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Since their introduction to the literature neaifjyfyears ago the Deborah
and Weissenberg numbers have proved invaluablerteblogists in
quantifying viscoelastic effects. Despite theffatient origins, and the fact
that they quantifydifferent effects, they are frequently used as synonyms.
This situation is perhaps partly explainable gitleat in a wide range of
flows of complex fluids characterised by a relasatiime @) the use of
simple single characteristic length) (and velocity scaled)) does indeed
result in identical definitions! In this shortiaté we return to the original
papers to highlight the different effects that beborah and Weissenberg
numbers measure.

The Deborah number

As every good rheologist knows the Deborah numbarsats name to the
Prophetess Deborah who, in the Book of Judges,lginoed “The
mountains flowed before the loft” The definition is due to Reiner and we
can do no better than to quote his original paper

“Deborah knew two things. First, that the moungain
flow, as everything flows. But, secondly, that they
flowed before the Lord, and not before man, for the
simple reason that man in his short lifetime carseat
them flowing, while the time of observation of Gisd
infinite. We may therefore well define a
nondimensional number the Deborah number

D = time of relaxation/time of observation.”

AAs Huilgol notes “Reiner quoted the Prophetess Eatbas saying “The mountains flowed before the
Lord” while the King James version says “The moinganelted from before the Lord”, and the New
English Bible has “Mountains shook in fear befdre Lord,” (See Judges 5:5) [R R Huigol (1975) “On
the concept of the Deborah number”. Trans Soc. Rt@¢2) pp297-306.]

BThe paper by Reiner is remarkable for a numbereaans. Not the least of which is that it is a
reproduction of his after-dinner speech to the ffolnternational Congress on Rheology in 1962. We
note, sadly, that this mode of communicating imgrarideas seems to have gone rather out of fashion.
[M Reiner (1964) “The Deborah number”. Phys. TodEg;. pp62.]
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If the time of observation is long or the relaxatiime of the material is
short then “fluid-like” behaviour is to be expectedConversely if the
relaxation time of the material is large, or thediof observation short,
then the Deborah number is high and the materizd\es, for all practical
purposes, as a solid. Materials which have relaxdimes such that they
can exhibit both fluid-like and solid-like charagstics on friendly time
scales (i.e. on the order of the attention spaa éuman) are useful in
illustrating these concepts. Silly putty is onetsumaterial; when pulled
apart rapidly this material exhibits brittle frattand when dropped onto a
hard surface, not necessarily from a great heightil bounce. Left to its
own devices (well the slow deformation due to gsgvsilly putty flows.
For those with more patience the long-running ‘fpittrop” experime
started in 1927 at the University of Queenslandnsther material useful
for illustrating the Deborah number concept.

The Deborah number (which is now commonly abbredab De rather
than D) thus distinguishes how a particular material edhave over a
given timeframe (we inherently assume that the r@temust be
experiencing a deformation over this timeframe)or8y after Reiner’s
work, the significance of the Deborah number wasulsed within a more
rigorous framework by Metzner, White and D&hrand the definition
slightly altered to reflect that the “time of obgation” is perhaps better
described as “time scale of the process” or “fi@sidence time” in a given
regime within a complex flow field. Although mocemplex definitions of
De have been proposéthe simplicity of Reiner’s approach is the onet tha
has stood (with the subtle, yet important, distorctdiscussed above
regarding “observation” time). We thus defide as

De=A/T
whereT is a characteristic time for the deformation pescandi is still the
relaxation time.

Contained within the definition of the Deborah n@nis the idea that it is
a dimensionless measure of the rate of changeowf ¢bonditions and is
therefore related to flow unsteadiness (in a materi Lagrangian sense).

CIn this experiment pitch contained within a glasarfel slowly forms a pedant drop which eventually
pinches off (liquid-like behaviour). When pitch hét with a hammer it shatters like a brittle solid
Eight such drops have formed and pinched off siheeexperiment started. For those tired of watghin
paint dry the experiment can be viewed in real tirae: http://www.smp.ug.edu.au/pitch [R Edgworth,
B J Dalton and T Parnell (1984) "The Pitch Drop &xment”, Eur. J. Phys pp.198-200.]
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In slowly changing or essentially steady flows,Isas in fully-developed
duct flows or viscometric flows like steady simpleear, the characteristic
time for the deformation process is infinite an@ theborah number is
therefore zero for such flowsegardless of the relaxation time of the
material. Thus the Deborah number alone is insefit to fully
characterise effects due to viscoelasticity.

The Weissenber g number

White* used dimensional analysis to make the equatiomsation for the
steady flow of a second order fluid dimensionless. Doiag three
significant dimensionless groups arise: a groupesgnting the ratio of
inertial to viscous forces (the ubiquitous Reynotdsnbet of classical
fluid mechanics),

Re=pUL/ u

where is thep density and theu viscosity. A group representing elastic
forces to viscous forces
AU /L

and a higher-order property ratio (which, in these, is essentially the ratio
of N, to Ni: White called it the “viscoelastic ratio” number)White
interpreted the group of elastic forces to viscfuuses as representing the
recoverable strain in the fluid and quotes Weissegib papét from the
First International Rheological Congress held id89

“As a dimensionless quantity of tensorial chargoter
may quote here the recoverable strain. Just as the
Reynolds Number coordinates the rheological states
with respect to the similitude in the relative
proportions of the forces of inertia and of intdrna
friction, so the recoverable strain does with respe
similitude in anisotropy in the sheared states...”.

As a consequence he termed the grdup L the “Weissenberg number”.
To avoid confusion with the Weber numbékg) the abbreviation now
commonly used i¥.



It is instructive here to understand why the grolyp / L does indeed
represent the ratio of elastic to viscous forckessteady simple shear flow
(SSSF) for example the dominant elastic force W@l due to the first
normal-stress difference, - r,,, and the viscous force is simply the shear
stressr,,. The simplest useful differential model for acaslastic fluid in
common usage is probably the upper-convected Maxawetel due to

Oldroyd and for this model in SSSRy= B - Ty = 2Aup*and iy = uy .
The Weissenberg number is thus:

.2
wi=22H oy
1y

where the characteristic deformation rgtean be estimated through the

characteristic length and velocity scaledJasL. Expressed in this manner
the relation to “recoverable shear” is also apparen

Dimensional analysis

Dimensional analysis is frequently used in Newtorflaid mechanics to
determine appropriate dimensionless groups forracpkar problem and,
as we have seen already, can also be used forelastic fluid flow
problems. We show here howi and De both arise through such an
analysis for a viscoelastic fluid flow.

Buckinghaml1 theorem states that the number of dimensionlessgpgr()
that can be formed from a given set of variabk@s$s(

n==k-j

wherej is the number of independent dimensions that appehe k
variables. Given that in viscoelastic flow probtertine only additional
parametét is the relaxation time, and no new dimensions appeseems
reasonable to ask why two extra non-dimensionalggarise e and\W).

POf course many other parameters may well arise @oraplete analysis of real fluids such as the
solvent to total viscosity ratio, the ratio of fiemd second normal-stress difference, etc.
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For the steady, incompressible isothermal flow dfeavtonian fluid (in the
absence of a free surface, or Coriolis forces) ética geometry with a
single important length scale we can write

R=T (Re)

whereR is used to denote any chosen process variableooess result in
dimensionless form (the friction factor in fullyadeloped smooth pipe flow
for example). For unsteady flows — characterisga lgiven frequencyw
say — an additional group arises

R=f (Re, wL /U)

where the dimensionless group involving frequerscgdlled the Strouhal
number &). This number represents the ratio of unsteadstiad forces to
steady inertial forces.

For the steady, incompressible isothermal flow ofistoelastic fluid (in
the absence of a free surface, or Coriolis forets) the addition of the
fluid relaxation time leads to

R =T (Re, W).

As the flow is steady the dimensionless group &hizes due to viscoelastic
effects must b&\i for the reasons outlined above (with the cavestt tie
flow must be steady in a Lagrangian sense rathem tBulerian). For
unsteady viscoelastic flows

R=f (Re, W, wl)

wherea) is simply the Deborah number (anghow can be thought of in
more general terms as the reciprocal of a charafitertime of the
deformation process i.e. ITj. In arriving at this last equation we could
have derived any two groups from a choicé\bfS andDe (noteS = De/
W). When there is more than one dimensionless grdirpensional
analysis places no restriction on which groups wevd: for example a
group representing the ratio of elastic to ineftieces is equally as valid
from purely dimensional considerationdf(/ Re which is called the first
Elasticity numbél). For a broad class of viscoelastic fluid floweitia
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effects are usually small, either by nature (éng.\tiscous flow of melts) or
by design (viscous Boger fluids used for benchneaeriments), and the
effect of Re is usually neglected. In such cases the Stronbalber is
probably also of less importance abé andW become the governing
groups.

Conditions under which Deisequivalent to Wi.

As we have discussed above there are a limitecerahfjagrangian steady
flows, specifically any motion with constant stiethistory’®, where the
Deborah number is zero. Clearly in such casesMbi&ssenberg number
must be used to quantify elastic effects. Of omuitss likely that flows in
complex geometries of engineering interest willerebe steady in such a
sense. In such geometries if one length scalerdetes the dynamics of
the problem the definitions f@e andW will coincide. For example in the
lid-driven cavity flowt® an appropriate residence time for the fluid wal b
the length of the lid divided by its velocity = L / U), and a suitable
estimate for the deformation rate is the lid velpdivided by the depth of
the cavity (= U / H). For a square cavity.(= H) thenDe=W =AU /L.

When the cavity is not squaiee and Wi are then related through a
geometric factor. In geometries where two lengiales are important in
determining the dynamics the two numbers can ahkayslated through a
geometric factor. Nevertheless, as we have shthismshould not lead one
to assume thdor all flows there is no distinction between the two. It is not
just a question of semantics as to which to use!
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Postscript

| wrote this article in late 2009 after the IMA ntieg at the suggestion of
Prof. Morton Denn (Levich Institute). At arouncethame time Prof. John
Dealy (McGill University) published a more rigoroasticle"! on the same
topic.
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