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Since their introduction to the literature nearly fifty years ago the Deborah 
and Weissenberg numbers have proved invaluable for rheologists in 
quantifying viscoelastic effects.  Despite their different origins, and the fact 
that they quantify different effects, they are frequently used as synonyms.  
This situation is perhaps partly explainable given that in a wide range of 
flows of complex fluids characterised by a relaxation time (λ) the use of 
simple single characteristic length (L) and velocity scales (U) does indeed 
result in identical definitions!  In this short article we return to the original 
papers to highlight the different effects that the Deborah and Weissenberg 
numbers measure. 
 
The Deborah number 
 
As every good rheologist knows the Deborah number owes its name to the 
Prophetess Deborah who, in the Book of Judges, proclaimed “The 
mountains flowed before the lord”A.  The definition is due to Reiner and we 
can do no better than to quote his original paperB 

 
“Deborah knew two things.  First, that the mountains 
flow, as everything flows. But, secondly, that they 
flowed before the Lord, and not before man, for the 
simple reason that man in his short lifetime cannot see 
them flowing, while the time of observation of God is 
infinite.  We may therefore well define a 
nondimensional number the Deborah number 
 
D = time of relaxation/time of observation.” 

AAs Huilgol notes “Reiner quoted the Prophetess Deborah as saying “The mountains flowed before the 
Lord” while the King James version says “The mountains melted from before the Lord”, and the New 
English Bible has “Mountains shook in fear before the Lord,” (See Judges 5:5) [R R Huigol (1975) “On 
the concept of the Deborah number”. Trans Soc. Rheo. 19 (2) pp297-306.] 
BThe paper by Reiner is remarkable for a number of reasons.  Not the least of which is that it is a 
reproduction of his after-dinner speech to the Fourth International Congress on Rheology in 1962. We 
note, sadly, that this mode of communicating important ideas seems to have gone rather out of fashion.  
[M Reiner (1964) “The Deborah number”. Phys. Today. 17, pp62.] 
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If the time of observation is long or the relaxation time of the material is 
short then “fluid-like” behaviour is to be expected.  Conversely if the 
relaxation time of the material is large, or the time of observation short, 
then the Deborah number is high and the material behaves, for all practical 
purposes, as a solid.  Materials which have relaxation times such that they 
can exhibit both fluid-like and solid-like characteristics on friendly time 
scales (i.e. on the order of the attention span of a human) are useful in 
illustrating these concepts.  Silly putty is one such material; when pulled 
apart rapidly this material exhibits brittle fracture and when dropped onto a 
hard surface, not necessarily from a great height, it will bounce.  Left to its 
own devices (well the slow deformation due to gravity) silly putty flows.  
For those with more patience the long-running “pitch drop” experimentC, 
started in 1927 at the University of Queensland, is another material useful 
for illustrating the Deborah number concept. 
 
The Deborah number (which is now commonly abbreviated to De rather 
than D) thus distinguishes how a particular material will behave over a 
given timeframe (we inherently assume that the material must be 
experiencing a deformation over this timeframe).  Shortly after Reiner’s 
work, the significance of the Deborah number was discussed within a more 
rigorous framework by Metzner, White and Denn1-2 and the definition 
slightly altered to reflect that the “time of observation” is perhaps better 
described as “time scale of the process” or “fluid residence time” in a given 
regime within a complex flow field.  Although more complex definitions of 
De have been proposed3 the simplicity of Reiner’s approach is the one that 
has stood (with the subtle, yet important, distinction discussed above 
regarding “observation” time).  We thus define De as 

De =λ / T 
where T is a characteristic time for the deformation process and λ is still the 
relaxation time. 
 
Contained within the definition of the Deborah number is the idea that it is 
a dimensionless measure of the rate of change of flow conditions and is 
therefore related to flow unsteadiness (in a material or Lagrangian sense).   
 
CIn this experiment pitch contained within a glass funnel slowly forms a pedant drop which eventually 
pinches off (liquid-like behaviour).  When pitch is hit with a hammer it shatters like a brittle solid.  
Eight such drops have formed and pinched off since the experiment started.  For those tired of watching 
paint dry the experiment can be viewed in real time here: http://www.smp.uq.edu.au/pitch [R Edgworth, 
B J Dalton and T Parnell (1984) "The Pitch Drop Experiment", Eur. J. Phys pp.198-200.] 
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In slowly changing or essentially steady flows, such as in fully-developed  
duct flows or viscometric flows like steady simple shear, the characteristic 
time for the deformation process is infinite and the Deborah number is 
therefore zero for such flows regardless of the relaxation time of the 
material.  Thus the Deborah number alone is insufficient to fully 
characterise effects due to viscoelasticity.  
 
The Weissenberg number 
 
White4 used dimensional analysis to make the equations of motion for the 
steady flow of a second order fluid dimensionless.  Doing so three 
significant dimensionless groups arise: a group representing the ratio of 
inertial to viscous forces (the ubiquitous Reynolds number5 of classical 
fluid mechanics),  

Re = ρUL / µ 
 
where is the ρ density and the µ viscosity.  A group representing elastic 
forces to viscous forces  

λU / L 
 
and a higher-order property ratio (which, in this case, is essentially the ratio 
of N2 to N1:  White called it the “viscoelastic ratio” number).  White 
interpreted the group of elastic forces to viscous forces as representing the 
recoverable strain in the fluid and quotes Weissenberg’s paper6 from the 
First International Rheological Congress held in 1948 
 

“As a dimensionless quantity of tensorial character, we 
may quote here the recoverable strain.  Just as the 
Reynolds Number coordinates the rheological states 
with respect to the similitude in the relative 
proportions of the forces of inertia and of internal 
friction, so the recoverable strain does with respect to 
similitude in anisotropy in the sheared states...”.                

 
As a consequence he termed the group λU / L the “Weissenberg number”.  
To avoid confusion with the Weber number (We) the abbreviation now 
commonly used is Wi. 
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It is instructive here to understand why the group λU / L does indeed 
represent the ratio of elastic to viscous forces.  In steady simple shear flow 
(SSSF) for example the dominant elastic force will be due to the first 
normal-stress difference, τxx - τyy, and the viscous force is simply the shear 
stress τxy.  The simplest useful differential model for a viscoelastic fluid in 
common usage is probably the upper-convected Maxwell model due to 

Oldroyd7 and for this model in SSSF: N1= τxx - τyy = 22 γλµ & and τxy = γµ & .  
The Weissenberg number is thus: 
 

γλ
γµ
γλµ

&
&

&
2

2 2

==Wi  

 
where the characteristic deformation rate γ&  can be estimated through the 
characteristic length and velocity scales as U / L.  Expressed in this manner 
the relation to “recoverable shear” is also apparent. 
 
Dimensional analysis 
 
Dimensional analysis is frequently used in Newtonian fluid mechanics to 
determine appropriate dimensionless groups for a particular problem and, 
as we have seen already, can also be used for viscoelastic fluid flow 
problems.  We show here how Wi and De both arise through such an 
analysis for a viscoelastic fluid flow.     
 
Buckingham Π theorem states that the number of dimensionless groups (n) 
that can be formed from a given set of variables (k) is  

 
n = k - j 

where j is the number of independent dimensions that appear in the k 
variables.  Given that in viscoelastic flow problems the only additional 
parameterD is the relaxation time, and no new dimensions appear, it seems 
reasonable to ask why two extra non-dimensional groups arise (De and Wi). 

 

DOf course many other parameters may well arise in a complete analysis of real fluids such as the 
solvent to total viscosity ratio, the ratio of first and second normal-stress difference, etc.   
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For the steady, incompressible isothermal flow of a Newtonian fluid (in the 
absence of a free surface, or Coriolis forces, etc.) in a geometry with a 
single important length scale we can write 
 

R = f (Re) 
 
where R is used to denote any chosen process variable or process result in 
dimensionless form (the friction factor in fully-developed smooth pipe flow 
for example).  For unsteady flows – characterised by a given frequency ω 
say – an additional group arises 
 

R= f (Re, ω L / U) 
 
where the dimensionless group involving frequency is called the Strouhal 
number (St).  This number represents the ratio of unsteady inertial forces to 
steady inertial forces.  
 
For the steady, incompressible isothermal flow of a viscoelastic fluid (in 
the absence of a free surface, or Coriolis forces, etc.) the addition of the 
fluid relaxation time leads to 
 

R = f (Re, Wi). 
 
As the flow is steady the dimensionless group that arises due to viscoelastic 
effects must be Wi for the reasons outlined above (with the caveat that the 
flow must be steady in a Lagrangian sense rather than Eulerian).  For 
unsteady viscoelastic flows      

 
R = f (Re, Wi, ωλ) 

 
where ωλ is simply the Deborah number (and ω now can be thought of in 
more general terms as the reciprocal of a characteristic time of the 
deformation process i.e. 1 / T).  In arriving at this last equation we could 
have derived any two groups from a choice of Wi, St and De (note St = De / 
Wi).  When there is more than one dimensionless group, dimensional 
analysis places no restriction on which groups we derive:  for example a 
group representing the ratio of elastic to inertia forces is equally as valid 
from purely dimensional considerations (Wi / Re which is called the first 
Elasticity number8).  For a broad class of viscoelastic fluid flows inertia 
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effects are usually small, either by nature (e.g. the viscous flow of melts) or 
by design (viscous Boger fluids used for benchmark experiments), and the 
effect of Re is usually neglected.  In such cases the Strouhal number is 
probably also of less importance and De and Wi become the governing 
groups.   
 
Conditions under which De is equivalent to Wi. 
 
As we have discussed above there are a limited range of Lagrangian steady 
flows, specifically any motion with constant stretch history3,9, where the 
Deborah number is zero.  Clearly in such cases the Weissenberg number 
must be used to quantify elastic effects.  Of course, it is likely that flows in 
complex geometries of engineering interest will never be steady in such a 
sense.  In such geometries if one length scale determines the dynamics of 
the problem the definitions for De and Wi will coincide.  For example in the 
lid-driven cavity flow10 an appropriate residence time for the fluid will be 
the length of the lid divided by its velocity (T = L / U), and a suitable 
estimate for the deformation rate is the lid velocity divided by the depth of 
the cavity (γ& = U / H).  For a square cavity (L = H) then De = Wi = λU / L.  
When the cavity is not square De and Wi are then related through a 
geometric factor.  In geometries where two length scales are important in 
determining the dynamics the two numbers can always be related through a 
geometric factor.  Nevertheless, as we have shown, this should not lead one 
to assume that for all flows there is no distinction between the two. It is not 
just a question of semantics as to which to use!  
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Postscript 
 
I wrote this article in late 2009 after the IMA meeting at the suggestion of 
Prof. Morton Denn (Levich Institute).  At around the same time Prof. John 
Dealy (McGill University) published a more rigorous article11 on the same 
topic.               
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