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Natural convection of Bingham fluids in square enclosures with differentially heated horizontal walls has been numeri-

cally analyzed for both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions for

different values of Bingham number Bn (i.e., nondimensional yield stress) for nominal Rayleigh and Prandtl numbers

ranging from 103 to 105 and from 0.1 to 100, respectively. A semi-implicit pressure-based algorithm is used to solve the

steady-state governing equations in the context of the finite-volume methodology in two dimensions. It has been found

that the mean Nusselt number Nu increases with increasing Rayleigh number, but Nu is found to be smaller in Bingham

fluids than in Newtonian fluids (for the same nominal values of Rayleigh and Prandtl numbers) due to augmented flow

resistance in Bingham fluids. Moreover, Nu monotonically decreases with increasing Bingham number irrespective of

the boundary condition. Bingham fluids exhibit nonmonotonic Prandtl number Pr dependence on Nu and a detailed

physical explanation has been provided for this behavior. Although variation of Nu in response to changes in Rayleigh,

Prandtl, and Bingham numbers remains qualitatively similar for both CWT and CWHF boundary conditions, Nu for

the CWHF boundary condition for high values of Rayleigh number is found to be smaller than the value obtained for

the corresponding CWT configuration for a given set of values of Prandtl and Bingham numbers. The physical reasons

for the weaker convective effects in the CWHF boundary condition than in the CWT boundary condition, especially for

high values of Rayleigh number, have been explained through a detailed scaling analysis. The scaling relations are used

to propose correlations for Nu for both CWT and CWHF boundary conditions and the correlations are shown to capture

Nu satisfactorily for the range of Rayleigh, Prandtl, and Bingham numbers considered in this analysis.
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1. INTRODUCTION

Natural convection in rectangular enclosures is one of
the most extensively analyzed configurations in the heat
transfer literature [e.g., de Vahl Davis (1983); Ostrach
(1988)]. This configuration is of fundamental importance
because of its application in electronic cooling, meteorol-
ogy, solar collectors, and food preservation and heating.
Several possible configurations are possible for natural

convection within rectangular enclosures based on differ-
ent boundary conditions. One of the most important vari-
ants of natural convection in rectangular enclosures is the
configuration where the horizontal walls are differentially
heated through the bottom wall and the vertical walls are
kept adiabatic. This configuration is commonly referred
to as the Rayleigh–Bénard (RB) configuration and the
present study will mainly focus on this configuration for
both constant wall temperature (CWT) and constant wall
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heat flux (CWHF) boundary conditions for the differen-
tially heated horizontal walls.

To date, most analyses on natural convection in rect-
angular enclosures have been carried out for Newtonian
fluids, and an extensive review is contained in Ostrach
(1988). In comparison, relatively little effort was de-
voted to natural convection of non-Newtonain fluids [e.g.,
Ozoe and Churchill (1972)]. Yield stress fluid is a spe-
cial type of non-Newtonian fluid which behaves like a
fluid only when a threshold stress (i.e., yield stress) is
surpassed (Barnes, 1999) and behaves like a solid be-
low the yield stress. Bingham fluid is a special type of
yield stress fluid, which exhibits a linear relation between
shear stress and the rate of shear once the yield stress is
surpassed (Barnes, 1999). There have been some analy-
ses of RB configuration involving non-Newtonian fluids
[e.g., Park and Ryu (2001); Lamsaadi et al. (2005); Zhang
et al. (2006); Balmforth and Rust (2009)]. However, the
aforementioned studies mainly concentrated on the criti-
cal condition under which the fluid flow initiates within
the enclosure. However, the heat transfer within the en-
closure remains purely conduction driven in the absence
of fluid flow within the enclosure and the fluid flow under
critical condition is unlikely to be strong enough to sig-
nificantly influence the overall heat transfer within the en-
closure. This is reflected in the unity value of mean Nus-
selt numberNu under critical and subcritical conditions.
The present study concentrates on the conditions under
which fluid flow remains strong enough to influence the
heat transfer rate significantly and the mean Nusselt num-
berNu remains greater than unity (i.e.,Nu > 1.0). The
influences of boundary conditions on natural convection
of Bingham fluids in square enclosures with differentially
heated horizontal walls are yet to be analyzed in the liter-
ature. This paper aims to address the aforementioned gap
in the literature by carrying out numerical simulations as
done previously by the present authors for square enclo-
sures subjected to differentially heated vertical side walls
(Turan et al., 2010, 2011). The physics of natural con-
vection in enclosures with differentially heated horizontal
walls is fundamentally different from natural convection
in enclosures with differentially heated vertical side walls
[which was analyzed earlier by Turan et al. (2010, 2011)]
and this will be discussed in a more detailed manner in
the Results and Discussion section of this paper. In this
respect, the main objectives of this analysis are as follows:

1. To analyze natural convection of Bingham fluids in
RB configurations for both CWT and CWHF bound-
ary conditions using numerical simulations.

2. To explain the differences in heat transfer rate of
Bingham fluids for both CWT and CWHF boundary
conditions in the RB configuration.

3. To propose correlations forNu for natural convec-
tion of Bingham fluids in square enclosures for both
CWT and CWHF boundary conditions as a function
of nominal Rayleigh, Bingham, and Prandtl num-
bers.

To meet the above objectives, numerical simulations of
natural convection of Bingham fluids in square RB con-
figuration have been carried out for nominal Rayleigh and
Prandtl numbers ranging from 103 to 105 and from 0.1 to
100, respectively, for both the CWT and CWHF boundary
conditions. The biviscosity regularization as proposed by
O’Donovan and Tanner (1984) is used for the simulations,
which effectively replaces the unyielded solidlike region
by a region of very high viscosity. The accuracy of the bi-
viscosity assumption has been assessed by carrying out
some representative simulations using an alternative ex-
ponential function-based regularization by Papanastasiou
(1987) and the agreement has been found to be excellent
in all cases (e.g., maximum difference inNu remains of
the order of 2%).

The rest of the paper will be organized as follows. The
necessary mathematical background relevant to this anal-
ysis will be provided in the next section. This will be
followed by a brief description on the numerical imple-
mentation. Following this, results will be presented and
subsequently discussed. Finally the main findings will be
summarized and conclusions will be drawn.

2. MATHEMATICAL BACKGROUND

The Bingham model for yield stress fluids can be ex-
pressed in the following manner (Barnes, 1999):

γ̇=0 for τ ≤ τy, τ=(µ+τy/γ̇)γ̇ for τ > τy (1)

whereγ̇ = (∂ui/∂xj + ∂uj/∂xi) are the components
of the rate of strain tensoṙγ, τ is the stress tensor,τy is
the yield stress,µ is the so-called plastic viscosity of the
yielded fluid, andτ andγ̇ are the second invariants of the
stress and the rate of strain tensors in a pure shear flow,
respectively, which are expressed as

τ = [τ : τ/2]1/2; γ̇ = [γ̇ : γ̇/2]1/2 (2)

O’Donovan and Tanner (1984) proposed the biviscosity
model to mimic the stress-shear rate characteristics for a
Bingham fluid as
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τ=µyieldγ̇ for γ̇ ≤ τy/µ;
τ=τy+µ[γ̇−τy/µyield] for γ̇ > τy/µyield (3)

whereτy is the yield stress tensor,µyield is the yield vis-

cosity, andµ is the plastic viscosity. This model replaces
the solid material by a fluid of high viscosity and it was
suggested by O’Donovan and Tanner (1984) that a value
of µyield equal to1000µmimics the true Bingham model
in a satisfactory manner. In the present study the bivis-
cosity model is predominantly used but in order to assess
the sensitivity of the simulations on the choice of regular-
ization, a limited number of simulations have also been
carried out based on the regularization proposed by Pa-
panastasiou (1987):

τ = τy [1− exp(−mγ̇)] + µγ̇ (4)

wherem is the stress growth exponent which has the di-
mensions of time. The regularization given by Eq. (4) also
transforms the “unyielded” region to a zone of high vis-
cosity. The maximum difference between the mean Nus-
selt number obtained from the biviscosity and Papanasta-
siou regularizations remains of the same order as the typi-
cal experimental and numerical uncertainties (∼2%–3%).

It is worth noting that biviscosity and exponential reg-
ularizations by O’Donovan and Tanner (1984) and Pa-
panastasiou (1987) respectively approximate the strain
rate dependences of shear stress for Bingham fluids and
the unyielded zone is modeled by zones of high viscosity
in both regularizations, albeit in two different manners. In
the bi-viscosity regularization the relation between shear
stress and strain rate is discontinuous [see Eq. (3)]. In con-
trast, the strain rate dependence of shear stress is continu-
ous according to the regularization proposed by Papanas-
tasiou (1987) [see Eq. (4)]. Both regularizations give the
same expression of stress tensor (i.e.,τ = τy + µγ̇) for

the fully yielded region. It is true that the choice ofµyield
may have some impact on the results in the biviscosity
regularization but it was suggested by O’Donovan and
Tanner (1984) that a value ofµyield ≥ 103µ mimics the
true Bingham model in a satisfactory manner. A sensitiv-
ity analysis has been carried out to assess the sensitivity of
the simulations on the choice ofµyield. It has been found
that the maximum difference in mean Nusselt number re-
mains about 0.5% whenµyield is altered from103µ to
104µ.

Using Buckingham’s pi theorem it is possible to show
that the Nusselt number Nu= hL/k for a square en-
closure of dimensionL can be expressed as: Nu= f1

(RaCWT ,BnCWT ,Pr) (Nu = f2 (RaCWHF ,BnCWHF ,
Pr)) for the CWT (CWHF) boundary condition, where
the nominal Rayleigh, Bingham, and Prandtl numbers are
given by (Turan et al., 2010, 2011)

RaCWT = ρgβ(TH − TC)L
3/µα = GrCWTPr;

RaCWHF = ρgβqL4/kµα = GrCWHF Pr (5a)

BnCWT = τyL/µ
√

gβ(TH − TC)L;

BnCWHF = τy/µ
√

gβq/k, and Pr= µcp/k (5b)

where GrCWT = ρ2gβ(TH − TC)L
3/µ2 (GrCWHF =

ρ2gβqL4/kµ2) is the Grashof number in the CWT
(CWHF) configuration,TH andTC are the hot and cold
wall temperatures in the CWT configuration,q is the wall
heat flux,cp is the specific heat, andk is the thermal con-
ductivity. The local heat transfer coefficienth is defined
as

h = |−k(∂T/∂y)wf × 1/(Twall − Tref)| (6)

where the subscript “wf ” refers to the condition of the
fluid in contact with the wall,Twall is the wall temper-
ature, andTref is the appropriate reference temperature,
which can be taken to be the cold wall(hot wall) tem-
perature for the hot (cold) wall, respectively. The Bing-
ham number represents the ratio of yield stress to vis-
cous stresses. In Bingham fluid flows the viscosity varies
throughout the flow and an effective viscosity expressed
asµeff = τy/γ̇ + µ might be more representative of the
viscous stress within the flow than the constant plastic vis-
cosity µ.Therefore the Rayleigh, Prandtl, and Bingham
numbers could have been defined more appropriately if
µeff was used instead ofµ. However,γ̇ is expected to
show local variations in the flow domain so using a single
characteristic value in the definitions of the nondimen-
sional numbers may not yield any additional benefit in
comparison to the definitions given by Eqs. (5a) and (6).
In the present study the effects of Rayleigh, Bingham, and
Prandtl numbers on the Nusselt number are investigated
systematically and suitable correlations proposed. How-
ever, it is worth noting that in the present study the plastic
viscosityµand yield stressτy are taken to be indepen-
dent of temperature for the sake of simplicity and also due
to the experimental evidence that the yield stress remains
approximately independent of temperature and the plastic
viscosity is only a weakly decreasing function of temper-
ature for a well-known yield stress model system (“Car-
bopol”) in the temperature range 0◦C–90◦C (Peixinho et
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al., 2008). However, such temperature dependence will be
substance dependent although the data available are very
scant. Given this paucity of data, this analysis is aimed
at fundamental understanding of the influences of CWT
and CWHF boundary conditions on natural convection of
Bingham fluids in square enclosures with differentially
heated horizontal walls, and as a first attempt the tem-
perature dependences of thermophysical properties (e.g.,
k, cp, µ, andτy) are not accounted for in the current anal-
ysis. Similar assumptions have been made in several pre-
vious studies on natural convection involving both New-
tonian and Bingham fluids (de Vahl Davis, 1983; Bejan,
1984; Ostrach, 1988; Zhang et al., 2006; Vola et al., 2003;
Vikhansky, 2009; 2010; Turan et al., 2010, 2011). More-
over, temperature dependence of thermophysical quanti-
ties does not change the essential physics of the problem
so the convection pattern is unlikely to be altered by the
temperature dependence of thermophysical properties.

3. NUMERICAL IMPLEMENTATION

For the present study steady-state flow of an incompress-
ible Bingham fluid is considered. The governing equa-
tions for incompressible fluids under steady state take the
following form:

Mass conservation equation:∂ui/∂xi = 0 (7a)

Momentum transport equations:ρuj(∂ui/∂xj)

= −∂P/∂xi + ρgβδi2(T − T ∗) + ∂τij/∂xj (7b)

Energy conservation equation:ρcpuj(∂T/∂xj)

= k(∂2T/∂xj∂xj) (7c)

whereT ∗ is the reference temperature for evaluating the
buoyancy termρgδi2β(T–T∗) in the momentum transport
equations which is taken to be the cold wall tempera-
ture TC and the temperature at the center of the domain
Tcen for CWT and CWHF boundary conditions, respec-
tively. The stress tensor is evaluated using either Eq. (3)
(bi-viscosity approach) or Eq. (4) (Papanastasiou regular-
ization). The viscous dissipation effects are neglected in
the current analysis following several previous studies on
natural convection of both Newtonian and Bingham fluids
(de Vahl Davis, 1983; Bejan, 1984; Ostrach, 1988; Zhang
et al., 2006; Vola et al., 2003; Vikhansky, 2009, 2010; Tu-
ran et al., 2010, 2011). The viscous dissipation effects are
expected to play a key role in natural convection under the
condition where kinetic energy of the fluid becomes of the

same order as thermal energy (Gebhart, 1962), which can
be realized whengβLref/cp � 1 whereLref is an ap-
propriate length scale. However, Gebhart (1962) demon-
strated thatgβ/cp remains extremely small for most com-
mon fluids (∼10–9–10–6 m–1) and thus requires an ex-
tremely large length scaleLref for which viscous dissipa-
tion starts to affect heat and momentum transport (Geb-
hart, 1962). As this analysis does not attempt to address
extremely large scale applications, the effects of viscous
dissipation could be neglected here without much loss
of generality following previous studies (de Vahl Davis,
1983; Bejan, 1984; Ostrach, 1988; Zhang et al., 2006;
Vola et al., 2003; Vikhansky, 2009, 2010; Turan et al.,
2010, 2011).

In the biviscosity approximation to the Bingham
model, the ratio of the yield viscosity (µyield) to the plas-
tic viscosity (µ) was taken to be 104. In order to as-
sess the sensitivity of the value ofµyield, the simula-
tions have been carried out for bothµyield = 103µ and
µyield = 104µ, and the quantitative agreement between
the results are found to be satisfactory for all cases (i.e.,
maximum deviation inNu =

∫ L

0
Nudx1/L is of the or-

der of 0.5%). Given this agreement, only the results cor-
responding toµyield = 104µ are presented in this paper
as a greater magnitude ofµyield provides a more accurate
description of Bingham fluid flow in the context of bivis-
cosity regularization.

A finite-volume code is used to solve the coupled gov-
erning equations. In this framework, a second-order cen-
tral differencing is used for the diffusive terms and a
second-order up-wind scheme is used for the convective
terms. Coupling of the pressure and velocity is achieved
using the well-known SIMPLE (semi-implicit method for
pressure-linked equations) algorithm (Patankar, 1980).
The convergence criteria were set to 10–9 for all the rela-
tive (scaled) residuals.

The simulation domain is shown schematically in
Fig. 1 where the two horizontal walls of a square en-
closure are kept at different temperatures with the lower
wall kept at higher temperature (TH > TC). The verti-
cal walls are considered to be adiabatic in nature. Both
velocity components (i.e.,u1 andu2) are identically zero
on each boundary because of the no-slip condition and
impenetrability of rigid boundaries. The temperatures for
cold and hot horizontal walls are specified (i.e.,T(x2 = 0)
= TH andT(x2 = L) = TC). The temperature boundary
conditions for the vertical insulated boundaries are given
by ∂T/∂x1 = 0 atx1 = 0 andx1 = L.

The grid independence of the results has been estab-
lished based on a careful analysis of four different nonuni-
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FIG. 1: Schematic diagram of the simulation domain:(a) constant wall heat flux and(b) constant wall temperature.

form meshes M1 (20×20), M2 (40×40), M3 (80×80),
and M4 (160×160), and their details are provided in Ta-
ble 1. For some representative simulations [Newtonian
(BnCWT = 0 and BnCWHF = 0) and BnCWT =
BnCWHF = 0.25 for RaCWT = RaCWHF = 105 and Pr
= 10] the numerical uncertainty is quantified here using
Richardson’s extrapolation theory (Roache, 1997). For a
primitive variableφ the Richardson’s extrapolation value
is given byφh=0 = φ1 +(φ2 −φ1)/(r

p − 1), whereφ1

is obtained based on fine grid andφ2 is the solution based
on next level of coarse grid,r is the ratio between coarse
to fine grid spacings, andp is the theoretical order of ac-
curacy. In this analysis the apparent orderp was taken
to be 2 as a second-order central differencing is used for
the diffusive terms and a second-order up-wind scheme is
used for the convective terms. The numerical uncertain-
ties for the mean Nusselt numberNu and the maximum
nondimensional horizontal velocity (Umax) magnitude on
the vertical midplane of the enclosure are presented in Ta-
ble 2. As seen in Table 2, the maximum numerical uncer-
tainty between meshes remains at most 4.7 % forUmax

in all cases. The uncertainty inNu is considerably smaller

than this value (< 0.25%). Based on these uncertainties
the simulations were conducted on mesh M3 which pro-
vided a reasonable computational efficiency.

The yield stress simulations have been conducted for
Bingham numbers Bn ranging from 0 to Bnmax where
Bnmax is the Bingham number at which the mean Nus-
selt numberNu approaches unity (i.e.,Nu = 1.0) and
the solution essentially becomes the steady-state pure-
conduction result.

4. RESULTS AND DISCUSSION

4.1 Effects of Rayleigh Number

The variations of nondimensional temperature for both
CWT and CWHF boundary conditions (i.e.,θCWT =
(T −Tcen)/(TH −TC) andθCWHF = (T −Tcen)k/qL)
and nondimensional horizontal velocity componentU =
u1L/α along the vertical midplane are shown in Fig. 2 for
both Newtonian and a representative Bingham fluid case
(i.e., BnCWT = BnCWHF = 0.25). The variations of the
vertical velocity component are not explicitly shown be-
cause the magnitudes ofu1 andu2 remain of the same

TABLE 1:Nondimensional minimum cell distance (∆min,cell/L) and grid expan-
sion ratio (r) values

Grid
M1 M2 M3 M4

20×20 40×40 80×80 160×160

(∆min,cell/L) 4.1325×10–3 1.8534×10–3 8.7848×10–4 4.3001×10–4

r 1.5137 1.2303 1.1092 1.0532
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TABLE 2: Numerical uncertainty for mean Nusselt number and maximum nondimensional horizontal
velocity component on the vertical midplane for CWHF boundary condition at RaCWHF = 1×105 and
Pr = 10 for Newtonian and Bingham (BnCWHF = 0.25) fluids

Nu Umax

M2 M3 M4 M2 M3 M4
Newtonian fluid φ 3.3742 3.3795 3.3816 42.9983 43.4817 43.6733

φext 3.3823 43.7370

eext (%) 0.2395 0.0828 0.0207 1.6893 0.5841 0.1460

Bingham fluid (Bn = 0.25) φ 3.0236 3.0255 3.0276 28.5689 29.5763 29.8815

φext 3.0283 29.9830

eext (%) 0.1552 0.0924 0.0231 4.7171 1.3572 0.3393

order in square enclosures as governed by the continuity
relation (i.e.,u1/L ∼ u2/L). It is evident from Fig. 2
that the magnitude ofU and the nonlinearity of the tem-
perature variation with the vertical direction increase with
increasing Rayleigh number for both CWT and CWHF
boundary conditions. Equating order of magnitudes of
inertial and buoyancy terms of the momentum equation
yieldsϑ2/L ∼ gβ∆T whereϑ is a characteristic velocity
scale and∆T is the temperature difference between the
horizontal walls, which is taken to scale withqδth/k for
the CWHF boundary condition as wall heat fluxq scales
asq ∼ k∆T/δth. In the case of the CWT boundary con-
dition∆T remains exactly equal to(TH −TC). This sug-
gests thatU scales in the following manner for the CWT
and CWHF boundary conditions:

U ∼ ϑL/α ∼
√

gβ∆TL×L/α

∼
√

RaCWT Pr (for CWT) (8a)

U ∼ ϑL/α ∼
√

gβqδthL/k×L/α

∼
√

RaCWHF Pr(δth/L) (for CWHF) (8b)

Equations (8a) and (8b) indicate thatU is expected to in-
crease with increasing Rayleigh number for both New-
tonian and Bingham fluids which is consistent with the
observations from Fig. 2. Moreover, it can be seen from
Eqs. (8a) and (8b) thatU is expected to assume a smaller
value in the case of the CWHF boundary condition than in
the CWT boundary condition for the same numerical val-
ues of RaCWT and RaCWHF asδth � L for the regime
of convection where boundary-layer transport plays a key
role. The aforementioned difference in the behavior ofU
between the CWT and CWHF boundary conditions for
a given set of values of Rayleigh and Prandtl numbers

can also be substantiated from Fig. 2 which shows thatU
assumes a smaller magnitude in the CWHF case than in
the CWT case for the same numerical values of Rayleigh
number for both Newtonian and Bingham fluids. How-
ever, the flow resistance in Bingham fluids is greater than
Newtonian fluids and this is reflected in the smaller mag-
nitude ofU in the Bingham fluid than in the Newtonian
fluid for the same nominal value of Rayleigh number,
which can also be confirmed from Fig. 2. The magni-
tude ofU represents the strength of advection within the
enclosure and thus the variation of nondimensional tem-
perature becomes increasingly nonlinear with increasing
Rayleigh number for both Newtonian and Bingham fluids.
The pure-conduction solution yields a linear variation of
nondimensional temperature between the horizontal walls
and the extent of the nonlinearity of temperature distribu-
tion in the vertical direction depends on the strength of
thermal advection. The strong thermal gradients are con-
fined to the thermal boundary layers adjacent to the walls
under the conditions in which advective transport plays a
key role.

For small values of Rayleigh number the heat trans-
fer within the enclosure takes place purely due to ther-
mal conduction and under that condition the temper-
ature difference between the horizontal walls for the
CWHF boundary condition becomes∆Tcond = qL/k
and this becomes exactly equal to (TH − TC ) for the
CWT boundary condition with the same numerical val-
ues of Rayleigh number as the definitions of RaCWT and
RaCWHF are equivalent to each other under the pure
conduction-driven heat transfer. The temperature differ-
ence between the horizontal walls∆T scales as∆T ∼
qδth/k ∼ qL/k(δth/L) which suggests that the magni-
tude ofθCWHF scales asθCWHF ∼ ∆Tk/qL ∼ δth/L
whereas the magnitude ofθCWT remains of the order of
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FIG. 2: Variations of nondimensional temperatureθCWT (θCWHF ) and horizontal velocity component
UCWT (UCWHF ) along the vertical midplane (i.e., alongx1/L = 0.5) for different values of Rayleigh number RaCWT

(RaCWHF ) at Pr = 10:(a) Newtonian fluid,(b) Bingham fluid (BnCWT = BnCWHF = 0.25).

unity (i.e., the maximum magnitude ofθCWT is equal
to 0.5) as the temperature difference between the hori-
zontal walls remains unchanged in the case of the CWT
boundary condition. It can be seen from Fig. 2 that the
maximum value ofθCWHF remains smaller than that of
θCWT for the same numerical value of nominal Rayleigh
number under the conditions in which thermal advection
has a significant influence on thermal transport within the
enclosure. The smaller values of∆T in the CWHF case

induce a weaker buoyancy force than that in the CWT
case, which is reflected in the smaller magnitude ofU in
the CWHF boundary condition than in the CWT bound-
ary condition.

Figure 2 shows that the magnitude of the thermal gra-
dient∂T/∂x2 in the case of the CWT boundary condition
increases with increasing RaCWT for both Newtonian and
Bingham fluids as the thermal boundary-layer thickness
decreases with strengthening of advective transport. The
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behavior of the thermal boundary-layer thickness in rela-
tion to the nominal Rayleigh number can be illustrated by
equating the order of magnitudes of the inertial and vis-
cous terms of the momentum conservation equation in the
vertical direction (Turan et al., 2010, 2011):

ρϑ2/L ∼ (τy + µϑ/δ)/δ (9)

whereδ is the hydrodynamic boundary-layer thickness.
Equation (9) yields the following scaling ofδ for the
CWT boundary condition (Turan et al., 2010, 2011):

δ∼0.5(τyL/ρϑ
2)+0.5(L/ρϑ2)

√

τ2y+4ρϑ3µ/L (10)

Usingϑ ∼
√

gβ(TH − TC)L in Eq. (10) yields the fol-
lowing estimation ofδ:

δ ∼ µ/ρ√
gβ∆TL

[

BnCWT

2
+

1

2

×

√

Bn2CWT + 4

(

RaCWT

Pr

)1/2


 (11)

Thus, the thermal boundary-layer thicknessδth for CWT
boundary condition scales in the following manner:

δth ∼ min

[

L,
LPr1/2

f3(RaCWT,Bn,Pr)Ra1/2CWT

×





BnCWT

2
+
1

2

√

Bn2CWT +4

(

RaCWT

Pr

)1/2






 (12)

where the thermal boundary-layer thicknessδth is re-
lated to the hydrodynamic boundary-layer thicknessδ in
the following manner:δ/δth = f3(RaCWT ,BnCWT ,Pr)
with f3(RaCWT ,BnCWT ,Pr) as a function of Rayleigh,
Prandtl, and Bingham numbers, which is expected to
increase with increasing Prandtl number. According to
Eq. (12) δth is expected to decrease with increasing
RaCWT in the case of both Newtonian and Bingham flu-
ids, as observed in Fig. 2. Equation (12) further indicates
that δth for Bingham fluid is likely to be thicker than
that in the case of Newtonian fluids for the same nominal
values of RaCWT and Pr, which can also be confirmed
from theθCWT distribution withx2/L (see Fig. 2). Us-
ing ϑ ∼

√

gβqδthL/k in Eq. (9) yields the following
expression for the CWHF boundary condition (Turan et
al., 2011):

√

RaCWHF

Pr

(

δth

L

)5/2

∼ BnCWHF (δth/L)
1/2

f4 (RaCWHF ,Pr,BnCWHF )

+
1

f2
4 (RaCWHF ,Pr,BnCWHF )

(13)

where δ/δth = f4(RaCWHF ,BnCWHF ,Pr) with
f4(RaCWHF ,BnCWHF ,Pr) being a function of
Rayleigh, Prandtl, and Bingham numbers, which is
expected to increase with increasing Prandtl num-
ber in the case of the CWHF boundary condition.
Equation (13) is not solvable analytically but this
equation can be used to obtain qualitative information
regarding the expected behaviors. Under the condi-
tion BnCWHF (δth/L)

1/2/f4 � 1/f2
4 , one obtains

δth ∼ L(Pr/RaCWHF )
1/5f−0.8

4 whereas the condi-
tion given by BnCWHF (δth/L)

1/2/f4 � 1/f2
4 leads

to δth ∼ L(Pr/RaCWHF )
1/4Bn1/2CWHF f

−0.5
4 . These

relations suggest thatδth is expected to decrease with
increasing RaCWHF , whereasδth is expected to increase
with increasing BnCWHF for a given value of nomi-
nal value of RaCWHF also in the case of the CWHF
boundary condition. The decrease (increase) inδth with
increasing RaCWHF (BnCWHF ) gives rise to a decrease
(an increase) in the magnitude ofθCWHF ∼ δth/L
with rising Rayleigh (Bingham) number in the CWHF
boundary condition, which can also be confirmed from
inspection of Fig. 2.

The contours of nondimensional temperatureθCWHF

and stream functionΨ = ψ/α (with ψ being the di-
mensional stream function) for BnCWHF = 0 (i.e., New-
tonian) and BnCWHF = 0.25 for different values of
RaCWHF are shown in Fig. 3. The corresponding vari-
ations for the CWT boundary condition are not explic-
itly shown here because of their qualitative similarities to
the CWHF variations. It is evident from Fig. 3 that the
isotherms remain parallel to the horizontal boundaries for
small value of RaCWHF where the heat transfer is pri-
marily conduction driven. As the circulation patterns re-
main qualitatively similar at a given Rayleigh number,
the isotherms for both BnCWHF = 0 (i.e., Newtonian)
and BnCWHF = 0.25 cases look similar. The “unyielded”
zones according to the criterion proposed by Mitsoulis
(2007) (i.e., zones of fluid where

√
τ12τ12 ≤ τy) are

also shown in gray shading in Fig. 3 for Bn = 0.25. It
is worth noting that these zones are not truly “unyielded”
as indicated by Mitsoulis and Zisis (2001). In the results
shown in Fig. 3 a biviscosity regularization is employed
to account for the Bingham fluid flow so there will always
be extremely slowly moving fluid flow within these es-
sentially very high viscosity regions, which Mitsoulis and
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Zisis (2001) termed as the “apparently unyielded regions
(AUR),” It is important to indicate that the small islands
of AUR alter with increasing values ofµyield (shown in
Fig. 3 forµyield = 104µ) while the mean Nusselt num-
ber and the stream function are independent ofµyield for
µyield ≥ 103µ, which is consistent with earlier findings
by Beverly and Tanner (1989) for a different flow config-
uration. For a given value ofτy the AURs, which satisfy√
τ12τ12 ≤ τy, are expected to shrink with an increase in

µyield. As the AURs are dependent on the precise choice
of µyield and the value ofNu remains independent of the
shape and size of AURs forµyield ≥ 103µ, their effects
on heat transfer are not important and thus will not be
discussed in this paper. Asµyield = 104µ captures the true
strain rate dependence of shear stress of a Bingham fluid
more faithfully, it has been decided to useµyield = 104µ
for all the simulations.

The isotherms become increasingly curved with the
strengthening of advection with increasing RaCWHF ,
which can be confirmed from the rising magnitude of
Ψ with increasing RaCWHF . A comparison between
BnCWHF = 0 and BnCWHF = 0.25 cases reveals that the
isotherms for Bingham fluid are less curved than the New-
tonian case for the same nominal value of Rayleigh num-
ber. This behavior is a consequence of weaker advection
strength in Bingham fluids than in the Newtonian case
for the same nominal value of RaCWHF , which can be
confirmed from the smaller magnitude ofΨ in the Bing-
ham case than in the Newtonian case for a given value
of RaCWHF . Due to increased flow resistance in Bing-
ham fluids the effects of convection are felt at higher val-
ues of RaCWHF than that in Newtonian fluids. For ex-
ample, convection becomes strong enough to make the
isotherms curved for Newtonian fluids at RaCWHF = 5
× 103, whereas at the same value of nominal Rayleigh
number the isotherms remain parallel to horizontal walls
for BnCWHF = 0.25, indicating conduction-driven ther-
mal transport.

4.2 Effects of Bingham Number

The variations of nondimensional horizontal velocity
componentU and temperature (i.e.,θCWT andθCWHF )
along the vertical midplane for different Bingham num-
bers for nominal Rayleigh numbers (i.e., RaCWT and
RaCWHF ) equal to 1× 104 and 1× 105 are shown
in Fig. 4. It is evident from Fig. 4 that the magni-
tude of U decreases with increasing Bingham number
for a given Rayleigh number for both CWT and CWHF
boundary conditions because the effects of flow resis-

tance strengthen with increasing Bingham number. The
decrease inU magnitude leads to weakening of thermal
advection which gives rise to the decrease in the extent of
nonlinearity of the temperature variation along the verti-
cal direction. Figure 4 shows that the thermal boundary-
layer thicknessδth increases with increasing Bingham
number for both CWT and CWHF boundary conditions as
indicated by Eqs. (12) and (13). The increase in the ther-
mal boundary-layer thicknessδth with increasing Bing-
ham number leads to reduced nonlinearity of the temper-
ature variation along the vertical direction. The decrease
in nonlinearity of temperature variation along the vertical
direction with increasing Bingham number indicates that
conduction plays an increasingly important role in ther-
mal transport with increasing Bingham number. For large
values of Bingham number the heat transfer takes place
purely due to thermal conduction because under that con-
dition fluid flow either stops or becomes weak enough
to impart considerable influence on the thermal trans-
port within the enclosure. The conduction-driven thermal
transport is reflected in the linear variation of tempera-
ture in the vertical direction. As the thermal boundary-
layer thicknessδth increases with increasing BnCWHF ,
the magnitude ofθCWHF ∼ δth/L also increases with
increasing Bingham number in the case of the CWHF
boundary condition. For large values of Bingham number
the heat transfer takes place due to conduction and under
pure conduction the temperature distributions for both the
CWT and CWHF boundary conditions become equal to
each other. Thus the distributions ofθCWT andθCWHF

approach each other with increasing Bingham number for
a given numerical value of Rayleigh number. Comparing
flows under nominal Rayleigh number (i.e., RaCWT and
RaCWHF ) equal to 1× 104 and 1× 105 indicates that
advective transport strengthens with increasing Rayleigh
number which is reflected in the higher magnitude ofU
as suggested by Eqs. (8a) and (8b). The above behavior
can be substantiated from the contours ofθCWHF and
Ψ at RaCWHF = 104 and 105 in Fig. 5 for Pr = 10 for
the CWHF boundary condition. The corresponding vari-
ations for the CWT boundary condition are not explicitly
shown here because of their qualitative similarities to the
CWHF boundary condition. It can be seen from Fig. 5
that the magnitude ofΨ decreases with increasing Bing-
ham number due to weakening of fluid motion and this
is reflected in the increased size of AURs for higher val-
ues of BnCWHF . At high values of BnCWHF the whole
enclosure becomes an AUR and under this condition the
fluid flow becomes too weak to influence the heat transfer
and thus the heat transfer takes place solely due to thermal
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(a)

(a) 

(b)

(b) 

(c)

(c) 

(d)

(d) 

CWHF (BnCW HF = 0) CWHF (BnCWHF = 0.25) (e)

(e) 

 (BnCWHF = 0)   (BnCWHF = 0.25) 

FIG. 3: Contours of nondimensional temperatureθCWHF , stream functionΨ, and unyielded zones (gray) for Newto-
nian fluid and Bingham fluid at Pr = 10 for RaCWHF = (a) 1×103, (b) 5×103, (c) 1×104, (d) 5×104, and(e) 1×105.
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FIG. 4: Variations of nondimensional temperatureθCWT (θCWHF ) and horizontal velocity componentUCWT

(UCWHF ) along the vertical midplane (i.e., alongx1/L = 0.5) for Bingham fluids at Pr = 10 for RaCWT (RaCWHF ) =
(a) 1× 104, (b) 1× 105.

conduction. This pure-conduction limit is reflected in the
parallel horizontal isotherms in Fig. 5. The isotherms be-
come increasingly curved with decreasing BnCWHF due
to strengthening of advective transport. Due to stronger
advective transport at higher values of Rayleigh num-
ber, the flow can resist the effects of yield stress up to
a higher value of Bingham number. Thus the Bingham

number at which the temperature profile becomes linear
along the vertical direction (i.e., fluid flow is too weak
to influence thermal transport) increases with increasing
Rayleigh number for both CWT and CWHF boundary
conditions. It has been noted earlier that the effects of ad-
vection are stronger for the CWT boundary condition than
in the case of the CWHF boundary condition and thus the
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CWHF

BnCWHF = 0 

BnCWHF = 0.1 

BnCWHF = 0.25 

BnCWHF = 0.3 Bn
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CWHF
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 BnCWHF = 1.5 
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FIG. 5: Contours of nondimensional temperatureθCWHF , stream functionΨ, and unyielded zones (gray) for Bing-
ham fluids for the CWHF boundary condition at Pr = 10 for RaCWHF = (a) 1× 104, (b) 1× 105.

fluid flow within the enclosure resists the effects of ad-
ditional flow resistance due to yield stress up to a higher
value of Bingham number in case of the CWT boundary
condition than in the CWHF boundary condition. It can be

seen from Fig. 4 that it is possible to have nonlinear tem-
perature distribution along the vertical direction for the
CWT boundary condition for a Bingham number BnCWT

for which temperature distribution is linear along thex1
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direction for the CWHF boundary condition for the same
numerical value of Bingham number BnCWHF . This ten-
dency is particularly prevalent for high values of Rayleigh
number (e.g., RaCWT = RaCWHF = 105) where the ef-
fects of advection are prominent.

4.3 Behavior of Mean Nusselt Number Nu

The effects of Pr on the mean Nusselt numberNu for
Newtonian fluids (i.e., BnCWT = 0 and BnCWHF =
0) are shown in Fig. 6, which showsNu slightly in-
creases between Pr = 0.1 and 1.0 but the change inNu
is marginal between Pr = 1.0 and 1000. The heat trans-
fer characteristics in the present configuration depend
on the relative strengths of inertial, viscous, and buoy-
ancy forces. For small values of Pr the thermal boundary-
layer thickness remains much greater than the hydrody-
namic boundary-layer thickness and thus the inertial and
buoyancy forces principally govern the transport behav-
ior. In contrast, for large values of Pr the hydrodynamic
boundary-layer thickness remains much greater than the
thermal boundary-layer thickness, thus the transport char-
acteristics are primarily governed by buoyancy and vis-
cous forces [see the scaling analysis by Bejan (1984)].
For Pr � 1, an increase in Pr decreases the thermal
boundary-layer thickness in comparison to the hydrody-
namic boundary-layer thickness, which acts to increase
the heat flux which is reflected in the increasing Nusselt
number. In the case of Pr� 1, a change in Prandtl number
modifies the relative balance between viscous and buoy-
ancy forces so the heat transport in the thermal boundary
layer gets only marginally affected. This modification is
reflected in the weak Prandtl number dependence ofNu
for large values of Pr (i.e., Pr� 1) for both CWT and
CWHF boundary conditions in Fig. 6.

The heat transfer coefficienth can be scaled ash =
q/∆T ∼ k∆T/∆T δth ∼ k/δth and thus the mean Nus-
selt numberNu can be taken to scale asNu = hl/k ∼
L/δth (Turan et al., 2010, 2011). Using Eqs. (12) and (13)
one can obtain the followingNu in Newtonian fluids (i.e.,
BnCWT = 0 and BnCWHF = 0):

Nu ∼ (RaCWT /Pr)1/4f3(RaCWT ,Pr)(CWT ) and

Nu ∼ (RaCWHF /Pr)1/5f0.8
4 (RaCWHF ,Pr)

× (CWHF ) (14)

Equation (14) suggests thatNu values are likely to be dif-
ferent between the CWT and CWHF configurations for
the same numerical value of RaCWT and RaCWHF . For
small values of RaCWT and RaCWHF the values ofNu

Pr

0.1 1 10 100

N
u

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

CWHF

Eq. 15 (CWHF)

CWT

Eq. 15 (CWT)

Corcione 2003

Quertatani et al. 2008

Ra
CWT

  = 1 x 105

(Ra
CWHF

)

Ra
CWT

(Ra
CWHF

)= 1 x 104

Ra
CWT

(Ra
CWHF

)= 5 x 103

Ra
CWT

  = 5 x 104

(Ra
CWHF

)

FIG. 6: Variation of mean Nusselt numberNu with
Rayleigh RaCWT (RaCWHF ) and Prandtl Pr numbers for
Newtonian fluids.

are comparable in both CWT and CWHF boundary condi-
tions. For large values of Rayleigh number the difference
between(RaCWT /Pr)1/4 and(RaCWHF /Pr)1/5 widens
and that is reflected in the value ofNu being smaller in
the CWHF case than that in the CWT case for the same
numerical values of Rayleigh and Prandtl numbers as can
be observed from Fig. 6. It has been demonstrated earlier
that the strength of advection is stronger in the CWT case
than in the CWHF case for the same values of Rayleigh
and Prandtl numbers [see Eqs. (8a) and (8b)] and this is
reflected in the value ofNu being greater in the CWT case
than in the CWHF case. The simulation results for the
CWT boundary condition are also in agreement with pre-
vious findings (Corcione, 2003; Quertatani et al., 2008).

In the present study a correlation for the mean Nusselt
numberNu for Newtonian fluids is proposed in the fol-
lowing manner for 105 ≥ RaCWT ≥ 5 × 103 (105 ≥
RaCWHF ≥ 5× 103):

Nu = aRamCWT

(

Pr
1 + Pr

)n

and

Nu = aRamCWHF

(

Pr
1 + Pr

)n

(15a)

The values of the coefficientsa, m, andn were determined
by an iterative minimization function of a commercial
software package which provides the following values:
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a = 0.178, m = 0.269, n = 0.02 for CWT;

a = 0.289, m = 0.214, n = 0.017 for CWHF (15b)

For the parameters given by Eq. (15b), the correlation
given by Eq. (15a) satisfactorily captures the variation of
Nu in the range given by 5× 103 ≤ RaCWT ≤ 105, 5×
103 ≤ RaCWHF ≤ 105, and 0.1≤ Pr ≤ 103 for Newto-
nian fluids. The correlation given by Eq. (15a) is in good
agreement with the scaling estimates given by Eq. (14)
and the small difference in the exponent of Rayleigh num-
ber between Eqs. (14) and (15a) are not unexpected given
the simplicity of the scaling relations.

The variation ofNu with Bingham number for dif-
ferent values of Rayleigh number at Pr = 10 are shown
in Fig. 7 (the cases corresponding to RaCWT = 103 and
RaCWHF = 103 are not shown because the mean Nus-
selt numberNu remains equal to unity for all fluids).
The results shown in Fig. 7 are primarily obtained from
the biviscosity regularization but the use of the Papanas-
tasiou model (1987) was found to give virtually identi-
cal results. The variation in Nusselt number between the
regularization methods for nominally identical conditions
was usually smaller than 0.1% and small differences be-
came apparent only at large Bingham numbers, when the
Nusselt number approaches unity (still less than 3% in
Nu). Thus these differences are, for all practical purposes,
unimportant for the following discussion. Figure 7 indi-
cates thatNu decreases with increasing Bingham num-
ber. An increase in Bingham number implies that higher

stress needs to be created to induce fluid motion and thus
thermal convection within the enclosure. This increased
flow resistance at higher values of Bingham number gives
rise to weaker thermal convection in the enclosure, which
is reflected in the small values ofNu for high values of
Bingham number. It can be seen from Fig. 7 thatNu
at a given set of values of Rayleigh and Prandtl num-
bers decreases with increasing Bingham number before
dropping toNu = 1.0 at a Bingham number Bnmax such
that Nu remains equal to unity for BnCWT ≥ Bnmax

(BnCWHF ≥ Bnmax). It has been discussed earlier that
δth increases with increasing Bingham number for both
CWT and CWHF boundary conditions [see Eqs. (12) and
(13)], which leads to a decrease inNu with increasing
Bingham number asNu scales asNu ∼ L/δth (Turan et
al., 2010, 2011). Figure 7 shows that the mean Nusselt
numberNu increases with increasing Rayleigh number
for a given set of values of Prandtl and Bingham num-
bers for BnCWT < Bnmax (BnCWHF < Bnmax), which
is also consistent with the scaling estimates ofδth [see
Eqs. (12) and (13)] suggesting a decrease inδth with in-
creasing Rayleigh number for a given set of values of
Bingham and Prandtl numbers. An increase in Rayleigh
number gives rise to strengthening of convection for a
given set of values of Prandtl and Bingham numbers
for BnCWT < Bnmax (BnCWHF < Bnmax) and this
is reflected in the high values ofNu for high values of
RaCWT (RaCWHF ). Stronger fluid flow at higher values
of Rayleigh number can resist the flow resistance up to
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FIG. 7: The interrelation between the mean Nusselt numberNu and Bingham number BnCWT (BnCWHF ) at Pr = 10
for RaCWT (RaCWHF ) = (a) 1× 104 and(b) 1× 105.
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greater values of Bingham number which gives rise to an
increase in Bnmax with increasing Rayleigh number for a
given value of Prandtl number for both CWT and CWHF
boundary conditions. It is worth noting that the variation
of the mean Nusselt number with Bingham number in the
case of natural convection of Bingham fluids in rectangu-
lar enclosures with differentially heated vertical sidewalls
(Turan et al., 2010, 2011) is quantitatively and qualita-
tively different from the results presented here.

As Nu for Newtonian fluids in the case of the CWHF
boundary condition remains smaller than that in the case
of the CWT boundary condition, the Nusselt number in
Bingham fluids also assumes a smaller value in the case of
the CWHF boundary condition than in the CWT bound-
ary condition for the same numerical values of Rayleigh,
Bingham, and Prandtl numbers (see Fig. 7). Moreover,
Fig. 7 indicates that Bnmax in the CWHF case assumes
smaller values than in the case of the CWT boundary
condition. This is unlike the natural convection of Bing-
ham fluids in enclosures with differentially heated verti-
cal side walls where Bnmax for both CWT and CWHF
boundary conditions were found to be the same (Turan
et al., 2011). In differentially heated sidewalls fluid flow
within the enclosure initiates as soon as a finite tempera-
ture difference is induced between the vertical walls (Be-
jan, 1984). Thus the fluid flow progressively weakens
and ceases to influence the heat transfer rate by advec-
tion as the Bingham number increases in the differentially
heated side wall configuration, which is reflected in a
linear temperature distribution between vertical sidewalls
(Turan et al., 2011). Under that situation, the temperature
distributions for the CWT and CWHF boundary condi-
tions approach the pure-conduction solution and the def-
initions of nominal Rayleigh and Bingham numbers be-
come equivalent to each other (i.e., RaCWT = RaCWHF

and BnCWT = BnCWHF ), which in turn leads to the
same numerical value of Bnmax for differentially heated
vertical side walls (Turan et al., 2011). By contrast, the
Rayleigh number in the RB configuration must exceed
a critical limit Racrit before any fluid flow is induced
within the enclosure and any noticeable influence is felt
on the mean Nusselt numberNu (Bejan, 1984). The ac-
tual Rayleigh number in Bingham fluids is a local quan-
tity and can assume very different values in comparison to
its nominal value because the effective viscosity in Bing-
ham fluid changes from one point to another. An effective
viscosityµeff can be estimated as

µeff ∼ µ[τyδ/µϑ+ 1] (16)

Usingϑ ∼
√

gβ(TH − TC)L andϑ ∼
√

gβqδthL/k in
the CWT and CWHF configurations, respectively, yields
the following scaling ofµeff/µ:

µeff/µ∼ [BnCWT f3(RaCWT ,BnCWT ,Pr)(δth/L) + 1]

(for CWT) (17a)

µeff/µ ∼ [BnCWHF f4(RaCWHF ,BnCWHF ,Pr)

× (δth/L)
1/2 + 1] (for CWHF) (17b)

Using Eqs. (17a) and (17b) for the CWT and CWHF
boundary conditions, respectively, gives rise to

Raeff =ρgβ(TH−TC)L
3/µeffα∼RaCWT /[BnCWT

× f3(RaCWT ,BnCWT ,Pr)(δth/L) + 1]

(for CWT) (18a)

Raeff =ρgβqL4/kµeffα ∼ RaCWHF /[BnCWHF

× f4(RaCWHF ,BnCWHF ,Pr)(δth/L)
1/2 + 1]

(for CWHF) (18b)

Assumingf3 andf4 attain similar values for a given set
of numerical values of nominal Rayleigh, Bingham, and
Prandtl numbers, it can be inferred from Eqs. (18a) and
(18b) that Raeff in the CWHF boundary condition is likely
to assume a smaller value than in the CWT configuration
for a given set of numerical values of nominal Rayleigh,
Bingham, and Prandtl numbers becauseδth/L < 1 and
δth is greater in the CWHF case than in the CWT case due
to a smaller value ofNu in the CWHF configuration. This
indicates that Raeff decays more rapidly with increasing
Bingham number in the CWHF case than in the CWT case
for a given set of values of nominal Rayleigh and Prandtl
numbers. Once Raeff becomes smaller than Racrit, con-
duction becomes the primary mechanism of heat transfer
which is reflected in the unity value of mean Nusselt num-
ber Nu. This situation is encountered at a smaller value
of nominal Bingham number in the CWHF case than in
the CWT case for high values of nominal Rayleigh num-
ber (e.g., RaCWT = RaCWHF = 105 in Fig. 7) where
δth � L for small values of Bingham number. This leads
to a smaller value of Bnmax (i.e., the Bingham number be-
low which Nu assumes a value greater than unity) in the
CWHF case than in the CWT case for high values of nom-
inal Rayleigh number. For small values of Rayleigh num-
ber δth/L ∼ O(1), and thus the values of Raeff remain
comparable for both CWT and CWHF boundary condi-
tions, which give rise to comparable values of Bnmax for
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the CWT and CWHF boundary conditions at small values
of nominal Rayleigh number (i.e., RaCWT = RaCWHF

= 104 in Fig. 7).
The variations ofNu with Bingham number for dif-

ferent Prandtl numbers at RaCWT = RaCWHF = 104

are shown in Fig. 8, which show that unlike Newto-
nian fluids the mean Nusselt numberNu decreases with
increasing Pr for large values of Bingham number for
both CWT and CWHF boundary conditions. However, for
small values of Bingham number the mean Nusselt num-
berNu increases with increasing Pr for very small values
of Bingham number, which is consistent with the behav-
ior obtained for Newtonian fluids (see Fig. 6). Moreover,
the value of Bingham number Bnmax for which Nu ap-
proaches unity decreases with increasing Pr. The same
qualitative behavior is also observed for other values of
Rayleigh number. This variation clearly demonstrates that
Bnmax depends on Pr for a given value of Rayleigh num-
ber, which can be confirmed from inspection of Table 3
where the values of Bnmax are estimated here by carrying
out simulations and identifying the Bingham number at
whichNu obtains a value of 1.01 (i.e.,Nu = 1.01).

From the foregoing it can be concluded that the effects
of Pr on natural convection at a given value of Rayleigh
number are not fully independent of Bingham number.

This inference is an artifact of how the nominal Rayleigh
number is defined in the present analysis [see Eq. (5a)].
Following Eqs. (17) and (18) it is possible to estimate an
effective Grashof number Greff in the following manner:

Greff = ρ2gβ(TH − TC)L
3/µ2eff ∼ RaCWT Pr−1

/[BnCWT f3(RaCWT ,BnCWT ,Pr)(δth/L) + 1]2

(for CWT) (19a)

Greff = ρ2gβqL4/kµ2eff ∼ RaCWHF Pr−1

/[BnCWHF f4(RaCWHF ,BnCWHF ,Pr)(δth/L)1/2+1]2

(for CWHF) (19b)

It has been shownδth/L increases with increasing Bing-
ham number for both CWT and CWHF boundary condi-
tions, asNu ∼ L/δth decreases with increasing Bingham
number (see Fig. 7). Moreoverf3 and f4 are expected
to increase with increasing Pr which suggests that an in-
crease in Prandtl number leads to a large drop in Greff for
large values of Bingham number. This suggests that the
effects of the buoyancy force become increasingly weak
in comparison to the viscous effects with increasing Pr for
large values of nominal Bingham number when the nom-
inal Rayleigh number is held constant. This weakened
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FIG. 8: Variations of mean Nusselt numberNu with Prandtl number for Bingham fluids at RaCWT (RaCWHF ) = 104

for (a) CWT and(b) CWHF boundary conditions.
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TABLE 3:Values of Bnmax at different values of Rayleigh and Prandtl numbers

RaCWT (RaCWHF) 5×103 1×104 5×104 1×105

Pr CWT CWHF CWT CWHF CWT CWHF CWT CWHF
0.1 0.83 1.19 2.56 2.62 10.86 8.85 17.06 13.32

1 0.27 0.38 0.82 0.83 3.44 2.80 5.40 4.22

10 0.09 0.12 0.26 0.27 1.09 0.89 1.71 1.34

100 0.03 0.04 0.09 0.09 0.35 0.28 0.54 0.40

buoyancy force relative to the viscous force gives rise to a
weakening of advective transport which acts to decrease
Nu with increasing Pr. This effect is relatively weak for
small values of nominal Bingham number where an in-
crease in Pr acts to reduce the thermal boundary-layer
thickness which in turn acts to increase the heat trans-
fer rate as discussed earlier in the context of Newtonian
fluids. In contrast, for large values of nominal Bingham
number, the effects of thinning of the thermal boundary-
layer thickness with increasing Pr are superseded by the
reduction of convective transport strength due to a smaller
value of Greff . This reduction gives rise to a decrease
in Nu with increasing values of Pr (for a given value of
nominal Rayleigh number) when the nominal Bingham
number attains large values. Eventually this gives rise
to the beginning of the conduction-dominated regime for
smaller values of Bnmax for higher Pr values as shown in
Fig. 8. As a consequence of this, Bnmax depends on both
Rayleigh and Prandtl numbers, and Bnmax increases with
increasing Rayleigh number, whereas it decreases with in-
creasing Pr (see Table 3).

Using Eq. (12) the mean Nusselt numberNu ∼ L/δth
for Bingham fluids in the CWT boundary condition is
given by

Nu ∼ max

{

1,
Ra1/2CWT f3(RaCWT ,Bn,Pr)

Pr1/2

×





BnCWT

2
+
1

2

√

Bn2CWT +4

(

RaCWT

Pr

)1/2




−1










(20)

Following the above scaling estimate a correlation for
Nu can be proposed for the CWT boundary condi-
tion:

Nu =1+
ACWTRa1/2CWT





BnCWT

2
+

1

2

√

Bn2CWT +4

(

RaCWT

Pr

)1/2




×
[

1−
(

BnCWT

Bnmax

)0.6
]b1

(21)

such thatlimBnCWT→Bnmax
Nu = 1.0 andACWT , b1 and

Bnmax are input parameters in the correlation. The pa-
rameterACWT needs to be chosen in such a manner that
Eq. (21) becomes identically equal to Eq. (15a) when
the Bingham number goes to zero (i.e., Newtonian fluid).
This gives rise to the following expression forACWT :

ACWT = 0.178Ra0.019CWT

Pr−0.23

(1 + Pr)0.02

− 1

Ra0.25CWTPr0.25
(22)

The simulation data indicate that the parameterb1 de-
pends on both RaCWT and Pr and it has been found that
the variation ofb1 with RaCWT and Pr can be accurately
expressed with the help of the following power law:

b1 = 0.025Ra0.171CWT Pr0.095 (23)

It has been discussed earlier that Bnmax is dependent on
RaCWT and Pr and here the value of Bnmax is estimated
by empirically fitting the simulation results:

Bnmax = [0.0019 ln(RaCWT )− 0.0128]

× Ra0.55CWTPr−0.50 (for CWT) (24)

The predictions of the correlation given by Eqs. (21)–(24)
are compared withNu obtained from numerical simula-
tions in Fig. 9, which shows that the correlation satisfac-
torily predictsNu in the ranges given by 0.1≤ Pr ≤ 100
and 104 ≤ RaCWT ≤ 105.
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FIG. 9: Comparison of the prediction of the correlation (—) given byEqs. (21)–(24) and simulation results (◦) for
CWT case.

Computational Thermal Sciences



Boundary Condition Effects on Natural Convection of Bingham 95

Bn
CWHF

0.0 0.5 1.0 1.5 2.0 2.5 3.0

N
u

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Ra

CWHF
 = 104

Pr = 0.1

 Ra = 104

Pr = 1

Bn
CWHF

0.0 0.2 0.4 0.6 0.8 1.0

N
u

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Ra

CWHF
 = 104

Pr = 1

Bn
CWHF

0.00 0.05 0.10 0.15 0.20 0.25 0.30

N
u

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Ra

CWHF
 = 104

Pr = 10

Bn
CWHF

0.00 0.02 0.04 0.06 0.08 0.10

N
u

1.0

1.2

1.4

1.6

1.8

2.0

2.2
Ra

CWHF
 = 104

Pr = 100

Bn
CWHF

0 2 4 6 8 10 12 14

N
u

1.0

1.5

2.0

2.5

3.0

3.5
Ra

CWHF
 = 105

Pr = 0.1

Bn
CWHF

0 1 2 3 4 5

N
u

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ra

CWHF
 = 105

Pr = 1

Bn
CWHF

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

N
u

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ra

CWHF
 = 105

Pr = 10

Bn
CWHF

0.0 0.1 0.2 0.3 0.4 0.5

N
u

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Ra

CWHF
 = 105

Pr = 100

FIG. 10: Comparison of the prediction of the correlation (—) given byEqs. (25) and (26) and simulation results (◦)
for CWHF case.
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It is difficult to obtain a scaling estimate ofδth from
Eq. (13), thus a correlation forNu is proposed here in the
following manner for the CWHF boundary condition con-
sidering the qualitative similarities in the Bingham num-
ber dependence of mean Nusselt number between CWT
and CWHF boundary conditions:

Nu =1+
ACWHF Ra1/2CWHF





BnCWHF

2
+
1

2

√

Bn2CWT +4

(

RaCWHF

Pr

)1/2




×
[

1−
(

BnCWHF

Bnmax

)0.75
]b2

(25)

where

ACWHF = 0.205Ra−0.001
CWHF

Pr−0.213

(1 + Pr)0.037

− 1

Ra0.25CWHF Pr0.25
(26a)

b2 = 0.0818Ra0.1019CWHF Pr0.0540 (26b)

Bnmax = [0.0412 ln(RaCWHF )− 0.3201]

× Ra0.287CWHF Pr−0.50 (for CWHF) (26c)

The above expression ofACWHF ensures that Eq. (25)
becomes exactly equal to Eq. (15a) for Newtonian fluids
(i.e., BnCWHF = 0). Moreover,limBnCWHF→Bnmax

Nu =
1.0 according to Eq. (25). The predictions of the correla-
tion given by Eqs. (25) and (26) are compared withNu
obtained from numerical simulations in Fig. 10, which
shows that the correlation satisfactorily predictsNu in the
ranges given by 0.1≤ Pr ≤ 100 and 104 ≤ RaCWHF ≤
105.

5. CONCLUSIONS

The effects of CWT and CWHF boundary conditions on
laminar natural convection of yield stress fluid following
the Bingham model in square enclosures with differen-
tially heated horizontal walls have been analyzed numer-
ically in this analysis for a range of different values of
nominal Rayleigh (ranging from 103 to 105) and Prandtl
(ranging from 0.1 to 100) numbers. It has been found that
the mean Nusselt numberNu increases with increasing
Rayleigh number butNu is found to be smaller in Bing-
ham fluids than in Newtonian fluids for the same nominal

values of Rayleigh and Prandtl numbers due to stronger
flow resistance in Bingham fluids. Moreover,Nu mono-
tonically decreases with increasing Bingham number ir-
respective of the boundary condition. Bingham fluids are
shown to exhibit a nonmonotonic Pr dependence onNu
and a detailed physical explanation has been provided
for this behavior. Although variation ofNu in response
to changes in Rayleigh, Prandtl, and Bingham numbers
remains qualitatively similar for both CWT and CWHF
boundary conditions,Nu for the CWHF boundary con-
dition assumes smaller values than in the CWT config-
uration for large values of Rayleigh number for a given
set of values of Prandtl and Bingham numbers. Detailed
scaling analysis has been carried out to explain the differ-
ences in the heat transfer behavior between the CWT and
CWHF boundary conditions. Guided by this scaling anal-
ysis, correlations of the mean Nusselt numberNu have
been proposed for natural convection of Bingham fluids
in square enclosures with differentially heated horizontal
walls for both CWT and CWHF boundary conditions. It
has been shown that the proposed correlations satisfacto-
rily capture the variation ofNu in response to the changes
in Rayleigh, Prandtl, and Bingham numbers for the cases
considered here. It is worth noting that thermal conduc-
tivity, specific heat, plastic viscosity, and yield stress are
considered to be independent of temperature in this analy-
sis and the effects of the aforementioned temperature de-
pendence will be investigated in future analyses by the
present authors.
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