .MAP_CLIENT. SendFile (PGM.DATA, °’>MAP_PGM’)
self .MAPFLAG = True
else:

#self MAPFLAG = os.path.isfile(self . MAPDIR 4+ ’/map.pgm’) and \
#os .path.isfile (self .MAPDIR + ’/map.yaml’)

self .MAP.FLAG = None

The MapBot begins mapping when the server stays in ‘START’, indicating that
there is no available map for the system. The MapBot will begin to automatically
map until the map is complete. If the map is unfinished, the user can finish
the map by giving the necessary move goals using RViz. When the user decides
that the map is finished, the server is put into the ‘MAP_DONE’ state. When in
‘MAP_DONE’, the MapBot will stop recording a map and save the current data
(line 16), modify/fix the ‘.yaml’ to ensure that the map works on all robots (i.e.
change the name of the ‘map.yaml’ name region, lines 18 and 19) and upload the
‘pgm’ and ‘.yaml’ files to the server (lines 20 and 22).

70

© WO U s WN -

5.2.7 FlyBot Client Results

The integration of the FlyBot into the object retrieval process is still under devel-
opment, as issues with the network quality and wind-drafts made it very difficult
for the drone to properly localise. Because of this, the FlyBot client node was
developed to simulate this functionality by allowing the user to upload the object
pose through the server using RViz and the arena map. The ‘WorkCallback()’
function for the FlyBot client node is displayed in listing 5.15.

Listing 5.15: Main function for the FlyBot client node.

Work callback , executed at RATE (defined at top).
def WorkCallback(self):
CUR-SERV_STATE = self .FLY_.CLIENT. ServState ()
Display current server state (if updated)
if (self .PRINT_FLAG != CUR_SERV_STATE):
self .PRINT_FLAG = CUR_SERV_STATE
rospy.loginfo (self .PRINT_FLAG)
If no map present, check server state for MAP_AT_SERVER
and download to MAPDIR if it’s available from server.
if (CURSERV.STATE == ’MAP_AT_SERVER’):
self .MAPFLAG = os.path.isfile (self .MAPDIR + ’/map.pgm’) and \
os.path.isfile (self .MAPDIR + ’/map.yaml’)
if (not self .MAPFLAG):
self .FLY_CLIENT.RecvMap(self .MAP_DIR)
self .MAPFLAG = True

Reset map flag variable, removing existing
files on reset.
elif (CURSSERV_.STATE == ’RESET’)

if (os.path.isfile (self .MAPDIR + ’/map.pgm’)):
os.remove(self .MAPDIR + ’/map.pgn’)

if (os.path.isfile (self .MAPDIR + ’/map.yaml’)):
os.remove(self MAPDIR + ’/map.yaml’)

self .MAPFLAG = None

5.2.8 ROS Data Transformations

To transmit ROS data formats using socket connections, it must be transmitted
as a string. To allow for easier reconstruction after upload, the ROS data formats
are converted to more manageable formats. The poses that are being published for
the Arm, Base, Bin and MapBots consist of ROS ‘PoseStampedWithCovariance’
data types. The ‘PoseStamped’ and ‘PoseStampedWithCovariance’ messages can
be mapped to a dictionary object using python, and functions to convert back and
forth between the ROS pose formats and dictionary’s have been created. The file
‘pose_dict_tf.py’ contains functions ‘PoseStampedToDict()’, ‘PoseCovarianceToD-
ict()” and ‘DictToPoseStamped()’, which convert between ROS pose formats and
dictionaries.

Another transformation is used to convert the robot pose dictionaries from
Quaternion (x, y, z, w) co-ordinates to Euler (pitch, roll, yaw) co-ordinates. This is
done using the ‘tf.transformations’ functions ‘euler_from_quaternion()’ and ‘quater-
nion_from_euler()’.

71

© OO U R WN

OO U A WN -

The ‘QuaternionToEulerDict()” and ‘EulerToQuaternionDict()” allow for con-
version between both formats and are included in the ‘pose_dict_tf.py’ file. The
‘QuaternionToEulerDict()’ function is displayed in listing 5.16.

Listing 5.16: Function to convert Quaternion co-ord. dict. to Euler co-ord. dict.

Converts quaternion dictionary to euler dictionary.
def QuaternionToEulerDict (DICT_IN):

QUAT = [DICT.IN[’pose’][’orientation’][’x’],
DICT_IN|[’pose’][’orientation’][’y’],
DICT.IN|[’pose’][’orientation’][’z’],
DICT_IN|[’pose’][’orientation’][’w’]]

EUL = euler_from_quaternion (QUAT)
TF_DICT = {}
TF_DICT|[’pose’] = {}
TF.DICT|[’pose’][’orientation’] = {}
TF_DICT|[’pose’][’orientation’][’roll’] = EUL[O0]
TF_DICT | ’pose’][’orientation’]

]
]

[’pitch’] = EUL[1]
TF_DICT [’ pose’ >orientation’][’yaw’] = EUL[2]
DICT.IN [’pose’ ’orientation’] = TF.DICT|[’pose’][’orientation’]

return DICT_IN

The ArmBot camera records image data in the ROS ‘sensor_msgs/Image’ for-
mat, which is incompatible with most image viewing software and so needs to be
converted to a suitable format. The ‘ros_image_conv.py’ file contains the ‘RosIm-
ageToPPMString’ function, which takes an input ‘sensor_msgs/Image’ data string
and converts it to a ‘*.ppm’ string. The ‘.ppm’ format is a common format which
can be converted to a ‘.png’ server-side, to allow for compatibility with the iPad.
The ‘RosImageToPPMString()” function is shown in listing 5.17.

Listing 5.17: Function to convert ‘sensor_msgs/Image’ to ‘.ppm’.

def RosImageToPPMString (SENSORIMAGE):
IMAGE = SENSOR.IMAGE

IM_CONV = ’°
IM_.CONV = IM_.CONV + °’P6\n’ + \
str (IMAGE. width) + * > 4 str (IMAGE. height) + ’\n’
IM_CONV = IM_.CONV 4 ’255\n’
print ’sensor_msgs/Image to .ppm:\n [resolution: °’> + \

str (IMAGE. width) + ’x’ + str (IMAGE. height) + *]1°
for y in xrange (IMAGE. height):
for x in xrange (IMAGE. width):
RED_IDX = int(y * int (IMAGE.step) + 3 * x)
GREEN_IDX = RED.IDX + 1
BLUE.IDX = RED.IDX + 2
IM_CONV = IM_CONV + str (IMAGE. data [RED_IDX])
IM_.CONV = IM_CONV + str (IMAGE. data [GREENIDX])
IM_CONV = IM_.CONV + str (IMAGE. data [BLUE_IDX])
print ’Conversion complete.’
return IM_CONV

5.3 Robot Arm

5.3.1 Flashing Code to the Arm

When the code was uploaded for testing to the Arduino Uno supplied with the
arm, the program became unresponsive. When it tried to execute the program, it
simply failed to finish initialising. This appeared to be due to the serial buffer size
of the Uno being too small at only 64 bytes. It could not handle the large volume
of serial data being sent and received by the program, whilst simultaneously ex-
ecuting the code within the uArm control library. Since there didn’t seem to be
a way to fix the issue, the Uno was replaced with an Arduino Mega 2560. This
board is an upgrade to the Uno with increased RAM size, a faster processor, as

72

well as a larger serial buffer.

5.3.2 Accuracy and Repeatability

With the ability to send and receive data to and from the arm, it is now possible to
control it as desired. From within the ROS environment, the controller has access
to any topic that is published to the roscore. In order to test this functionality
and to run some accuracy and repeatability tests on the arm, a simple script was
created to repeatedly move the arm between two points. A pen was mounted to
the end of the arm to leave a mark on a piece of paper at each location, shown in
figure 5.10.

1 2 3 4 5 6 7 8 9

o A

,* Eé; I’.
' q .

"

Figure 5.10: Accuracy and repeatability test results.

3

The arm was told to move to 5 different positions on a plane in the work
envelope. The marks made by the pen are green, and the white spots were added
to show the position on the paper the arm was aiming for. The ruler along the
top of the image is for scale and the results are analysed below:

1. This position was 250mm from the base of the arm. Some points to note:

e When the arm moves to the position at full speed, the end effector can
forced down into the paper before reaching its target. This is due to the
design of the arm, and poor resolution of the servos. This is shown by
the little spots located down and to the left of the larger spots. Where
the pen was held for a longer duration, the spots are larger.

e As the test was repeated, it appeared to hit the target many times, but
occasionally missed it.

2. After the previous test, it was noted that if the pen was held in position
touching the paper for too long, a larger spot was drawn. The pen was
therefore moved out of position straight away for each subsequent test. The
target position was 200mm from the base of the arm. Some points to note:

e Similar outcome to the previous test.

73

e The arm appears to have low accuracy near its range limit.
3. This position was only 100mm from the base. Some points to note:

e The arm only missed the target by a significant margin once.

e When the target is closer, the accuracy increases
4. Both position 4 and 5 were 150mm from the base. Some points to note:

e These points were located roughly halfway between the inner and outer
limits of the arm’s reach.

e Position 4 was to the right of the arm’s work envelope, and 5 was nearer
the middle.

e The arm managed to reach the target position with decent accuracy
each time, but it was not able to do it as accurately as it did for position
3.

uFactory states that the worst-case accuracy of the arm is 6mm-10mm. This
appears to match the results obtained from these tests. It is important to note that
the difference in accuracy between positions close and further away to the base
arise due to the accuracy in the servos, and the geometry of the work envelope.
Since the motors are only basic servos, they only have a resolution of 180°. The
arm can only reach positions that can be defined with integer values. The servo
that determines the rotation of the arm will also not be able to position itself to
align the arm along the radial lines emanating from the base. This effect is shown
in figure 5.11. This has the effect of reducing the accuracy of the arm when trying
to position the end effector further away as the arm could be slightly to the left
or right of its target position, with the servo thinking it has reached its target.

Since the objects to be manipulated are 70mmx70mm, even at full extension,
accuracy of 6-10mm is acceptable.

74

Omm 70mm 340mm

2+70*tan(0.5)=
1.22 mm 2*340*tan(0.5) =[] 5.93mm
L

Figure 5.11: Effect of targets distance from base on accuracy. Black lines are
possible positions the servos can take. Angle between them 1°.

5.3.3 Final Design of State Machine for the Arm

To keep track of what the arm is meant to be doing at any given time, a finite
state machine was developed. The state machine transitions between states when
it has finished tasks, or is prompted to by either the robot base, or the server. The
full design of the state machine can be seen in figure 5.12.

75

ServerSiate = IDLE

|
S

(Disabie Gripper)

1

IDLE

|" Maove: \‘l
. IDLE_POSE Y,

>j_

}

AlT. :
IDLE_POSE

A

ServerState:
ARM_TO_O8.J

>7

f

ARM_TO_OBJ

}

BaseState:
WAIT_FOR_ACTION

{

SEARCH_OBJ

L

|' Move: \‘l
,L | HOME_POSE)

<li'ne:emrr time + 3

1
AlTarget:
HOME_POSE
1
"—\ l“SEAHCH PoSE
AlTanget:
SEARCH_POSE

l'/ Error- \‘l
\ PINK, CAM

CenterOnBlob:
PINK

{

Move:

]

WAIT

SemverStata:
BIMN_AT_ARM

>_

ALIGN_BLOCK

v

: Emor: ™
PINK, BLOCK ;l

p
|

\,

i

Cant
PINK

.

APPROACH

-

s

§

H

"

P
]
H
5

[Activate

H

J

b

d

T

PICK_UP

M1

Jj
i

AT, :
SEARCH_FOSE

1
I

|' T e \‘l
L ?EﬂHCH POSE J

—

VERIFY

}

ServerState:
ARM_DROPPING

1

>—

L

i

{
.

LOCATE_BIN
|" Move: |
l | BEARCH PQSE/
AdTarget:
SEARCH_POSE

< Blue Blobs Seen >7

ALIGM_BIN

P

Roate Lafi

ServerState:
BIN_TO_BASE

| Disable Gripper |
DROPFPED
|" Move: |
|_HOME_POSE |
AlTarget: :: f
HOME_POSE

>7

Figure 5.12: Full Finite State Machine for the Robot Arm.

76

Each state was implemented as a class (each defined as a state object), to allow
for clearly defined entry and exit functionality for each state. When the state is
not in transition, the execute function is called repeatedly until the state is tran-

©OTDU A WN -

COWNOU A WN -

=

©ONOD U WN -

sitioned. The basic outline of the state object is shown below:

Definition of Base State Class

#

class State(object):

def __init__(self, FSM, Arm):
self .FSM = FSM
self .Arm = Arm

def Enter(self):
pass

def Execute(self):
pass

def Exit(self):
pass

def ReturnName(self):
pass

To transition between states, a transition class object was defined to keep track of

current transition, like so:

#

Transition class. Called when ToTransition set

#

class Transition(object):

def __init_-_(self, toState):
self.toState = toState

def Execute(self):
print (" Transitioning...")

The last part of the FSM definition is the FSM class itself. This class allows for
the creation of states and transitions from the main of the program.

Top—level of the Finite State Machine

#
class FSM():

Initialise finite state machine

def __init__(self):
self.states = {}
self.transitions = {}
self.curState = None
self.prevState = None
self.trans = None

Each transition should be added by calling this function
def AddTransition(self, transName, transition):
self.transitions [transName] = transition

Adding a state to the FSM is done using this function
def AddState(self, stateName, state):

self.states [stateName] = state

print °’Adding State: ’ 4 stateName

Used to set state manually
def SetState(self , stateName):

self.prevState = self.curState

self.curState = self.states [stateName]
When transitioning between states, use this function
def ToTransition(self, toTrans):

self.trans = self.transitions [toTrans]
Call repeatedly from a loop. When a transition has been added,
the state machine will call the exit function from current
state , set the new state and call its entry function, and
reset the transition.

The execute function of each state is called on every function
call.
def Execute(self):
if (self.trans):
self.curState.Exit ()
self.trans.Execute ()
self.SetState(self.trans.toState)

7

42
43
44

=W N =

OO U s WN -

self.curState.Enter ()
self.trans = None
self.curState.Execute ()

All the transitions and states are stored in dictionaries, with strings as identifiers.
As such, they are initialised like so:

State initialisation

fsm.AddState (" IDLE", IDLE(fsm, rArm))

Transition Initialisation
fsm.AddTransition("to_IDLE", Transition ("IDLE"))

The main function then calls the execute function of the FSM on every loop, like
so: fsm.Execute().
Here is an example of a fully implemented state:

class SEARCH.OBJ(State):

def __init__(self, FSM, Arm):
super (SEARCH.OBJ, self). __init__(FSM, Arm)
self .EntryTime = None

def Enter(self):
rospy.loginfo ("Entering SEARCH_0BJ State")
self .EntryTime = rospy.get_-time ()

def Execute(self):
if rospy.get-time() < self.EntryTime + 3.3:
if self.Arm.AtTarget (HOMEPOSE) is False:
self .Arm.Move (HOMEPOSE, 0.1)
else:
if self.Arm.AtTarget (SEARCH.POSE) is False:
self .Arm.Move (SEARCHPOSE, 0.1)
elif self.Arm.PinkBlobsSeen () is True:
self .FSM. ToTransition("to_ALIGN_CAMERA")

def Exit(self):
rospy.loginfo ("Exiting SEARCH_OBJ State")

def ReturnName(self):
return "SEARCH_0BJ"

5.4 Simulators

5.4.1 Install and setup

Both simulators will need to be installed for Gazebo it was simply installed via
the ROS Ubuntu repository, this includes some basic launch files although there
are many more ROS packages which provide simulations to run in gazebo.

MORSE is available in the Ubuntu repository however only for Ubuntu 13.04
onwards, in these tests Ubuntu 12.04 was used in conjunction with ROS groovy,
and MORSE 1.0. The git page was used to download MORSE, following the
instructions on there it was compiled then installed. Compiling and installing
MORSE is quite simple following the instructions, however the most important
thing is to match the python versions of MORSE, ROS and Blender, without
this MORSE will compile and work but it will not be able to interface with
ROS/Blender. This can be quite a difficult task in older versions of ROS such
as groovy. However newer versions of Ubuntu and ROS have an easier setup due
to matching python version by default and Ubuntu 15.04 has MORSE with auto-
matic middle-ware installation in its repository allowing as simpler installation as
Gazebo.

78

5.5 Quad-copter

The ‘tum_simulator’ package was used to test all code before testing on the quad-
copter, this package provides simulation files for gazebo, this allows gazebo to
generate all the ROS topics the ARDrone would and recreate the data it would
produce in the simulated environment. This was useful to test states transitions
function correctly as-well as to test how to control the quad-copter initially without
damaging the ARDrone.

5.5.1 Connecting

Connecting to the ARDrone was extremely easy this has been tested on many
devices, desktop, laptop and Raspberry pi 2, all that is required is a wifi connection
and the ‘ardrone_autonomy’ package. The only time when connection to the quad-
copter was not possible was at bench inspection when there where many new
temporary wifi networks that caused too much interference. As the ARDrone runs
linux this allows many parameters for the wifi connection to be changed, such as
the channel which did help avoid the majority of interference.

Table 5.1: Sample of Pings to the ARDrone

PING 192.168.1.1 (192.168.1.1) 56(84) bytes of data.

64 bytes from 192.168.1.1: icmp_req=1 tt1=64 time=2.65 ms
64 bytes from 192.168.1.1: icmp_req=2 ttl=64 time=1.32 ms
64 bytes from 192.168.1.1: icmp_req=3 ttl=64 time=1.04 ms
64 bytes from 192.168.1.1: icmp_req=4 ttl=64 time=0.874 ms
64 bytes from 192.168.1.1: icmp_req=>5 tt1=64 time=0.721 ms
64 bytes from 192.168.1.1: icmp_req=6 tt1=64 time=1.56 ms
64 bytes from 192.168.1.1: icmp_req=7 tt1=64 time=0.838 ms
64 bytes from 192.168.1.1: icmp_req=8 ttl=64 time=0.840 ms
64 bytes from 192.168.1.1: icmp_req=9 ttl=64 time=0.905 ms
64 bytes from 192.168.1.1: icmp_req=10 tt1=64 time=3.39 ms
64 bytes from 192.168.1.1: icmp_req=11 tt1=64 time=3.52 ms
64 bytes from 192.168.1.1: icmp_req=12 ttlI=64 time=0.824 ms
64 bytes from 192.168.1.1: icmp_req=13 ttl=64 time=4.43 ms
64 bytes from 192.168.1.1: icmp_req=14 ttl=64 time=0.894 ms
64 bytes from 192.168.1.1: icmp_req=15 ttl=64 time=0.944 ms
64 bytes from 192.168.1.1: icmp_req=16 ttl=64 time=1.14 ms
64 bytes from 192.168.1.1: icmp_req=17 tt1=64 time=0.778 ms

The pings show that for the majority of the time there is a good connection,
but there is a periodic lag spike where pings increase and data being received from
the quad-copter slows down or freezes.

79

5.5.2 Colour Detection

To implement colour detection a node was created that, will subscribe to all blobs
produced by ‘cmvision’ this node requests the quad-copters position, when it re-
ceives a blob then sends the position plus a small offset depending on where abouts
in the image the blob was detected, if there has not already been a blob sent within
1 metre of that location. The offset of the position sent based on the blobs location
within the image was calibrated by knowing the quad-copter will be flying at a
set height then testing the camera to find scaling constants. This node also sends
colour marker blobs to a separate topic for the controller node except that those
blobs are repeated whenever they are seen.

5.5.3 Navigation

The Controller node will produce ‘cmd_vel’ based on the current state and room,
in state 0 the quad-copter is landed so not moving, in state 1 the quad-copter
moves in a preset direction depending on what room it is in. State 2 is used to
align the quad-copter over the coloured marker, then state 3 is used to update the
coordinates to the coordinates of the room. The node resets in state 4 where the
quad-copter lands or whenever the the quad-copter lands.

This nodes states and transitions are shows in figure 5.13 this shows that the
node starts in the landed state 0, the node subscribes to the ‘navdata’ topic which
provides the node with the quad-copters state. When the quad-copters state is no
longer landed the node will move to state 1. State 1 is used to move the quad-
copter towards the next colour marker in the sequence, the direction depends on
what rooms its in. State 2 is used to align the quad-copter over the marker so it
can get an accurate update of its coordinates. State 3 publishes the update pose
to the localisation node, this pose is set within the controller, each colour marker
needs to have a pose given to it. State 4 is used to land the quad-copter when the
node has reached room 8.

This node worked very well in simulation where sensor error was minimal, 5.14
this figure shows the simulation used to test the controller the quad-copter follows
a serpentine path of alternating coloured markers. In simulation different markers
are simulated using red balls and wood boxes, these were used as they are two
contrasting colours that already exist on Gazebo. However in practice the quad-
copter struggled to move smoothly around the arena. It was later determined when
the quad-copter was directly over a wall it would hover almost perfectly, however
in the middle of rooms or positions where air currents could be redirected back
towards the quad-copter it would be blown off course. This presented problems to
determine how far to move in each direction, as each part of the arena required
different amounts of thrust to travel the same speed. To correct for this more
sensor data will be needed.

The quad-copter could also struggle to maintain its orientation while moving
around the arena, as this was unanticipated, there was no data that could provide

80

State 0

Landed

is Landed

if RoomO:Move Forward

———>| if Room1: Move Forward
if Roomz2: Move Left

it Roam3: Move Backward

it Roomd: Move Backward

Can See Colour
Marker

|align ARDrone over marker using PID

Directly above

Update Localisation using
predefined coordinates for current
room

increment room

Land

Figure 5.13: ASM of the controller node showing states and state transitions.

81

Figure 5.14: Controller node Simulation

reliable feedback of orientation.

The wireless network reliability made centering the quad-copter over the colour
markers very difficult, as it was common for the connection to the quad-copter to
drop out for up to 3 seconds. By this time the quad-copter had drifted off course
and needed manual intervention to get back to a known location. However this
behaviour is quite predictable, as the ARDrone has on board processing it simply
continues doing whateve it was doing when the connection dropped, this could
allow the ARDrones position to be re-estimated. An attempt to implement a
recovery behaviour after a connection drop out was to reverse the quad-copters
direction so it would go back to where it was when the connection dropped.

5.5.4 Localisation

In simulation gazebo generated a pose for the quad-copter automatically, this had
a small amount of error introduced into it, however using this it was easy to
develop a node that would publish the objects position. Therefore it was needed
that a node be created that would generate an estimated pose, as there was no
single sensor that could provide this data, the ARDrones input velocities would
be logged if the quad-copter was ideal this would be sufficient. The ARDrone is
not ideal so the quad-copters position will be updated from the controller, when
it is above a colour marker.

In practice in certain parts of the map, usually in the middle of rooms, the
quad-copter would drift away from its estimated position, this was because of the
air turbulence generated from the arena, that was pushing the quad-copter out
of position. Only when the quad-copter moved over a marker would the position
correct its self, this allowed the error generated here to be measured.

82

Table 5.2: Sample of Data Showing Quad-copter Drift from Estimated Pose

Estimated Actual Difference
x:3.32, y:-4.41 | x:1.97, y:-3.64 -68 | x:1.35, y:-0.77
x:2.85, y:-3.93 x:3.04, y:-3.42 x:-0.19, y:-4.12
x:3.9, y:-5.91 x:1.92, y:-3.89 x:1.98, y:-7.89

5.6 i0OS Application

5.6.1 Sending pose from iOS Application:

The functionality to send user generated poses is implemented within the appli-
cation at the final stage of completion. However due to the reason that it is
implemented very late in the project it is decided by the group that it is not prac-
tical to test it as many other changes will need to be catered for this functionality
to work. A demonstration however is shown in the image below of the functioning
user sent poses by tapping on the map and sending poses to the robot-image labels
and robot-image view.

83

i(;S Simulator - iPad 2 - iPad 2 /[i05 8.1 (12B411)

Camier T 10:28 AM 1005 (-

Start Reset Pickup Confirm Pickup Map Done

Touch Ended at 385, 124 Server Status: No connection.

s-ae

map:

[t

,_‘z‘ P = MW o= M o om [I .-
2 L O Lo 1 § s %
“ * sEET i
e [=INNE I e
T

POSE
POSE
POSE

Figure 5.15: Demonstrating user sent poses by tapping on map view area

5.6.2 Receiving Pose, State and Images from Server

e [t can be seen from the figure below that receiving poses for the currently
active robots is fully functioning and being refreshed at a period of every 0.5
seconds. This is considered enough to display smooth motion, included with
the timed animation, at the same instance it does not overload the server or
connection with unnecessary traffic.

e The states are refreshed at a lower rate of every 1.0 seconds as they do not
change as frequently or quickly as the poses do.

e When user decision is required the popover view controller is loaded when a
specific task is to be carried out and the image is loaded successfully. In the
figure below it is demonstrated by pulling the map.png file and loading it in
the image view of the popover view controller.

e The loaded image also shows the position and angular tilt of the most re-
cent map to be used for the robot-team, the map is updated and then kept

84

consistent for further testing to yield the most regular results.

i0S Simulator - iPad 2 - iPad 2 / iOS 8.1 (12B411)

Carrier 5

0020 P

Start Reseat Pickup Confirm Pickup Map Done

Server Status: BIN_TO_ARM

0%, (-

i

Yas No
I
: J

Figure 5.16: Displaying data and demonstrating an Image loaded from server

5.6.3 Warping Image and Unsuccessful Loading of Image

in image-VC:

e The custom SimpleSocket.h/SimpleSocket.m library is used for downloading

images from the server with a socket time-out of zero and no packet recov-
ery if packets are lost during transmission. The library is very primitive for
this project but the GCDAsyncSocket library method of receiving the NS-
Data format is not interpreted in time to make full use of it. However the
GCDAsyncSocket library does have a method to append data read from a
socket and put it in an NSData format, but the image file created thereafter
is corrupted and varying in size with each attempt at downloading an image
from the server.

85

e The method for motion animation works in the vertical and horizontal plane
but the angular plane is not functioning as expected. The figure below
depicts an instance when the image disappears, warp or is squished away
using CGAffineTransformMakeRotation function. This function is used for
rotating CGContextRef [46] which is a graphics context containing drawing
parameters to render an image or paint on a destination i.e. window in
an application for a bitmap image for instance. Performing a static test
rotating a UllmageView of a robot on the map with fixed vertical, horizontal
and angular variables is successful. The irregularity which causes a robot-
image to ‘warp’ is due to the fact that the image-view is not translated in a
CGContextRef as a graphics context. Please refer to the repository [40] for
the commented code.

86

Figure 5.17: Showing Warping effect with black lines to highlight fault

87

Chapter 6

Discussion and Conclusions

6.1 Future Work

For the communications server, the future work lies in adapting the network con-
figuration so that a distributed server system is achieved. To do this, each robot
will need to host a server and client and continuously transmit and recieve data
with all other robots in the team. A script to compare the current data for each
robot would allow a decision to be made on which robot has the most up-to-date
data.

To further improve the arm’s capabilities, the following improvements can be
made. Modelling the current position of the end effector in relation to the base
of the robot using ROS tfs. This would allow the arm to know where the object
and container are prior to moving, instead of relying soley on the camera. This is
especially useful for placing the object in the container, as the carrier robot can tell
the arm robot its current position, and adjust the reach of the arm so that it will
be able to see the container every time. This would also require conversion from
cartesian coordinate system to cyclindrical co-ordinates in order to move the arm
to those target positions. Replacing the arm’s servos so that they provide more
feedback would allow for more accurate control, so that the controlling program
can keep track of the arm’s physical location. Adding a sensor to the pump so
that it can tell when an object has been picked-up, which can be done by using
a flow sensor as when an object is not picked-up, air will flow freely through the
tube.

To further improve the application, the layout can be made to look more profes-
sional as well as including an application starting icon and launch screen. Another
possibility is to allow the user to change the host IP and port at any time, as well
as map offsets if a new map is loaded. When a new map is loaded, it could also be
possible to allow the user to re-size and rotate the image from within the image
window instead of using fixed values.

There is little left to test for Gazebo as it is so well supported, there are many
simulations already available for it, there are many on-line guides, forums and
documentation. Which make it the easiest simulator to use on ROS. Where as

88

MORSE is still developing and adding more features such as sensors and robot
models, for this reason MORSE should be tested again in the future, on a newer
version of Ubuntu and ROS, to keep track of the projects progress. However to run
MORSE’s more sophisticated graphics, the lab computers may need upgrading.

Navigation on the quad-copter is limited by its processing power, therefore it
is a sensible idea to keep the navigation simple such as close waypoints with no
object avoidance. This limits further progress on this although improvement of
localisation or accuracy of sensor readings would give improvements for navigation.

To improve localisation further more data will be needed to track the quad-
copter more accurately, this could be achieved with more sophisticated markers
to update the quad-copters position. This would help as using colour detection,
limits the amount of unique markers based on the cameras quality. Along with
this the colour markers give no data on the quad-copters orientation.

Future work for the Ground-based Robot Team can be subdivided into the
individual potential extensions that can be applied to each one of the robot mem-
bers, in case of a potential continuation of the project. Since the only issue which
was identified with the developed Mapping Robot, was its inability to perform au-
tonomous exploration without the risk of collision, future approaches could focus
on improving on this issue. Continuing, both the Arm and Carrier (Bin) Robots
were limited by the measurement performance of the optical sensor used (Asus
Xtion). In order to provide a solution to this limitation, future attempts can po-
tentially add a Hokuyo lidar to each one of the platforms, which should enable
both robots to detect objects which are closer than the minimum sensing distance
of the currently employed optical sensor. Finally, a major limiting factor which
was identified to have a tremendous effect on the performance of all robots, was
the set of computer hardware used to execute all the required programs on each
individual robot. The relatively poor, in terms of performance, default Asus lap-
tops could not even closely supply the required computational power, while even
the alternative laptops which were eventually used, demonstrated inability to ap-
propriately run computationally expensive packages (such as ‘amcl’). Thus, future
work on this part of the project should optimally make use of significantly more
powerful hardware.

6.2 Conclusions

By the end of the project the robot team can autonomously map the unknown
environment, locate objects within the mapped arena, move to and pick-up those
objects and handover the objects to another bot to safely return them to base,
while allowing human interaction to verify robot actions. To achieve this a mapping
robot was implemented that would autonomously map the unknown area using
the Hokuyo laser scanner, locating the object within the unknown environment
was achieved using the ARDrone being flown manually due to on board sensor
performance and wireless network limitations. To pick up the object an Arm Bot
was designed that would autonomously pickup the object once it was within line of

89

sight. To transport the object back to base a bot was modified to hold a bin, this
bot would go to the Arm Bot, wait for the object to be placed in it’s bin and then
return to base with the object in its bin. However due to modifications which made
them larger and sensor limitations the Arm/Bin Bots had minor difficulty passing
through the arenas narrow corridors. To allow all the robots to communicate a
centralised server was created that could run on a raspberry pi, this allowed each
robot’s state and position to be shared with the team.

90

Bibliography

1]

2]

[10]

[11]

R. E. Kalman, “A New Approach to Linear Filtering and Prediction Prob-
lems,” Research Institute for Advanced Study, Baltimore Md., 1960.

M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, “A tutorial on particle
filters for online nonlinear/non-gaussian bayesian tracking,” Defence Sci. &
Technol. Organ., Adelaide, SA, Australia, 2002.

F. Dellaert, D. Fox, W. Burgard, S. Thrun, “Monte carlo localization for
mobile robots,” Computer Science Department, Carnegie Mellon University,
Pittsburgh PA 15213, 1999.

R. Chatila, “Robot Mapping: An Introduction,” Springer Tracts in Advanced
Robotics - Robotics and Cognitive Approaches to Spatial Mapping, vol. 38,
2008.

S. Thrun, “Simultaneous Localization and Mapping,” Springer Tracts in Ad-
vanced Robotics - Robotics and Cognitive Approaches to Spatial Mapping,
vol. 38, 2008.

A. Stentz, “Optimal and Efficient Path Planning for Partially-Known Envi-
ronments,” The Robotics Institute; Carnegie Mellon University; Pittsburgh,
PA 15213, 1994.

P. E. Hart, N. J. Nilsson, B. Rafael, “A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths,” AI Group of the Applied Physics Labo-
ratory, Stanford Research Institute, Menlo Park, California, 1967.

E. W. Dijkstra, “A Note on Two Problems in Connection with Graphs,”
Mattreoatisch Centlum 2e Boerhaavestraat 49 Amsterdam-O, 1959.

J. Borenstein, Y. Koren, “The vector field histogram-fast obstacle avoidance
for mobile robots,” Adv. Technol. Lab., Michigan Univ., Ann Arbor, MI,
USA, 1991.

D. Fox, W. Burgard, S. Thrun, “The dynamic window approach to collision
avoidance,” Robotics & Automation Magazine, IEEFE, vol. 4, no. 1, 1997.

N. Y. Ko, R. Simmons, K. Reid, G. Simmons, “The Lane-Curvature Method
for Local Obstacle Avoidance,” 1998.

91

[12] uFactory, “Github - ufactory,” https://github.com/ufactory, June 2014.

[13] Youtube, “Crazy Flie Automated Flight’,” https://www.youtube.com/
watch?v=UzFwg2Fpv4E.

[14] Various, “ios,” May.

[15] Dr.T.Payne, “User interface design,” http://cgi.cscliv.ac.uk/~trp/
COMP327 files/L.S8%20UIDesign%2014.pdf”, 2015.

[16] Various, “App store (ios),” May.

[17] uFactory, “Uarm - put a miniture industrial robot arm on
your desk,” "https://www.kickstarter.com/projects/ufactory/
uarm-put-a-miniature-industrial-robot-arm-on-your”, January 2014.

(18] — “Acrylic replaceable kit,” hhttp://store.ufactory.cc/
acrylic-replaceable-kit/”, January 2014.

[19] ABB, “Irb 460 - high speed robotic palletizer,” http://new.abb.com/
products/robotics/industrial-robots/irb-460, May 2015.

[20] ——, “Image of irb 460 - high speed robotic palletizer,” http://abbib.
cloudapp.net/public/default /product /9AAC171535/presentation, May 2015.

[21] AutonomyLab, “Ardrone_Autonomy Git Page,” https://github.com/
AutonomyLab /ardrone_autonomy /tree/groovy-devel.

[22] Parrot, “ARDrone2.0 Specification Page,” http://ardrone2.parrot.com/
ardrone-2/specifications/.

[23] N. Koenig, “cmvision - ros wiki,” "http://wiki.ros.org/cmvision”, May 2015.

[24] “The coral group’s color machine vision project,” "http://www.cs.cmu.edu/
~jbruce/cmvision/”, May 2015.

[25] A. Hubers, “cmvision_3d - ros wiki,” "http://wiki.ros.org/cmvision_3d”, May
2015.

[26] B. Gerkey, “gmapping - ros wiki,” "http://wiki.ros.org/gmapping”, May
2015.

[27] S. Kohlbrecher, “hector_mapping - ros wiki,” ”http://wiki.ros.org/hector_
mapping”, May 2015.

[28] S. Kohlbrecher, T. Graber, “hector navigation - ros wiki,” ”http://wiki.ros.
org/hector_navigation”, May 2015.

[29] E. Marder-Eppstein, “navigation - ros wiki,” "http://wiki.ros.org/
navigation”, May 2015.

92

https://github.com/ufactory
https://www.youtube.com/watch?v=UzFwg2Fpv4E
https://www.youtube.com/watch?v=UzFwg2Fpv4E
"http://cgi.csc.liv.ac.uk/~trp/COMP327_files/LS8%20UIDesign%2014.pdf"
"http://cgi.csc.liv.ac.uk/~trp/COMP327_files/LS8%20UIDesign%2014.pdf"
"https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your"
"https://www.kickstarter.com/projects/ufactory/uarm-put-a-miniature-industrial-robot-arm-on-your"
hhttp://store.ufactory.cc/acrylic-replaceable-kit/"
hhttp://store.ufactory.cc/acrylic-replaceable-kit/"
http://new.abb.com/products/robotics/industrial-robots/irb-460
http://new.abb.com/products/robotics/industrial-robots/irb-460
http://abbib.cloudapp.net/public/default/product/9AAC171535/presentation
http://abbib.cloudapp.net/public/default/product/9AAC171535/presentation
https://github.com/AutonomyLab/ardrone_autonomy/tree/groovy-devel
https://github.com/AutonomyLab/ardrone_autonomy/tree/groovy-devel
http://ardrone2.parrot.com/ardrone-2/specifications/
http://ardrone2.parrot.com/ardrone-2/specifications/
"http://wiki.ros.org/cmvision"
"http://www.cs.cmu.edu/~jbruce/cmvision/"
"http://www.cs.cmu.edu/~jbruce/cmvision/"
"http://wiki.ros.org/cmvision_3d"
"http://wiki.ros.org/gmapping"
"http://wiki.ros.org/hector_mapping"
"http://wiki.ros.org/hector_mapping"
"http://wiki.ros.org/hector_navigation"
"http://wiki.ros.org/hector_navigation"
"http://wiki.ros.org/navigation"
"http://wiki.ros.org/navigation"

[30]

[31]
[32]
[33]

[34]

[35]

D. Fox, “Adapting the Sample Size in Particle Filters Through KLD-
Sampling,” Department of Computer Science & Engineering, University of
Washington, Seattle, WA 98195, 2003.

T. Foote, M. Ferguson, M. Wise, “turtlebot - ros wiki,” "http://wiki.ros.org/
turtlebot”, May 2015.

MORSE Project, ““What is MORSE ?” http://www.openrobots.org/morse/
doc/stable/what_is_morse.html.

’

Gazebo, “’gazebo_ros_pkgs’,” http://wiki.ros.org/gazebo_ros_pkgs.

uFactory, “varm assembly instructions,” “http://www.ufactory.cc/
downloads/documents/uArm_Assembly Instructions v1.2.3.pdf”, May
2014.

——, “Getting started with uarm v1.1,” "http://www.ufactory.cc/
downloads/documents/Getting_Started _with_uArm v1.1.pdf”, March 2014.

G. Walley, “uarm rosart code on github,” http://github.com/gWalley /uarm_
scripts.git, May 2015.

TeckNet, “Tecknet c016 hd webcam,” http://www.tecknet.co.uk/c016.html,
2014.

Logitech, “Logitech hd webcam ¢270,” http://www.logitech.com/en-gb/
product /hd-webcam-c270, 2015.

Tum Computer Vision Group, “’tum_simulator’ ROS wiki page,” http://wiki.
ros.org/tum_simulator.

ROSART, “Robot Object Search and Retreival Team GitHub reposi-
tory,” https://github.com/rosart/Robot-Object-Search-and-Retreival-Team.
git, May 2015.

R.Hanson, “Cocoaasyncsocket,” August.

dfed, “square/socketrocket,” May.

rctoris, “rosbridge_suite,” May.

“actionlib ROS Wiki,” http://wiki.ros.org/actionlib, May 2015.

J. Price, “robot_comm,” "https://github.com/jkprice07 /robot_comm”, 2015.

A. Developer, “Cgcontext reference,” "https://developer.apple.com/library/
ios/documentation/GraphicsImaging /Reference/CGContext/index.html”,
2015.

93

"http://wiki.ros.org/turtlebot"
"http://wiki.ros.org/turtlebot"
http://www.openrobots.org/morse/doc/stable/what_is_morse.html
http://www.openrobots.org/morse/doc/stable/what_is_morse.html
http://wiki.ros.org/gazebo_ros_pkgs
"http://www.ufactory.cc/downloads/documents/uArm_Assembly_Instructions_v1.2.3.pdf"
"http://www.ufactory.cc/downloads/documents/uArm_Assembly_Instructions_v1.2.3.pdf"
"http://www.ufactory.cc/downloads/documents/Getting_Started_with_uArm_v1.1.pdf"
"http://www.ufactory.cc/downloads/documents/Getting_Started_with_uArm_v1.1.pdf"
http://github.com/gWalley/uarm_scripts.git
http://github.com/gWalley/uarm_scripts.git
http://www.tecknet.co.uk/c016.html
http://www.logitech.com/en-gb/product/hd-webcam-c270
http://www.logitech.com/en-gb/product/hd-webcam-c270
http://wiki.ros.org/tum_simulator
http://wiki.ros.org/tum_simulator
https://github.com/rosart/Robot-Object-Search-and-Retreival-Team.git
https://github.com/rosart/Robot-Object-Search-and-Retreival-Team.git
http://wiki.ros.org/actionlib
"https://github.com/jkprice07/robot_comm"
"https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CGContext/index.html"
"https://developer.apple.com/library/ios/documentation/GraphicsImaging/Reference/CGContext/index.html"

Appendices

94

Data: blobs_3d - Output list of 3-D blobs from ‘cmvision_3d’
filtered_blobs - Internal list of filtered blobs
max_blob_area - Variable to store the larget recorded blob area
blob_count - Variable to store the number of filtered blobs
sum_x - Variable to store sum of x coordinates
miss_counter - Variable to count number of callbacks without detecting blobs

Result: tracked_blob - Single optimized blob
blobs_detected - Variable to indicate blob detection

Callback initialization;

for each blob in blobs_3d do

if blob closer than 1.2 meters and below horizontal level then
append blob to filtered_blobs_3d list;
increment blob_count;

end

end

f filter_blobs_3d contains blobs then

set blobs_detected to true;

reset miss_counter;

for each blob in filtered_blobs_3d list do

sum_x += x coordinate of blob;

if blob area > max_blob_area then
max_blob_area = blob area;
tracked_blob = blob;

end

[

end
avg x = sum_x / blob_count;
if no previously tracked blob then
‘ avg_z = z coordinate of tracked_blob;
else
if 2 coordinate of tracked_blob < avg_z then
‘ avgz = (avgz + 10(z coordinate of tracked_blob))/11;
else
| avgz = (10avgz + (2 coordinate of tracked_blob))/11;
end

end
set x and z coordinates of tracked_blob to avg x and avg_z;
publish transform frame of tracked_blob;
else
increment miss_counter;
if miss_counter>=10 then
reset all storage variables;
set blobs_detected to false;
end

end
Algorithm 1: Pseudo code describing the additional blob processing algorithm
developed to optimize blob detection for the purposes of the application.

	Introduction
	Aims and Objectives
	Ground-Based Robot Team Objectives
	Quad-copter Objectives
	Robot Arm Object Manipulation Objectives
	Multi-Robot Communication Objectives
	iOS Application Objectives

	Industrial Relevance

	Theoretical Background
	Robot Localization
	Robot Mapping
	Robot Navigation
	Robot Arm Background
	Quad-copter Research
	ARDrone2.0
	Nano Quad-copters

	Motivation to use Natural User Interface
	Choice of Device
	iOS Application Objectives:

	Materials and Equipment
	Hardware
	uFactory uArm
	Turtlebot 2
	ARDrone2.0

	Software
	ROS Packages used
	Other Software

	Design and Methodology
	Ground Robot Team
	Mapping Robot
	Pickup/Arm Robot
	Carrier/Bin Robot

	Robot Arm Methodology
	Arm Assembly and Modifications
	Coloured Blob Detection
	Controlling the Arm

	Communications and Server
	Server State Machine
	Server NS Chart
	ArmBot Client NS Chart
	BinBot Client NS Chart
	MapBot Client NS Chart
	FlyBot Client NS Chart

	Simulator Research
	Install and Setup
	Simulations

	ARDrone
	Connecting
	Colour Detection
	Navigation
	Localisation

	iPad Application Methods
	Design view and properties:

	Results
	Ground Robot Team
	Mapping Robot
	Arm and Carrier Robots

	Communications and Server
	Design Files
	Server Results
	Client Results
	ArmBot Client Results
	BinBot Client Results
	MapBot Client Results
	FlyBot Client Results
	ROS Data Transformations

	Robot Arm
	Flashing Code to the Arm
	Accuracy and Repeatability
	Final Design of State Machine for the Arm

	Simulators
	Install and setup

	Quad-copter
	Connecting
	Colour Detection
	Navigation
	Localisation

	iOS Application
	Sending pose from iOS Application:
	Receiving Pose, State and Images from Server
	Warping Image and Unsuccessful Loading of Image in image-VC:

	Discussion and Conclusions
	Future Work
	Conclusions
	References

