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Laminar Natural Convection
of Power-Law Fluids in a Square
Enclosure With Differentially
Heated Sidewalls Subjected
to Constant Wall Heat Flux
Two-dimensional steady-state laminar natural convection of inelastic power-law non-
Newtonian fluids in square enclosures with differentially heated sidewalls subjected to
constant wall heat flux (CHWF) are studied numerically. To complement the simulations,
a scaling analysis is also performed to elucidate the anticipated effects of Rayleigh num-
ber (Ra), Prandtl number (Pr) and power-law index (n) on the Nusselt number. The
effects of n in the range 0.6� n� 1.8 on heat and momentum transport are investigated
for nominal values Ra in the range 103–106 and a Pr range of 10–105. In addition the
results are compared with the constant wall temperature (CWT) configuration. It is found
that the mean Nusselt number Nu increases with increasing values of Ra for both Newto-
nian and power-law fluids in both configurations. However, the Nu values for the vertical
walls subjected to CWHF are smaller than the corresponding values in the same configu-
ration with CWT (for identical values of nominal Ra, Pr and n). The Nu values obtained
for power-law fluids with n < 1 (n > 1) are greater (smaller) than that obtained in the
case of Newtonian fluids with the same nominal value of Ra due to strengthening (weak-
ening) of convective transport. With increasing shear-thickening (i.e., n> 1) the mean
Nusselt number Nu settles to unity (Nu ¼ 1:0) as heat transfer takes place principally due
to thermal conduction. The effects of Pr are shown to be essentially negligible in the
range 10–105. New correlations are proposed for the mean Nusselt number Nu for both
Newtonian and power-law fluids. [DOI: 10.1115/1.4007123]

Keywords: natural convection, power-law fluid, Nusselt number, Rayleigh number,
Prandtl number

1 Introduction

Natural convection in rectangular enclosures with differentially
heated vertical sidewalls is one of the most extensively analyzed
configurations because of its fundamental importance as a
“benchmark” geometry to study convection effects (and compare
numerical techniques). Additionally the geometry has relevance
to solar collectors, food preservation, compact heat exchangers,
and electronic cooling systems among other practical applications.
A large body of existing literature [1–3] is available for this con-
figuration especially in the case of Newtonian fluids and an exten-
sive review can be obtained in Ref. [4]. Relatively limited effort
has been directed to the analysis of natural convection of non-
Newtonian fluids in rectangular enclosures. The Rayleigh–Bénard
configuration [5], which involves a rectangular enclosure with adi-
abatic vertical walls and differentially heated horizontal walls
with the bottom wall at higher temperature, has been investigated
for a range of different non-Newtonian models, including inelastic
generalized Newtonian fluids (GNF) [6–9], fluids with a yield
stress [10–12], and viscoelastic fluids [13].

Kim et al. [14] studied transient natural convection of non-
Newtonian power-law fluids (power-law index n� 1) in a square
enclosure with differentially heated vertical sidewalls subjected to
constant wall temperatures (CWT). According to this study, the
mean Nusselt number Nu increases with decreasing power-law

index n for a given set of values of Rayleigh (Ra) and Prandtl (Pr)
numbers. This result is consistent with the numerical findings of
Ohta et al. [8] where the Sutterby model was used for analyzing
transient natural convection of shear-thinning fluids in the
Rayleigh–Bénard configuration. The strengthening of natural con-
vection in rectangular enclosures for shear-thinning fluids was
also confirmed by both experimental and numerical studies on
microemulsion slurries by Inaba et al. [9] in the Rayleigh–Bénard
configuration. Lamsaadi et al. [15,16] studied the effects of the
power-law index on natural convection in the high Pr limit for
both tall [15] and shallow enclosures [16] where the vertical side-
wall boundary conditions are constant wall heat fluxes (CWHF)
rather than isothermal vertical sidewalls as in Ref. [14]. Lamsaadi
et al. [15,16] demonstrated that the convective heat transfer rate
depends only on the values of nominal Ra and the power-law
index n for large values of aspect ratio and the nominal Pr.2 Barth
and Carey [17] utilized GNF models that incorporate limiting vis-
cosities at low and high shear rates to study a three-dimensional
version of the problem (the adiabatic boundary conditions are
replaced by a linear variation in temperature to match the experi-
mental conditions of [18]). Vola et al. [19] and Turan et al.
[20–22] numerically studied steady two-dimensional natural con-
vection of yield stress fluids obeying the Bingham model in rec-
tangular enclosures with vertical sidewalls subjected to both CWT
[20,21] and CWHF [22]. Recently the present authors [23] carried
out a numerical study for steady natural convection of power-law
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fluids in a square enclosure with differentially heated sidewalls
subjected to CWT for the power-law index n range 0.6� n� 1.8,
Ra ¼ 103 � 106 and Pr ¼ 10� 105. A correlation has also been
proposed for the mean Nusselt number Nu based on the simulation
data guided by a scaling analysis [23].

The present study extends the analysis of Turan et al. [23] by
modifying the vertical sidewall boundary condition to the CWHF
rather than CWT. The difference in heat transfer behavior of
power-law fluids in a square enclosure due to a change in sidewall
boundary condition (between CWT and CWHF) is yet to be
addressed in the open literature. In this respect the main objectives
of the present study are as follows:

(1) to demonstrate the effects of n, Ra, and Pr on the mean
Nusselt number Nu in the case of natural convection of
power-law fluids in a square enclosure with differentially
heated vertical sidewalls subjected to CWHF

(2) to identify the differences in the heat transfer behavior
between the configurations with CWHF and CWT for the
same values of Ra, Pr, and n

(3) to develop a correlation for the mean Nusselt number for
natural convection of power-law fluids in a square enclo-
sure with differentially heated vertical sidewalls subjected
to CWHF

The necessary mathematical background and numerical details
will be presented in Sec. 2, which will be followed by the scaling
analysis. Following this analysis, the results will be presented and
subsequently discussed. The main findings will be summarized
and conclusions will be drawn in Sec. 5.

2 Mathematical Background and Numerical

Implementation

2.1 Governing Equations and Nondimensional Numbers.
For the present study steady-state flow of an incompressible
power-law fluid is considered. For incompressible fluids the con-
servation equations for mass, momentum, and energy under
steady state can be written using tensor notation (i.e., x1 ¼ x is the
horizontal direction and x2 ¼ y is the vertical direction) as

• Mass conservation equation

@ui

@xi
¼ 0 (1)

• Momentum conservation equations

quj
@ui

@xj
¼ � @P

@xi
þ qgbdi2ðT � TrefÞ þ

@sij

@xj
(2)

• Energy conservation equation

qujcp
@T

@xj
¼ @

@xj
k
@T

@xj

� �
(3)

where for the CWHF configuration the reference temperature Tref

is taken to be the temperature at the geometrical center of the do-
main (i.e., Tref ¼ Tcen) for evaluating the buoyancy term
qgbdi2ðT � TrefÞ in the momentum conservation equations for the
CWHF configuration (In contrast, Tref is taken to be the cold wall
temperature TC for the CWT configuration [23]). The Kronecker d
di2 ensures that the buoyancy term qgbdi2ðT � TrefÞ remains
operational only in the momentum equation for the vertical direc-
tion (i.e., x2-direction). According to the Ostwald–De Waele (i.e.,
power law) model the viscous stress tensor sij is given by

sij ¼ laeij ¼ Kðeklekl=2Þðn�1Þ=2eij (4)

where eij ¼ ð@ui=@xj þ @uj=@xiÞ (ekl ¼ ð@uk=@xl þ @ul=@xkÞ) is a
component of the rate of strain tensor, K is the consistency, n is
the power-law index and la is the apparent viscosity, which is
given by

la ¼ Kðeklekl=2Þðn�1Þ=2
(5)

For n < 1 (n > 1) the apparent viscosity decreases (increases)
with increasing shear rate, and thus, the fluids with n < 1 (n > 1)
are referred to as shear-thinning (shear-thickening) fluids. In the
present study, natural convection of power-law fluids in a square
enclosure (of dimension L) with differentially heated sidewalls is
analyzed for different values of n and the nominal values of Ra
and Pr for both CWT and CWHF boundary conditions.

The Rayleigh number Ra represents the ratio of the strengths of
thermal transports due to buoyancy to thermal conduction, which
can be defined in the following manner for CWHF boundary
condition:

RaCWHF ¼
q2cpgbqL4

lrefk
2
¼ GrCWHFPr (6)

where GrCWHF is the Grashof number in the CWHF condition and
Pr is the Prandtl number, which are defined as

GrCWHF ¼
q2gbqL4

l2
refk

and Pr ¼ lrefcp

k
(7)

For the CWT configuration the Ra and Grashof (Gr) numbers
are defined as

RaCWT ¼
q2cpgbðTH � TCÞL3

lrefk
¼ GrCWTPr and

GrCWT ¼
q2gbðTH � TCÞL3

l2
ref

(8)

Gr represents the ratio of the strengths of the buoyancy and vis-
cous forces while Pr depicts the ratio of the strengths of momen-
tum diffusion to thermal diffusion. Alternatively, Pr can be taken
to represent the ratio of the viscous boundary-layer to thermal
boundary-layer thicknesses.

For power-law fluids—because the viscosity varies with the
flow—in Eqs. (3)–(5) lref represents the value of “reference” vis-
cosity. An important consideration in heat and fluid flow problems
for power-law fluids lies in the most appropriate choice of this
nominal viscosity. The reference viscosity lref can be defined
based on a characteristic shear rate _c, which can itself be scaled as
_c � uscale=L where uscale is a velocity scale based on which lref is
estimated. Using a velocity scale given by uscale � a=L as in Refs.
[15,16,24], one can obtain the following expression for lref :

lref � K _cn�1 � K
a
L2

� �n�1

(9)

Equation (9) only presents a representative value, which was
used for analyzing natural convection in rectangular enclosures in
several previous studies [15,16,24]. As the local shear rate _c can-
not be a priori predicted, a velocity scale uscale � a=L allows for
expressing Ra, Gr, and Pr as functions of known quantities (i.e.,
g;b;K; q; a; k and L). Equations (6)–(8) give rise to the following
definitions of Ra, Gr, and Pr:

RaCWHF ¼
gbqL2nþ2

ðK=qÞank
;

GrCWHF ¼
gbqL4n

ðK=qÞ2a2n�2k
and Pr ¼ K

q

� �
an�2L2�2n

(10i)
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RaCWT ¼
gbðTH � TCÞL2nþ1

anðK=qÞ ;

GrCWT ¼
gbðTH � TCÞL4n�1

ðK=qÞ2a2n�2
; and Pr ¼ K

q

� �
an�2L2�2n

(10ii)

These definitions, which will be used for the remainder of this
paper, are the same as those used by Ng and Hartnett [24] and Lam-
saadi et al. [15,16]. It might be more appropriate to use a
velocity scale based on buoyancy effects (i.e., uscale �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbqL2=k

p
for CWHF and uscale �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðTH � TCÞL

p
for CWT) to define

the reference viscosity as �lref � Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gbq=k

p
Þn�1

and

�lref � Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðTH � TCÞ=L

p
Þn�1

for CWHF and CWT boundary
conditions, respectively, which will yield the following alternative
expressions of Ra, Gr, and Pr:

RaCWHF ¼
ðgbq=kÞð3�nÞ=2L4

aðK=qÞ ; GrCWHF ¼
ðgbq=kÞ2�nL4

ðK=qÞ2
; and

PrCWHF ¼
K

q

� �
ðgbq=kÞðn�1Þ=2

a
(10iii)

RaCWT ¼
½gbðTH � TCÞ�ð3�nÞ=2Lð5þnÞ=2

ðK=qÞa ;

GrCWT ¼
½gbðTH � TCÞ�ð2�nÞL2þn

ðK=qÞ2
; and

PrCWT ¼
K

q

� �
½gbðTH � TCÞ=L�ðn�1Þ=2

a

(10iv)

Ra, Gr, and Pr given by Eq. (10iii) (Eq. (10iv)) are related to
RaCWHF;GrCWHF, and Pr (RaCWT;GrCWT, and Pr) in the following
manner:

RaCWHF ¼ Ra
ð3�nÞ=2
CWHF Prð1�nÞ=2; GrCWHF ¼ Gr2�n

CWHFPr�2ðn�1Þ; and

PrCWHF ¼ Prðnþ1Þ=2Ra
ðn�1Þ=2
CWHF (10v)

RaCWT ¼ Ra
ð3�nÞ=2
CWT Prð1�nÞ=2; GrCWT ¼ Gr2�n

CWHFPr�2ðn�1Þ; and

PrCWT ¼ Prðnþ1Þ=2Ra
ðn�1Þ=2
CWT (10vi)

It is clear from Eq. (10v) (Eq. (10vi)) that RaCWHF;GrCWHF, and
Pr (RaCWT;GrCWT, and Pr) are closely related to RaCWHF; GrCWHF,
and PrCWHF (RaCWT;GrCWT, and PrCWT). Moreover,
RaCWHF;GrCWHF, and Pr (RaCWT;GrCWT, and Pr) become exactly
equal to RaCWHF;GrCWHF, and PrCWHF (RaCWT;GrCWT, and
PrCWT) for Newtonian fluids (i.e., n ¼ 1). Here the expressions
given by Eqs. (10i) and (10ii) will be used for the sake of avoiding
confusion as these definitions were used previously by Ng and
Hartnett [24] and Lamsaadi et al. [15,16] in their analysis of natu-
ral convection of power-law fluids in rectangular enclosures.
However, there is no unique definition of reference viscosity in
power-law fluids with n 6¼ 1 and the definitions presented in Eqs.
(10iii) and (10iv) are equally valid and legitimate choices for defini-
tions of nominal Ra, Gr, and Pr numbers. However, the definition of
Pr according to Eqs. (10i) and (10ii) does not change with the change
in boundary condition. This makes the choice of uscale � a=L more
convenient for the subsequent analysis. Henceforth, the definitions
given by Eqs. (10i) and (10ii) will be used in this paper.

Using dimensional analysis it is possible to show that for
natural convection of power-law fluids in square enclosures
Nu ¼ f1ðRa;Pr; nÞ. where the Nusselt number Nu is given by

Nu ¼ hL

k
(11)

where Nu represents the ratio of heat transfer rate by convection
to that by conduction in the fluid in question and the local heat
transfer coefficient h is defined as

h ¼ �k
@T

@x1

����
wf

� 1

ðTx1¼0 � Tx1¼LÞ

�����
����� ¼ q

ðTx1¼0 � Tx1¼LÞ

����
���� (12)

where the subscript “wf” refers to the condition of the fluid in con-
tact with the wall. It is worth noting that the wall temperatures
Tx1¼0 and Tx2¼L are not constant along the wall (i.e., Tx1¼0

and Tx2¼L are functions of vertical coordinate) for the CWHF
boundary condition and this will be demonstrated in Sec. 4 of this
paper.

2.2 Numerical Implementation. A finite-volume code is
used to solve the coupled conservation equations of mass, mo-
mentum, and energy. In this framework, a second-order central
differencing is used for the diffusive terms and a second-order
upwind scheme for the convective terms. Coupling of the pressure
and velocity is achieved using the well-known SIMPLE (semi-
implicit method for pressure-linked equations) algorithm [25].
The convergence criteria were set to 10�7 for all the relative
(scaled) residuals.

2.3 Boundary Conditions and Mesh. The schematic dia-
grams of the simulation domains for both the CWT and CWHF
configurations are shown in Fig. 1. Both velocity components
(i.e., u1 and u2) are identically zero on each boundary because of
the no-slip condition and impenetrability of rigid boundaries. The
heat fluxes for the cold and hot vertical walls are specified (i.e.,
kð@T=@x1Þjx1¼0¼ q and kð@T=@x1Þjx1¼L¼ q). The temperature
boundary conditions for the horizontal insulated boundaries are
given by: @T=@x2 ¼ 0 at x2 ¼ 0 and x2 ¼ L. Here four governing
equations (1 continuityþ 2 momentum þ1 energy) for four quan-
tities (u, v, p, T) are solved, and thus, no further boundary condi-
tions are needed for pressure. The mesh used corresponds to mesh
M2 from Ref. [23]. The numerical uncertainty is also of the same
order as the CWT results presented in Ref. [23] and so extensive
details are not unnecessarily repeated here. Essentially the mean
Nusselt number values reported here are accurate to within 1% for
all cases.

3 Scaling Analysis

A scaling analysis is performed to elucidate the anticipated
effects of Ra, Pr, and n on the Nusselt number for power-law flu-
ids. All the unknown constants involved in this scaling analysis
are considered to be unity for the purpose of mathematical manip-
ulations. The wall heat flux q can be scaled as

q � k
DT

dth
� hDT (13)

which gives rise to the following relation:

Nu � h:L

k
� L

dth
or Nu � L

d
f2ðRa;Pr; nÞ (14)

where the thermal boundary-layer thickness dth is related to the
hydrodynamic boundary-layer thickness d in the following man-
ner: d=dth � f2ðRa; Pr; nÞ, where f2ðRa; Pr; nÞ is a function of
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Rayleigh number, Prandtl number, and power-law index, which is
expected to increase with increasing Pr. In order to estimate the
thermal boundary-layer thickness dth, a balance of buoyancy and
viscous forces in the vertical direction (i.e., x2-direction) is
considered

qgbDT � qgbqdth=k � s
d

(15)

For power-law fluids the shear stress s can be estimated as
s � Kð#=dÞn, where # is a characteristic velocity scale, which
upon substitution into Eq. (15) gives

qgbqdth

k
� K

#n

dnþ1
(16)

For natural convection the flow is induced by the buoyancy force,
and thus, an equilibrium of inertial and buoyancy forces gives

q
#2

L
� qgbDT � qgbqdth

k
(17)

This balance leads to an expression for the characteristic velocity
scale

# �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbqdth L

k

r
(18)

which can be used in Eq. (16) to estimate the thermal boundary-
layer thickness as

dth �
K

q
gbq

k

� �n=2�1Ln=2

f nþ1
2

" # 1
n=2þ2

(19)

This scaling gives rise to the following expression for the thermal
boundary-layer thickness dth:

dth � min L;
1

f
nþ1

n=2þ2
2

L�
Ra

1�n=2

CWHFPr�n=2
� 1

n=2þ2

2
664

3
775

� min L;
1

f3ðRaCWHF;Pr; nÞ
L�

Ra
1�n=2

CWHFPr�n=2
� 1

n=2þ2

2
664

3
775 (20)

where RaCWHF and Pr are given by Eq. (10i) and f3 is given by

f3 ¼ f
ðnþ1Þ=ðn=2þ2Þ
2 . The above expression accounts for the fact the

thermal boundary-layer thickness becomes of the order of the
enclosure size L under very high values of n when thermal con-
duction becomes the principal mode of heat transfer. Moreover,
for a given set of values of Ra and Pr the thermal boundary-layer
and hydrodynamic boundary-layer thicknesses (i.e., dth and d)
decrease with decreasing n. Equation (20) suggests that dth decreases
with increasing Ra for n< 2. It is worth noting that Eq. (20) provides
a representative thermal boundary layer thickness dth but in reality it
varies along the wall. As dth is not a priori known, using a representa-
tive value of dth to obtain a reference viscosity lref based on the char-
acteristic shear rate #=d is unlikely to yield any extra benefit over the
current methodology used for defining Ra, Gr, and Pr numbers (see
Eq. (10i)).

Substitution of Eq. (20) into Eq. (13) yields

Nu � Ra
1�n=2

CWHFPr�n=2
� � 1

n=2þ2

f3ðRaCWHF; Pr; nÞ when Nu > 1

(21)

The mean Nusselt number Nu attains a value equal to unity (i.e.,
Nu ¼ 1:0) when dth approaches the enclosure size L. The scaling
predictions provide useful insight into the anticipated behavior of
Nu in response to variations of Ra, Pr, and n. Equation (21) sug-
gests that Nu is expected to decrease with increasing n for a given
value of Ra, whereas Nu increases with increasing Ra for a given
value of n for n< 2. It is also important to note that the mean Nus-
selt number Nu behavior for Newtonian fluids can be obtained by
setting n¼ 1 in Eq. (21).

An apparent effective viscosity leff can be estimated in the fol-
lowing manner:

Fig. 1 Schematic diagram of the simulation domain (a) CWT configuration, (b) CWHF configuration
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leff � Kð#=dÞn�1
(22)

Using Eqs. (18) and (19) in Eq. (22) yields

leff � q
K

q

� � 5
nþ4 gbq

k

� �ð3n�3Þ=ðnþ4Þ

� L
ð2n�2Þ=ðnþ4Þ ½f2ðRaCWHF;Pr; nÞ�

2n2þ3n�5
nþ4 (23)

Equation (23) can be used to estimate effective Gr and Ra num-
bers (i.e., GrCWHF;eff and RaCWHF;eff )

GrCWHF;eff ¼
q2gbqL4

l2
eff k

� Gr
ð10�5nÞ=ðnþ4Þ
CWHF Prð10�10nÞ=ðnþ4Þ

� Ra
ð10�5nÞ=ðnþ4Þ
CWHF Prð�5nÞ=ðnþ4Þ (24)

RaCWHF;eff ¼
q2cpgbqL4

leff k
2

leff cp

k
� Ra

ð7�2nÞ=ðnþ4Þ
CWHF Prð2�2nÞ=ðnþ4Þ

(25)

A similar scaling analysis has also been carried out for the CWT
configuration by Turan et al. [23], which will be discussed later in
Sec. 4.3 of this paper.

The relations given by Eqs. (24) and (25) indicate that the
effective values of Gr and Ra become increasingly larger than
their nominal values for decreasing values of n (especially for
n < 1). This suggests that for small values of n the magnitudes of
GrCWHF;eff and RaCWHF;eff may attain such values that a steady
two-dimensional laminar solution may not exist, whereas a steady
laminar solution can be obtained for the same set of nominal val-
ues of RaCWHF and Pr for a higher value of n. Thus, a critical
value Racrit can be expected for the effective Rayleigh number
RaCWHF;eff such that a steady two-dimensional solution does not
exist when RaCWHF;eff > RaCWHF;crit. A number of simulations
have been carried out for different values of RaCWHF, Pr, and n
and it has been found that a converged steady solution cannot be
obtained when RaCWHF;eff > 105nþ5Pr2 (“unsteady” numerical sol-
utions can be obtained, however) and the critical effective Ra
above which a steady two-dimensional solution was not obtained
can be given as

RaCWHF;crit � Ra
ð7�2nÞ=ðnþ4Þ
CWHF Prð2�2nÞ=ðnþ4Þ ¼ 105nþ5Pr2 (26i)

which essentially suggests that steady two-dimensional solutions
do not exist for the following condition:

RaCWHF > 105nþ5Pr
4nþ6
nþ4

� 	 nþ4
7�2n

(26ii)

In contrast, the critical effective Ra above which a steady two-
dimensional solution was not obtained in the case of CWT bound-
ary condition can be summarized as follows [23]:

Racrit � Ra
5�n
2nþ2
CWT Pr

1�n
2nþ2 ¼ 107Pr (27)

Equation (27) suggests that steady two-dimensional solutions can-
not be obtained for the following condition [23]:

RaCWT > 107Pr
3nþ1
2nþ2

� 	2nþ2
5�n

(28)

Moreover, a lower limit for Ra can be obtained using Eq. (21)
above which convective transport plays a key role in heat
transfer. For convective heat transfer to play an important role
in the thermal transport, the mean Nusselt number Nu needs to
exceed 1.0 (i.e., Nu > 1), and thus, the limiting condition for
which convective heat transfer becomes important can be esti-
mated as

Nu � Ra
1�n=2

CWHFPr�n=2
� � 1

n=2þ2

f3ðRaCWHF; Pr; nÞ � 1:0 (29)

Considering f3ðRaCWHF; Pr; nÞ � 1:0 one obtains the following
limiting condition:

RaCWHF � Pr
n

2�n (30)

This condition is the same with the CWT configuration that has
been recently studied by Turan et al. [23]. The conditions given
by Eqs. (26)–(30) are shown in a regime diagram in Fig. 2(a).

When RaCWHF < Prn=ð2�nÞ the heat transfer takes place principally
due to thermal conduction, and therefore, this regime in Fig. 2(a)
is referred to as the “conduction-dominated regime.” The region

given by 105nþ5Prð4nþ6Þ=ðnþ4Þ
 �ðnþ4Þ=ð7�2nÞ
> RaCWHF > Prn=ð2�nÞ

in Fig. 2(a) is referred to as the “steady laminar convection
regime” in the CWHF configuration. For the CWT configuration
the steady laminar convection regime is given by

107Prð3nþ1Þ=ð2nþ2Þ
 �ð2nþ2Þ=ð5�nÞ
> RaCWT > Prn=ð2�nÞ [23]. As

steady two-dimensional laminar solutions do not exist for

RaCWHF > 105nþ5Prð4nþ6Þ=ðnþ4Þ
 �ðnþ4Þ=ð7�2nÞ
, the corresponding re-

gime is referred to as the “unsteady convection regime’ in the
CWHF configuration, whereas the unsteady convection regime in
the CWT configuration is characterized by

RaCWT > 107Prð3nþ1Þ=ð2nþ2Þ
 �ð2nþ2Þ=ð5�nÞ
[23]. Figure 2 demon-

strates that the boundaries of the conduction-dominated regime
remain the same for both CWT and CWHF configurations,
whereas the boundaries of the unsteady convection regime are
quite different for the CWT and CWHF configurations. The valid-
ity of the above regime diagram can be substantiated from a series
of unsteady calculations labeled cases A, B, C, and D and shown
on the regime diagram. For cases A and B the mean Nusselt num-

ber Nu turns out to be steady for both CWT and CWHF configura-

tions (i.e., case A: Nu ¼ 1:0), as predicted by the regime diagram.

In case C a time-independent value of Nu is obtained for the

CWHF configuration, whereas a complex transient behavior of Nu
is obtained for the CWT configuration. The transient simulations

for case D yielded a complex transient response of Nu for both
CWT and CWHF configurations as observed from Fig. 2(b). It is
important to note that the boundaries that distinguish one regime
from another on the regime diagram shown in Fig. 2(a) are based
on scaling arguments so these boundaries should not be treated
rigidly but need to be considered only in an order of magnitude
sense.

4 Results and Discussion

4.1 Effects of Power-Law Index n. The variations of nondi-
mensional temperature h ¼ ðT � TcenÞk=qL and nondimensional
vertical velocity component V ¼ u2L=a along the horizontal mid-
plane (i.e., x2/L¼ 0.5) for RaCWHF¼ 104, 105, and 106 at Pr¼ 104

are shown in Figs. 3(a) and 3(b), respectively, for different values
of n ranging from 0.6 to 1.8. Data for the other Pr cases studied
(10–105) are virtually identical and are, therefore, not shown. For
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example, for the Newtonian and shear-thickening fluids the differ-
ences in mean Nusselt number for the different Pr cases are less
than 0.1%. For the most shear-thinning fluid (i.e., n¼ 0.6) very
minor differences due to Pr are observed but these correspond to
increases in the mean Nusselt number of 0.35% (Ra¼ 104),
0.70% (Ra¼ 105), and 1.4% (Ra¼ 106). The distributions of

U¼ u1 L/a are not separately shown here because U and V remain
of the same order in a square enclosure according to continuity
(i.e., u1=L � u2=L). It can be seen from Fig. 3 that, at a given
RaCWHF, the variation of temperature exhibits increasing bound-
ary layer character with decreasing values of n. This increasing
trend of boundary layer character with decreasing values of n

Fig. 2 (a) Different regimes of convection for both CWT and CWHF configurations for n 5 0.6,
(b) temporal evolution of Nu with dimensionless time at=L2 at Pr 5 50, n 5 0.6 for: (A) conduction
regime RaCWHF (RaCWT) 5 5, (B) laminar steady convection regime RaCWHF (RaCWT) 5 1 3 106, (C)
CWT case unsteady convection regime RaCWHF (RaCWT) 5 5 3 106, (D) CWHF case unsteady con-
vection regime RaCWHF (RaCWT) 5 5 3 109
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indicates that the effects of convection strengthen with decreasing
values of n. Figure 3 also demonstrates that the magnitude of ver-
tical velocity component V increases significantly with decreasing
n for fixed RaCWHF. The increasing magnitude of V indicates
strengthening of convective transport with decreasing n which in
turn leads to an increasing boundary layer character of tempera-
ture distribution. Equation (24) shows that the effective Grashof
number GrCWHF,eff increases significantly with decreasing values
of n for a given value of GrCWHF, which indicates that the buoy-
ancy force becomes increasingly strong in comparison to viscous
force with decreasing values of n. This effect is particularly strong
for fluids with n< 1 as a consequence of shear thinning. In con-

trast, the effects of buoyancy force become increasingly weak in
comparison to viscous force with increasing n especially in fluids
with n> 1 because of shear thickening. The RaCWHF¼ 104 and
n¼ 1.8 data show that the heat transfer takes place principally due
to thermal conduction as the convection strength is very weak.
This predominant conduction-driven transport is reflected in the
almost linear distribution of h with x1/L and negligible magnitude
of V for this case. The conduction dominated thermal transport for
RaCWHF¼ 104 and n¼ 1.8 is expected according to the scaling
estimates given by Eq. (20), which indicates that dth becomes of
the order of L for large values of n, indicating conduction-driven
thermal transport.

Fig. 3 Variations of nondimensional temperature h and vertical velocity component V along the
horizontal midplane at Pr 5 100: (a) RaCWHF 5 104, (b) RaCWHF 5 105, and (c) RaCWHF 5 106
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The contours of dimensionless stream function W ¼ w=a and
dimensionless temperature h ¼ ðT � TcenÞk=qL for RaCWHF¼ 104,
105, and 106 at Pr¼ 103 are shown in Figs. 4 and 5, respectively.
It is evident from Fig. 4 that the magnitude of W decreases
(increases) with increasing (decreasing) n because of weakening
(strengthening) of convective transport in comparison to viscous
flow resistance. Moreover, it can be seen from Fig. 5 that the con-
tours of dimensionless temperature becomes progressively more
curved with decreasing n as a result of the strengthening of
convective transport. Figure 5 further shows that the thermal
boundary-layer thickness (dth) increases with increasing n, which
is consistent with the scaling estimations given by Eq. (20), which
predicts an increase in dth with increasing n for a given set of val-
ues of RaCWHF and Pr. It is also worth noting from Fig. 5 that the

temperature values along the vertical walls are not constant as
expected in the case of CWHF boundary condition.

A decrease in the thermal boundary-layer thickness dth gives
rise to a decrease in the magnitude of temperature difference
between the vertical walls DT � qdth=k (see Eq. (13)), which acts
to enhance the mean Nusselt number Nu � qL=DTk � L=dth

(see Eq. (14)) for the CWHF configuration as can be seen in Fig. 6
where the variations of mean Nusselt number Nu with RaCWHF are
shown for different values of n at Pr ¼ 102; 103

, and 104. The
results shown in Fig. 6 are consistent with the scaling estimate
given by Eq. (21), which suggests that Nu increases with decreas-
ing n for a given set of values of RaCWHF and Pr. This behavior is
also qualitatively consistent with the findings of Lamsaadi et al.
[15,16] for the same configuration. Moreover, the increase

Fig. 4 Contours of nondimensional stream functions (W 5 w/a) for n 5 0.6, 1.0, and 1.8 at Pr 5 1000: (a) RaCWHF 5 104, (b)
RaCWHF 5 105, and (c) RaCWHF 5 106
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(decrease) in Nu with decreasing (increasing) n is qualitatively
similar to the earlier findings in the CWT configuration [14,23].

4.2 Effects of Nominal Rayleigh Number. It is useful to
investigate the distributions of dimensionless temperature h and
the velocity components V (see Fig. 3) in order to understand the
effects of RaCWHF on the heat transfer rate during natural convec-
tion of power-law fluids in a square enclosure. As seen from
Fig. 3, the distribution of h shows increasing boundary layer char-
acter with increasing RaCWHF for a given value of n. The linear
(nonlinear) distribution of temperature with x1 direction is indica-
tive of conduction (convection) dominated thermal transport. An
increase in RaCWHF gives rise to strengthening of buoyancy forces
in comparison to viscous forces. It can also be observed from the
distribution of V in Fig. 3 that the magnitude of V increases with
increasing RaCWHF. This enhancement of fluid velocity magnitude
is consistent with the fact that GrCWHF,eff and RaCWHF,eff increase
with increasing RaCWHF for a given set of values of n and Pr (see
Eqs. (24) and (25)).

Figures 4 and 5 also indicate that the effects of convection
strengthen with increasing RaCWHF that is reflected in the augmen-
tation in the magnitude of W and progressively curved contours of
dimensionless temperature for higher values of Ra. It is clear from
Figs. 3 and 5 that dth decreases with increasing RaCWHF (for a
given set of values of n and Pr), which is consistent with the scal-
ing estimates given by Eq. (20). The thinning of dth for larger val-
ues of Ra acts to decrease the magnitude of temperature
difference DT � qdth=k between the vertical walls (as Eq. (13)
and (14) indicate), which gives rise to an increase in
Nu � qL=DTk. The increase in Nu with increasing RaCWHF is
demonstrated in Fig. 6, which is also consistent with the scaling
estimate given by Eq. (21). The Ra dependence of Nu for different
values of n is found to be qualitatively consistent with the earlier
results by Lamsaadi et al. [15,16] in the CWHF configuration and
the previous findings [14,23] in the CWT configuration.

4.3 Comparison Between the Constant Wall Heat Flux
and Constant Wall Temperature Cases. For the purpose of a
quantitative comparison between CWHF and CWT cases, it is

Fig. 5 Contours of nondimensional temperature h for n 5 0.6, 1.0, and 1.8 at Pr 5 1000: (a) RaCWHF 5 104, (b)
RaCWHF 5 105, and (c) RaCWHF 5 106
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useful to refer to the definitions of nominal RaCWT and GrCWT for
the CWT configuration [23], which were provided in Eq. (10ii).
The balance between inertial and buoyancy forces according to
Eq. (17) leads to an expression for the characteristic velocity scale
for the CWT configuration [23]

# �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p
(31)

Using this expression in Eq. (16) the thermal boundary-
layer thickness for the CWT configuration can be estimated as
[23]

dth � min L;
1

f4ðRaCWT;Pr; nÞ
KLðgbDTLÞn=2�1

q

 ! 1
nþ1

2
64

3
75

� min L;
1

f4ðRaCWT;Pr; nÞ
L

ðRa2�n
CWTPr�nÞ

1
2ðnþ1Þ

2
4

3
5 (32)

Equation (32) shows that the thermal boundary-layer dth decreases
(increases) with decreasing (increasing) n. Substitution of Eq. 32
into Eq. 13 yields

Fig. 6 The variation of the mean Nusselt number with Rayleigh number for both CWT (left col-
umn) and CWHF (right column) configurations for different values of power-law index n at (a)
Pr 5 100, (b) Pr 5 1000, and (c) Pr 5 10,000
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Nu � ðRa
2�n

CWTPr�nÞ
1

2ðnþ1Þ f4ðRaCWT;Pr; nÞ when Nu > 1 (33)

The variation of Nu with the same numerical values of RaCWT

and RaCWHF for both CWT and CWHF configuration for different
values of n are shown in Fig. 6 for a given set of values of Pr. It is
evident from Fig. 6 that Nu increases with increasing values of
RaCWHF (RaCWT) for both configurations, which is also consistent
with scaling estimates given by Eqs. (21) and (33). Besides, it is
also apparent from Fig. 6 that the values of Nu for the CWT and
CWHF configurations are comparable for the same values of
RaCWHF and RaCWT when Ra remains small. However, the differ-
ence between the values of Nu increases with increasing RaCWHF

(RaCWT). For a given value of Pr, the mean Nusselt number for

the CWT case scales as Nu � ðRaCWTÞ½ðð1�nÞ=2Þ=ðnþ1Þ�
, whereas it

scales as Nu � ðRaCWHFÞð1�n=2Þ=ðn=2þ2Þ
for the CWHF case. The

difference between the two Ra exponents ððRaCWTÞ½ðð1�nÞ=2Þ=ðnþ1Þ�

and RaCWHFÞ½ðð1�nÞ=2Þ=ðn=ð2þ2ÞÞ�Þ increases with increasing Ra and
this gives rise to an increase in the difference between the Nu val-
ues in the two configurations with increasing RaCWHF (RaCWT)
and this effect is especially prevalent for shear-thinning fluids
(n< 1) (see Fig. 6). The difference between the Nu values for the
CWT and CWHF configurations with increasing RaCWHF (RaCWT)
becomes more noticeable with decreasing n, which is also in
agreement with the scaling arguments (see Eqs. (21) and (33)).

The difference between the Nu values for the CWHF and CWT
configurations can be explained using the differences in the distri-
butions of h and V for both the configurations that are presented in
Figs. 7 and 8, respectively. For the CWT case the nondimensional
temperature h is defined as h ¼ ðT � TcenÞ=ðTH � TCÞ, where Tcen

is the temperature at the geometric center of the domain. Under
predominantly conduction-driven thermal transport the tempera-
ture difference between the vertical walls remain equal to
qL=k ¼ ðTH � TCÞ.The temperature difference between the verti-
cal sidewalls in the CWHF condition at very small values of
RaCWHF, where the thermal transport is primarily conduction-
driven, remains identical to the temperature difference between
the vertical sidewall under the CWT condition for the same nu-
merical value of RaCWT. As the value of RaCWHF increases, the
temperature difference decreases in comparison to qL=k in
the CWHF configuration, whereas it remains exactly equal to
(TH – TC) for all values of RaCWT in the CWT configuration. As
the temperature difference between the vertical sidewall is smaller
in the CWHF configuration than in the CWT configuration, the
velocity induced in the enclosure is smaller in magnitude in the
CWHF configuration than in the CWT configuration for the same
numerical values of RaCWHF and RaCWT (see Fig. 8). The smaller
values of velocity magnitude in the CWHF configuration than in
the CWT configuration for the same numerical values of RaCWHF

and RaCWT are reflected in the smaller value of Nu in the CWHF
configuration than in the CWT configuration in the convection-
dominated thermal transport regimes.

4.4 Correlation for Mean Nusselt Number Nu. Based on
the scaling relation given by Eq. (33), Turan et al. [23] proposed a
correlation for Nu for square enclosure with CWT condition for
RaCWT ¼ 104 � 106 and Pr ¼ 102 � 104 in the following manner:

Nu ¼ 0:162Ra
0:043

CWT

Pr0:341

ð1þ PrÞ0:091

Ra
2�n

CWT

Prn

 ! 1
2ðnþ1Þ

ebðn�1Þ (34i)

where b is a correlation parameter expressed as

b ¼ 1:343Ra
0:065

CWTPr0:036 for n � 1 (34ii)

b ¼ 0:858Ra
0:071

CWTPr0:034 for n > 1 (34iii)

Fig. 7 Variations of nondimensional temperature h along the
horizontal midplane for both (- - -) CWT, (—) CHWF configura-
tions at different values of n for the same values of RaCWHF and
RaCWT: RaCWHF 5 RaCWT 5 (a) 104, (b) 105, and (c) 106 at
Pr 5 1000
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The correlation for CWT given by Eqs. (34i)–(34iii) is modified
here in order to propose a correlation for the CWHF case. Accord-
ing to Eq. (21) the mean Nusselt number Nu can be taken to scale

with Nu � Ra
1�n=2

CWHFPr�n=2
� �½1=ðn=ð2þ2ÞÞ�

f3ðRaCWHF; Pr; nÞ and recently

Turan et al. [22] demonstrated that Nu ¼ 0:209Ra
0:249

CWHF

½Pr=ð1þ PrÞ�0:031
satisfactorily captures the RaCWHF and Pr

dependences of Nu for Newtonian fluids, and thus, the correlation
for Nu for power-law fluids should be proposed in such a manner
that limn!1 Nu ¼ 0:209Ra0:249½Pr=ð1þ PrÞ�0:031

. Based on the
aforementioned observations and limiting conditions, a correlation
for Nu is proposed here in the following manner:

Nu ¼ 0:209Ra
0:049

CWHF

Pr0:231

ð1þ PrÞ0:031

Ra
1�n=2

CWHF

Prn=2

 ! 1
n=2þ2

eb1ðn�1Þ (35i)

where b1 is a correlation parameter which can be expressed based
on simulation results as

b1 ¼ c1Ra
c2

CWHFPrc3 (35ii)

where c1; c2, and c3 are given by

Fig. 8 Variations of nondimensional vertical velocity V along the horizontal midplane for both
CWT (left column), CWHF (right column) configurations at different values of n for the same val-
ues of RaCWHF and RaCWT: RaCWHF 5 RaCWT 5 (a) 104, (b) 105, and (c) 106 at Pr 5 1000
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c1 ¼ 0:965; c2 ¼ 0:038; and c3 ¼ 0:072 for n � 1

(35iii)

c1 ¼ 0:815; c2 ¼ 0:052; and c3 ¼ 0:063 for n> 1 (35iv)

According to Eqs. (35i)–(35iv) the expression for Nu becomes
exactly equal to an existing correlation for Newtonian fluids [22]
when n¼ 1. The performance of the correlations given by Eqs.
(35i)–(35iv) (Eqs. (34i)–(34iii)) for fluids with n � 1 and n > 1
for RaCWHFðRaCWTÞ ¼ 104 � 106 and Pr ¼ 10� 102 are shown in
Fig. 9. It can be seen from Fig. 9 that the correlation given by
Eqs. (35i)–(35iv) (Eqs. (34i)–(34iii)) predicts Nu satisfactorily for
the CWHF (CWT) configuration in the range of nominal Ra and
Pr numbers considered here.

5 Conclusions

Laminar natural convection of power-law non-Newtonian fluids
in a square enclosure with vertical sidewalls subjected to CWHF
boundary condition has been numerically studied for power-law
index n in the range 0.6–1.8, for RaCWHF¼ 104–106 and
Pr¼ 10–105. The effects of n, RaCWHF, and Pr on heat and mo-
mentum transport have been systematically investigated and the
results have been compared with the corresponding results
obtained from the CWT boundary condition. It has been found
that the mean Nusselt number Nu increases with increasing values
of Ra for both Newtonian and power-law fluids. The Nusselt num-
ber was found to decrease with increasing power-law index n,
and, for large values of n, the value of mean Nusselt number set-
tled to unity (i.e., Nu ¼ 1) as the heat transfer took place

Fig. 9 Variations of Nu with power-law index for both CWT (D) and CWHF (*) configurations
for different values of Pr and RaCWT (RaCWHF) along with the predictions of Eqs. (34i)–(34iii) (- - -)
and Eqs. (35i)–(35iv) (—)
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principally by conduction for both CWT and CWHF boundary
conditions. It was also shown that Nu for both the CWHF and
CWT configurations remains comparable for the same numerical
value of RaCWHF and RaCWT for small values of nominal Ra and
large values of n. However, the difference between the Nu values
obtained for CWT and CWHF boundary conditions for the same
numerical values of RaCWHF and RaCWT increases with increasing
Ra and decreasing n. The simulation results show that the mean
Nusselt number Nu is virtually unaffected by the increase in Pr (at
least in the range Pr¼ 10–105) for Newtonian and power-law flu-
ids for a given set of values of RaCWHF (RaCWT) and power-law
index n. Finally, guided by a scaling analysis, the simulation
results are used to propose a new correlation for Nu for power-law
fluids with n ranging from 0.6 to 1.8. This correlation is shown to
satisfactorily capture the variation of Nu with RaCWHF (RaCWT),
Pr, and n for all the cases considered in this study. Moreover, this
correlation reduces to an existing correlation for Nu for Newto-
nian fluids when n ¼ 1.

It is worth noting that the temperature dependences of thermo-
physical properties such as consistency and thermal conductivity
have been neglected in the present analysis as a first step to aid
the fundamental understanding of natural convection in power-
law fluids following several previous studies [14–16,23,24].
Although the inclusion of temperature-dependent thermophysical
properties are not expected to change the qualitative behavior
observed in the present study, as the convection pattern is found
to be qualitatively similar for all values of n, Ra, and Pr within the
laminar steady convection regime. However, the inclusion of tem-
perature dependence of consistency K, power-law index n and
thermal conductivity k is probably necessary for quantitative pre-
dictions. Thus, future investigation on the same configuration with
temperature-dependent thermophysical properties of power-law
fluids will be necessary for deeper understanding and more accu-
rate quantitative predictions.

Nomenclature

cp ¼ specific heat at constant pressure (J/kgK)
e ¼ relative error

eij ¼ rate of strain tensor (s�1)
g ¼ gravitational acceleration (m/s2)

Gr ¼ Grashof number
GrCWT ¼ Grashof number for constant wall temperature

configuration
GrCWHF ¼ Grashof number for constant wall heat flux

configuration
h ¼ heat transfer coefficient (W/m2K)
K ¼ consistency (N.sn/m2)
k ¼ thermal conductivity (W/mK)
L ¼ Length and height of the enclosure (m)
n ¼ power-law index

Pr ¼ Prandtl number
PrCWT ¼ Prandtl number for constant wall temperature

configuration
PrCWHF ¼ Prandtl number for constant wall heat flux

configuration
q ¼ heat flux (W/m2)

Ra ¼ Rayleigh number
RaCWT ¼ Rayleigh number for constant wall temperature

configuration
RaCWHF ¼ Rayleigh number for constant wall heat flux

configuration
T ¼ temperature (K)
t ¼ time(s)

ui ¼ ith velocity component (m/s)
U, V ¼ dimensionless horizontal (U¼ u1 L/a) and vertical

velocity (V¼ u2 L/a)
# ¼ characteristic velocity (m/s)
xi ¼ coordinate in ith direction (m)
a ¼ thermal diffusivity (m2/s)

b ¼ coefficient of thermal expansion (1/K)
d,dth ¼ velocity and thermal boundary-layer thickness (m)

h ¼ dimensionless temperature, (h¼ (T�Tcen)/(TH�TC))
l ¼ dynamic viscosity (Ns/m2)
� ¼ kinematic viscosity (m2/s)
q ¼ density (kg/m3)

sij (s) ¼ stress tensor (stress) (Pa)
u ¼ general primitive variable
w ¼ stream function (m2/s)
W ¼ dimensionless stream function (W¼w/a)

Subscripts

a ¼ apparent
C ¼ cold wall

cen ¼ geometric center of the domain
CWHF ¼ constant wall heat flux

CWT ¼ constant wall temperature
eff ¼ effective value
ext ¼ extrapolated value

H ¼ hot wall
max ¼ maximum value

ref ¼ reference value
wall ¼ wall value

Special Character

DT ¼ difference between hot and cold wall temperature
(¼ (TH�TC)) (K)
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