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Natural convection of Bingham fluids in square enclosures with differentially heated horizontal walls has been numeri-
cally analyzed for both constant wall temperature (CWT) and constant wall heat flux (CWHF) boundary conditions for
different values of Bingham number Bn (i.e., nondimensional yield stress) for nominal Rayleigh and Prandt] numbers
ranging from 10° to 10° and from 0.1 to 100, respectively. A semi-implicit pressure-based algorithm is used to solve the
steady-state governing equations in the context of the finite-volume methodology in two dimensions. It has been found
that the mean Nusselt number Nu increases with increasing Rayleigh number, but Nu is found to be smaller in Bingham
fluids than in Newtonian fluids (for the same nominal values of Rayleigh and Prandt] numbers) due to augmented flow
resistance in Bingham fluids. Moreover, Nu monotonically decreases with increasing Bingham number irrespective of
the boundary condition. Bingham fluids exhibit nonmonotonic Prandtl number Pr dependence on Nu and a detailed
physical explanation has been provided for this behavior. Although variation of Nu in response to changes in Rayleigh,
Prandtl, and Bingham numbers remains qualitatively similar for both CWT and CWHF boundary conditions, Nu for
the CWHF boundary condition for high values of Rayleigh number is found to be smaller than the value obtained for
the corresponding CWT configuration for a given set of values of Prandtl and Bingham numbers. The physical reasons
for the weaker convective effects in the CWHF boundary condition than in the CWT boundary condition, especially for
high values of Rayleigh number, have been explained through a detailed scaling analysis. The scaling relations are used
to propose correlations for Nu for both CWT and CWHF boundary conditions and the correlations are shown to capture
Nu satisfactorily for the range of Rayleigh, Prandtl, and Bingham numbers considered in this analysis.

KEY WORDS: natural convection, Bingham fluid, yield stress, Rayleigh number, Prandt] number, Nusselt
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1. INTRODUCTION convection within rectangular enclosures based on differ-
ent boundary conditions. One of the most important vari-
Natural convection in rectangular enclosures is one aifits of natural convection in rectangular enclosures is the
the most extensively analyzed configurations in the heainfiguration where the horizontal walls are differenyiall
transfer literature [e.g., de Vahl Davis (1983); Ostradteated through the bottom wall and the vertical walls are
(1988)]. This configuration is of fundamental importandeept adiabatic. This configuration is commonly referred
because of its application in electronic cooling, meteordb as the Rayleigh—Bénard (RB) configuration and the
ogy, solar collectors, and food preservation and heatipgesent study will mainly focus on this configuration for
Several possible configurations are possible for natubalth constant wall temperature (CWT) and constant wall
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heat flux (CWHF) boundary conditions for the differen- 2. To explain the differences in heat transfer rate of
tially heated horizontal walls. Bingham fluids for both CWT and CWHF boundary
To date, most analyses on natural convection in rect- conditions in the RB configuration.
angular enclosures have been carried out for Newtoniag
fluids, and an extensive review is contained in Ostrach™
(1988). In comparison, relatively little effort was de-
voted to natural convection of non-Newtonain fluids [e.qg.,
Ozoe and Churchill (1972)]. Yield stress fluid is a spe-
cial type of non-Newtonian fluid which behaves like a

fluid only when a threshold stress (i.e., yield stress) is To meet the above objectives, numerical simulations of
surpassed (Barnes, 1999) and behaves like a solid Rgtural convection of Bingham fluids in square RB con-
low the yield stress. Bingham fluid is a special type @fguration have been carried out for nominal Rayleigh and
yleld stress fluid, which exhibits a linear relation betWGq:ls}'andﬂ numbers ranging from36 1 and from 0.1 to
shear stress and the rate of shear once the yield streg®$, respectively, for both the CWT and CWHF boundary
surpassed (Barnes, 1999). There have been some angyditions. The biviscosity regularization as proposed by
ses of RB configuration involving non-Newtonian fluid®’Donovan and Tanner (1984) is used for the simulations,
[e.g., Park and Ryu (2001); Lamsaadi et al. (2005); Zhagiich effectively replaces the unyielded solidlike region
et al. (2006); Balmforth and Rust (2009)]. However, thgy a region of very high viscosity. The accuracy of the bi-
aforementioned studies mainly concentrated on the crifjscosity assumption has been assessed by carrying out
cal condition under which the fluid flow initiates Withinsome representative simulations using an alternative ex-
the enclosure. However, the heat transfer within the gfbnential function-based regularization by Papanasiasio
closure remains purely conduction driven in the absena®g7) and the agreement has been found to be excellent
of fluid flow within the enclosure and the fluid flow undern all cases (e_g_, maximum differenceNu remains of
critical condition is unlikely to be strong enough to sigthe order of 2%).

nificantly influence the overall heat transfer within the en- The rest of the paper will be organized as follows. The
closure. This is reflected in the unity value of mean Nugecessary mathematical background relevant to this anal-
selt numbeMNu under critical and subcritical conditionsysis will be provided in the next section. This will be
The present study concentrates on the conditions unfiffowed by a brief description on the numerical imple-
which fluid flow remains strong enough to influence th@entation. Following this, results will be presented and
heat transfer rate significantly and the mean Nusselt nugatbsequently discussed. Finally the main findings will be
berNu remains greater than unity (i.&Nu > 1.0). The symmarized and conclusions will be drawn.

influences of boundary conditions on natural convection

of Bingham fluids in square enclosures with differentiall¥ MATHEMATICAL BACKGROUND

heated horizontal walls are yet to be analyzed in the liter-

ature. This paper aims to address the aforementioned g Bingham model for yield stress fluids can be ex-
in the literature by carrying out numerical simulations ggessed in the following manner (Barnes, 1999):

done previously by the present authors for square enclo- .

sures subjected to differentially heated vertical siddswval y=0 for t<v,, == (IH'Ty/Y)l for t>7, (1)
(Turan et al., 2010, 2011). The physics of natural co
vection in enclosures with differentially heated horizﬂntOf the rate of strain tensaf, T is the stress tensot, is

walls is fundamentally different from natural convectiori1 ield is the so-called plastic vi itv of th
in enclosures with differentially heated vertical side hwall 1€ yie s_tressu IS t € so-called p ast|c_V|scc_)3|ty of the
Ided fluid, andr andy are the second invariants of the

[which was analyzed earlier by Turan et al. (2010, 201 . :
and this will be discussed in a more detailed mannerJH €5 and the rate of strain tensors in a pure shear flow,
which are expressed as

the Results and Discussion section of this paper. In tﬁ%pectwely,
respect, the main objectives of this analysis are as follows T=z: 2/2]1/2; v = [l . l/z]l/z 2)

To propose correlations fodu for natural convec-
tion of Bingham fluids in square enclosures for both
CWT and CWHF boundary conditions as a function
of nominal Rayleigh, Bingham, and Prandtl num-
bers.

i/i/'herey = (Ou;/0z; + Ou;/0x;) are the components

1. To analyze natural convection of Bingham fluids i@’Donovan and Tanner (1984) proposed the biviscosity
RB configurations for both CWT and CWHF boundmodel to mimic the stress-shear rate characteristics for a
ary conditions using numerical simulations. Bingham fluid as
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T=Hyieldy for v <7, /u; (Racwr, Bnewr, Pr) (Nu = fo (Racwrr, Bnownr,
N _[ Ntyiera] for s 3) Pr)) for the CWT (CWHF) boundary condition, where
1= Ty THY ~ Ty/ Hyield Y > Ty/Hyield the nominal Rayleigh, Bingham, and Prandtl numbers are

iven by (Turan et al., 2010, 2011
wheret, is the yield stress tensqu,;eiq is the yield vis- gv y (Tu )

cosity,:andp is the plastic viscosity. This model replaces Racwr = pgp(Ty — To) L3 /ux = GrowrPr;

the solid material by a fluid of high viscosity and it was g _ L4 /kuo — Gr Pr 5a
suggested by O’Donovan and Tanner (1984) that a value qcwnr = pgBal’/kn cwre (>2)
of pyiela €qual tol000p mimics the true Bingham model

in a satisfactory manner. In the present study the bivis-gp ;. — t,L/ugB(Te — Te)L

cosity model is predominantly used but in order to assess
the sensitivity of the simulations on the choice of regular- Blewrr = Ty/uy/gBg/k, and Pr=puc,/k  (Sb)

ization, a limited number of simulations have also beer]1
- o ere Gewr = p°gB(Tuw — To)L?/w? (Grownr =
carried out based on the regularization proposed by pag[SqL‘*/kug) is the Grashof number in the CWT

panastasiou (1987): (CWHF) configurationl’y and7T¢ are the hot and cold
(4) wall temperatures in the CWT configuratigris the wall
heat flux,c, is the specific heat, aridis the thermal con-
§luctivity. The local heat transfer coefficiehtis defined

T =1y [1 —exp(—my)] + 1y

wheremis the stress growth exponent which has the
mensions of time. The regularization given by Eq. (4) alés
transforms the “unyielded” region to a zone of high vis- _
cosity. The maximum difference between the mean Nus- he= =0T /0y)ws X 1/ (Twan = Tret)| ©)
selt number obtained from the biviscosity and Papanasfgere the subscriptwf” refers to the condition of the
siou regularizations remains of the same order as the tyiid in contact with the wall Twan is the wall temper-
cal experimental and numerical uncertaintie®%—3%). atyre, andT,.¢ is the appropriate reference temperature,
It is worth noting that biviscosity and exponential regghich can be taken to be the cold wall(hot wall) tem-
ularizations by O’Donovan and Tanner (1984) and Pgerature for the hot (cold) wall, respectively. The Bing-
panastasiou (1987) respectively approximate the strgiiyy number represents the ratio of yield stress to vis-
rate dependences of shear stress for Bingham fluids @gfs stresses. In Bingham fluid flows the viscosity varies
the unyielded zone is modeled by zones of high viscosiitoughout the flow and an effective viscosity expressed
in bot.h regulgnzaﬂons,_albgt in two dlff_erent manners. g, o — 1,/ + 1 might be more representative of the
the bi-viscosity regularization the relation between shegscous stress within the flow than the constant plastic vis-
stress and strain rate is discontinuous[see Eq. (3)]. In c@@sity . Therefore the Rayleigh, Prandtl, and Bingham
trast, the strain rate dependence of shear stress is cont{iiimbers could have been defined more appropriately if
ous according to the regularization proposed by Papan@gf- was used instead qf. However,y is expected to
tasiou (1987) [see Eqg. (4)]. Both regularizations give th@ow |ocal variations in the flow domain so using a single
same expression of stress tensor (e Ty + W;) for - characteristic value in the definitions of the nondimen-
the fully yielded region. It is true that theawoicew_,field sional numbers may not yield any additional benefit in
may have some impact on the results in the biviscositgmparison to the definitions given by Egs. (5a) and (6).
regularization but it was suggested by O’'Donovan amathe present study the effects of Rayleigh, Bingham, and
Tanner (1984) that a value of;clq > 10%p mimics the Prandtl numbers on the Nusselt number are investigated
true Bingham model in a satisfactory manner. A sensitigystematically and suitable correlations proposed. How-
ity analysis has been carried out to assess the sensitfvitgweer, it is worth noting that in the present study the plastic
the simulations on the choice pf;c1q. It has been found viscosity pand yield stresa, are taken to be indepen-
that the maximum difference in mean Nusselt number ident of temperature for the sake of simplicity and also due
mains about 0.5% whepyicq is altered from10%p to  to the experimental evidence that the yield stress remains
104 approximately independent of temperature and the plastic
Using Buckingham’s pi theorem it is possible to showiscosity is only a weakly decreasing function of temper-
that the Nusselt number Ne= hL/k for a square en- ature for a well-known yield stress model system (“Car-
closure of dimensior. can be expressed as: Ndg f; bopol”) in the temperature rangé0-90°C (Peixinho et
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al., 2008). However, such temperature dependence willdzene order as thermal energy (Gebhart, 1962), which can
substance dependent although the data available are weryealized whep L,et/c, > 1 where L, is an ap-
scant. Given this paucity of data, this analysis is aim@dopriate length scale. However, Gebhart (1962) demon-
at fundamental understanding of the influences of CWtrated thag 3 /c, remains extremely small for most com-
and CWHF boundary conditions on natural convection ofon fluids ¢10°-10° m™) and thus requires an ex-
Bingham fluids in square enclosures with differentiallyemely large length scalk,.; for which viscous dissipa-
heated horizontal walls, and as a first attempt the tetion starts to affect heat and momentum transport (Geb-
perature dependences of thermophysical properties (ehgrt, 1962). As this analysis does not attempt to address
k, cp, 1, andt, ) are not accounted for in the current anaextremely large scale applications, the effects of viscous
ysis. Similar assumptions have been made in several pissipation could be neglected here without much loss
vious studies on natural convection involving both Nevef generality following previous studies (de Vahl Davis,
tonian and Bingham fluids (de Vahl Davis, 1983; Bejai983; Bejan, 1984; Ostrach, 1988; Zhang et al., 2006;
1984; Ostrach, 1988; Zhang et al., 2006; \ola et al., 200&)la et al., 2003; Vikhansky, 2009, 2010; Turan et al.,
Vikhansky, 2009; 2010; Turan et al., 2010, 2011). Mor010, 2011).
over, temperature dependence of thermophysical quantidn the biviscosity approximation to the Bingham
ties does not change the essential physics of the probksedel, the ratio of the yield viscosityi(;c1q4) to the plas-
so the convection pattern is unlikely to be altered by tlig viscosity () was taken to be 0 In order to as-
temperature dependence of thermophysical propertiessess the sensitivity of the value f;c1a, the simula-
tions have been carried out for bothicq = 10%p and
3. NUMERICAL IMPLEMENTATION Wyicld = 10*u, and the quantitative agreement between
the results are found to be satisfactory for all cases (i.e.,
For the present study steady-state flow of an incompregsaximum deviation ifNu = j;JL Nudz, /L is of the or-
ible Bingham fluid is considered. The governing equger of 0.5%). Given this agreement, only the results cor-
tions for incompressible fluids under steady state take ﬁé%ponding tquyiia = 10%w are presented in this paper
following form: as a greater magnitude pficla provides a more accurate
description of Bingham fluid flow in the context of bivis-
cosity regularization.
A finite-volume code is used to solve the coupled gov-
Momentum transport equationsi; (Ow; /0 ;) errllir:jgﬁequati_ons: In thizf;amer\]/vo:jlfl,cfa §econd-orderé:en-
_ ‘ o - . tral differencing is used for the diffusive terms and a
= —OP/0xi + pgBOi (T = 17) + iy [dz; - (7b) second-order up-wind scheme is used for the convective
terms. Coupling of the pressure and velocity is achieved
Energy conservation equatiopc,u, (01 /0x;) using the well-known SIMPLE (semi-implicit method for
= k(0T /0x;01;) (7c) Pressure-linked equations) algorithm (Patankar, 1980).
The convergence criteria were set to 1@or all the rela-
whereT* is the reference temperature for evaluating thiwe (scaled) residuals.
buoyancy termpgbd;2 3(T—T*) in the momentum transport The simulation domain is shown schematically in
equations which is taken to be the cold wall temperkig. 1 where the two horizontal walls of a square en-
ture T¢ and the temperature at the center of the domailosure are kept at different temperatures with the lower
Teen for CWT and CWHF boundary conditions, respeavall kept at higher temperatur@ {; > T.). The verti-
tively. The stress tensor is evaluated using either Eq. (2 walls are considered to be adiabatic in nature. Both
(bi-viscosity approach) or Eq. (4) (Papanastasiou regulaelocity components (i.eu; andu,) are identically zero
ization). The viscous dissipation effects are neglecteddn each boundary because of the no-slip condition and
the current analysis following several previous studies anpenetrability of rigid boundaries. The temperatures for
natural convection of both Newtonian and Bingham fluid®ld and hot horizontal walls are specified (iFEX; = 0)
(de Vahl Davis, 1983; Bejan, 1984; Ostrach, 1988; ZhargT y and T(x; = L) = T¢). The temperature boundary
et al., 2006; Vola et al., 2003; Vikhansky, 2009, 2010; Teonditions for the vertical insulated boundaries are given
ran et al., 2010, 2011). The viscous dissipation effects &ned7T /0x; = 0 atx; = 0 andz, = L.
expected to play a key role in natural convection under the The grid independence of the results has been estab-
condition where kinetic energy of the fluid becomes of thished based on a careful analysis of four different nonuni-

Mass conservation equatiofiu,; /Ox; = 0 (7a)

Computational Thermal Sciences



Boundary Condition Effects on Natural Convection of Bingha 81

I/t1=0,1/t2=0 u1:0,u2:O

4/ A

\ Iy
u =0 u =0 : u =0 uy =0
u =0 u =0 I u;=0 u =0
g 1 L 8
o, l a_, Gt ar_,
X2 ox; ox I Ox ox
I
A
X1 : _*_
q

\ "N\
u= 0, M2=0

(a) (b)

FIG. 1. Schematic diagram of the simulation domg(a) constant wall heat flux angh) constant wall temperature.

=0, u, =0

form meshes M1 (2020), M2 (40x40), M3 (80x80), than this value £ 0.25%). Based on these uncertainties
and M4 (160<160), and their details are provided in Tathe simulations were conducted on mesh M3 which pro-
ble 1. For some representative simulations [Newtonigited a reasonable computational efficiency.

(Bnewr = 0 and Bewpnyr = 0) and Browr = The yield stress simulations have been conducted for
Bnewnr = 0.25 for Racywr = Racwrr = 10° and Pr Bingham numbers Bn ranging from 0 to Bn. where

= 10] the numerical uncertainty is quantified here usirgn,,.. is the Bingham number at which the mean Nus-
Richardson’s extrapolation theory (Roache, 1997). Fosalt numbemMu approaches unity (i.eNu = 1.0) and
primitive variabled the Richardson’s extrapolation valughe solution essentially becomes the steady-state pure-
is given bydy—o = ¢1 + (d2 — $1)/(r? — 1), whered; conduction result.

is obtained based on fine grid ad is the solution based

on next level of coarse grid,is the ratio between coarset. RESULTS AND DISCUSSION

to fine grid spacings, andis the theoretical order of ac-
curacy. In this analysis the apparent orgewas taken
to be 2 as a second-order central differencing is used fMe variations of nondimensional temperature for both
the diffusive terms and a second-order up-wind scheme3@/T and CWHF boundary conditions (i.@cwr =
used for the convective terms. The numerical uncertaiz — 7, ) /(Ty — Tc) andOcw i p = (T — Teen)k/qL)

ties for the mean Nusselt numbu and the maximum and nondimensional horizontal velocity componght=
nondimensional horizontal velocit(..x) magnitude on 4, 1,/ « along the vertical midplane are shown in Fig. 2 for
the vertical midplane of the enclosure are presented in Fth Newtonian and a representative Bingham fluid case
ble 2. As seen in Table 2, the maximum numerical uncgfe., Bn.y,+ = Bnew i = 0.25). The variations of the
tainty between meshes remains at most 4.7 %fQtx  vertical velocity component are not explicitly shown be-
in all cases. The uncertaintyNLl is Considel’ab|y Sma"ercause the magnitudes Qﬁ and Us remain of the same

4.1 Effects of Rayleigh Number

TABLE 1:Nondimensional minimum cell distancé {,;, c.ii/L) and grid expan-
sion ratio ¢) values

Grid M1 M2 M3 M4
20x20 40x40 80x80 160x 160
(Amincen/l) 4.1325<1073 1.8534x107% 8.7848<10* 4.3001x107*
r 1.5137 1.2303 1.1092 1.0532
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TABLE 2: Numerical uncertainty for mean Nusselt number and maximandimensional horizontal
velocity component on the vertical midplane for CWHF bouydandition at Raywy i = 1x10° and
Pr =10 for Newtonian and Bingham (B iz = 0.25) fluids

Nu Unnax
M2 M3 M4 M2 M3 M4
Newtonian fluid ¢ 3.3742 3.3795 3.3816 42.9983 43.4817 43.6733
et 3.3823 43.7370

€t (%) 0.2395 0.0828 0.0207 1.6893 0.5841 0.1460

Bingham fluid (Bn = 0.25) 0) 3.0236 3.0255 3.0276 28.5689 29.5763 29.8815
et 3.0283 29.9830

€.t (%) 0.1552 0.0924 0.0231 4.7171 1.3572 0.3393

order in square enclosures as governed by the contingiéyn also be substantiated from Fig. 2 which showsthat
relation (i.e.,u1/L ~ ug/L). It is evident from Fig. 2 assumes a smaller magnitude in the CWHF case than in
that the magnitude df’ and the nonlinearity of the tem-the CWT case for the same numerical values of Rayleigh
perature variation with the vertical direction increasghwinumber for both Newtonian and Bingham fluids. How-
increasing Rayleigh number for both CWT and CWHeEver, the flow resistance in Bingham fluids is greater than
boundary conditions. Equating order of magnitudes bewtonian fluids and this is reflected in the smaller mag-
inertial and buoyancy terms of the momentum equatioitude of U in the Bingham fluid than in the Newtonian
yieldsd?/L ~ gB AT whered is a characteristic velocity fluid for the same nominal value of Rayleigh number,
scale andAT is the temperature difference between thghich can also be confirmed from Fig. 2. The magni-
horizontal walls, which is taken to scale wigh;, /k for tude ofU represents the strength of advection within the
the CWHF boundary condition as wall heat flgscales enclosure and thus the variation of nondimensional tem-
asq ~ kAT /b, In the case of the CWT boundary conperature becomes increasingly nonlinear with increasing
dition AT remains exactly equal td@’y — T¢). This sug- Rayleigh number for both Newtonian and Bingham fluids.
gests that/ scales in the following manner for the CWTThe pure-conduction solution yields a linear variation of

and CWHF boundary conditions: nondimensional temperature between the horizontal walls
and the extent of the nonlinearity of temperature distribu-

U~SL/x~/gBATLXL/x tion in the vertical direction depends on the strength of

~ v/RacwrPr (for CWT) (8a) thermal advection. The strong thermal gradients are con-

fined to the thermal boundary layers adjacent to the walls
under the conditions in which advective transport plays a
Un~dL/ox~\/gBgdunL/kXL/ox key role.
~ v/Racw nrPr®um/L) (for CWHF) (8b)  For small values of Rayleigh number the heat trans-
fer within the enclosure takes place purely due to ther-
Equations (8a) and (8b) indicate thatis expected to in- mal conduction and under that condition the temper-
crease with increasing Rayleigh number for both Newture difference between the horizontal walls for the
tonian and Bingham fluids which is consistent with th€ WHF boundary condition becomeST.ona = ¢L/k
observations from Fig. 2. Moreover, it can be seen froamd this becomes exactly equal 6, — T¢) for the
Egs. (8a) and (8b) thaf is expected to assume a small&€WT boundary condition with the same numerical val-
value in the case of the CWHF boundary condition thanires of Rayleigh number as the definitions ofRar and
the CWT boundary condition for the same numerical vélRacw y are equivalent to each other under the pure
ues of Rawr and Rawgr asd, < L for the regime conduction-driven heat transfer. The temperature differ-
of convection where boundary-layer transport plays a kegice between the horizontal wallsT" scales as\T' ~
role. The aforementioned difference in the behaviotof ¢8,,/k ~ ¢L/k(d:,/L) which suggests that the magni-
between the CWT and CWHF boundary conditions foude of0cyw ur scales a®cwur ~ ATk/qL ~ b4,/ L
a given set of values of Rayleigh and Prandtl numbesbereas the magnitude 6+ remains of the order of
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Variations of nondimensional temperatufewr (Bcwmr) and horizontal velocity component

Ucwr(Uewrr) along the vertical midplane (i.e., alorgL = 0.5) for different values of Rayleigh numberKRar
(Racw ) at Pr = 10:(a) Newtonian fluid,(b) Bingham fluid (Browr = Bnew gr = 0.25).

unity (i.e., the maximum magnitude &wr is equal induce a weaker buoyancy force than that in the CWT
to 0.5) as the temperature difference between the hadse, which is reflected in the smaller magnitudé&/ah
zontal walls remains unchanged in the case of the C\tile CWHF boundary condition than in the CWT bound-
boundary condition. It can be seen from Fig. 2 that tlaey condition.
Figure 2 shows that the magnitude of the thermal gra-
Ocwr for the same numerical value of nominal RayleigbientdT /dx+ in the case of the CWT boundary condition
number under the conditions in which thermal advectidgmcreases with increasing Ba-r for both Newtonian and
has a significant influence on thermal transport within tiBngham fluids as the thermal boundary-layer thickness
enclosure. The smaller values Af" in the CWHF case decreases with strengthening of advective transport. The

maximum value oBcw g remains smaller than that of

Volume 4, Number 1, 2012



Turan, Poole, & Chakraborty

behavior of the thermal boundary-layer thickness in rela-/ Racw g r <6th>5/2 Bnewnr (2Sth/L)1/2
Y= \T) "7

tion to the nominal Rayleigh number can be illustrated b

L Racwwr, PrL,Bnowrr)

equating the order of magnitudes of the inertial and vis- 1

cous terms of the momentum conservation equation in the

vertical direction (Turan et al., 2010, 2011):

p02/L ~ (1, + ud/5)/5 (©)

(13)

/2 (Racwur, PrBnewnr)

where 6/6th f4(RaCWHF,BnCWHF,Pr) with
fa(Racwwr,Bnewmr,Pr) being a function of
Rayleigh, Prandtl, and Bingham numbers, which is

whered is the hydrodynamic boundary-layer thicknessxpected to increase with increasing Prandtl num-

Equation (9) yields the following scaling df for the
CWT boundary condition (Turan et al., 2010, 2011):

5~0.5(tyL/p9?)+0.5(L/pd%) /T2 +4pD3u/L (10)

Usingd ~ /gB(Tw — Tc)L in Eq. (10) yields the fol-

lowing estimation ob:

5~ /e Bnowr n 1
JIBATL | 2 2

(11)

R 1/2
X\/Bngm 44 ( 3?:”)

Thus, the thermal boundary-layer thicknégs for CWT
boundary condition scales in the following manner:

LPr/2
f3(Racwr, BN, PHRa

Bnewr 1 2 Racwr\"/?
—4/B 4 12
5 + 5 \/ Newr + Pr (12)

O¢p, ~ min lL,

where the thermal boundary-layer thicknésg is re-
lated to the hydrodynamic boundary-layer thickn&ss
the following mannerd /8, = f3(Racwr, Bnewr, Pr)

ber in the case of the CWHF boundary condition.
Equation (13) is not solvable analytically but this
equation can be used to obtain qualitative information
regarding the expected behaviors. Under the condi-
tion Bnowwr(8:/L)Y?/fs < 1/f7, one obtains
S ~ L(Pr/Racwur)/°f;"® whereas the condi-
tion given by Brow s (8 /L)' 2/ fs > 1/f} leads
to &;1 L(Pr/RaCWHF)1/4Bnlc/5VHF 0%, These
relations suggest thdt;, is expected to decrease with
increasing Raw i r, Whereas,;, is expected to increase
with increasing Bawgr for a given value of nomi-
nal value of Rawgr also in the case of the CWHF
boundary condition. The decrease (increase),jnwith
increasing Raw nr (Bnow nr) gives rise to a decrease
(an increase) in the magnitude 6twpr ~ Oum/L
with rising Rayleigh (Bingham) number in the CWHF
boundary condition, which can also be confirmed from
inspection of Fig. 2.

The contours of nondimensional temperatbegy 1 7
and stream functionl? = 1/« (with { being the di-
mensional stream function) for By g = 0 (i.e., New-
tonian) and Bawgr = 0.25 for different values of
Racw g are shown in Fig. 3. The corresponding vari-
ations for the CWT boundary condition are not explic-
itly shown here because of their qualitative similarities t
the CWHF variations. It is evident from Fig. 3 that the
isotherms remain parallel to the horizontal boundaries for
small value of Raw gr where the heat transfer is pri-

~

with f3(Racwr, Bnowr, Pr) as a function of Rayleigh, marily conduction driven. As the circulation patterns re-
Prandtl, and Bingham numbers, which is expected fiwain qualitatively similar at a given Rayleigh humber,
increase with increasing Prandtl number. According tbe isotherms for both Baygr = 0 (i.e., Newtonian)
Eq. (12) 6, is expected to decrease with increasirand Brow g = 0.25 cases look similar. The “unyielded”
Racwr in the case of both Newtonian and Bingham flieones according to the criterion proposed by Mitsoulis
ids, as observed in Fig. 2. Equation (12) further indicat¢&007) (i.e., zones of fluid wherg/ti;T12 < T,) are
that &, for Bingham fluid is likely to be thicker thanalso shown in gray shading in Fig. 3 for Bn = 0.25. It
that in the case of Newtonian fluids for the same nomirialworth noting that these zones are not truly “unyielded”
values of Raw and Pr, which can also be confirmeds indicated by Mitsoulis and Zisis (2001). In the results
from the®cow o distribution withzs /L (see Fig. 2). Us- shown in Fig. 3 a biviscosity regularization is employed
ing 9 ~ /gBqdiL/k in Eq. (9) yields the following to account for the Bingham fluid flow so there will always
expression for the CWHF boundary condition (Turan bt extremely slowly moving fluid flow within these es-
al., 2011): sentially very high viscosity regions, which Mitsoulis and
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Zisis (2001) termed as the “apparently unyielded regiotace strengthen with increasing Bingham number. The
(AUR),” It is important to indicate that the small islandslecrease iV magnitude leads to weakening of thermal
of AUR alter with increasing values @fyic1q (Shown in advection which gives rise to the decrease in the extent of
Fig. 3 for pyicla = 10*w) while the mean Nusselt num-nonlinearity of the temperature variation along the verti-
ber and the stream function are independentafiq for cal direction. Figure 4 shows that the thermal boundary-
Hyield = 103w, which is consistent with earlier findingdayer thicknessd,;, increases with increasing Bingham
by Beverly and Tanner (1989) for a different flow configaumber for both CWT and CWHF boundary conditions as
uration. For a given value of, the AURs, which satisfy indicated by Egs. (12) and (13). The increase in the ther-
V/Ti2Ti2 < Ty, are expected to shrink with an increase imal boundary-layer thickness,, with increasing Bing-
Lyield- AS the AURs are dependent on the precise choisem number leads to reduced nonlinearity of the temper-
of 1yic1a and the value oNu remains independent of theature variation along the vertical direction. The decrease
shape and size of AURS fQtyiciq > 103y, their effects in nonlinearity of temperature variation along the veitica
on heat transfer are not important and thus will not lerection with increasing Bingham number indicates that
discussed in this paper. As;.ia = 10*n captures the true conduction plays an increasingly important role in ther-
strain rate dependence of shear stress of a Bingham fiuial transport with increasing Bingham number. For large
more faithfully, it has been decided to uggeiq = 10*u values of Bingham number the heat transfer takes place
for all the simulations. purely due to thermal conduction because under that con-
The isotherms become increasingly curved with thtition fluid flow either stops or becomes weak enough
strengthening of advection with increasing Ragr, to impart considerable influence on the thermal trans-
which can be confirmed from the rising magnitude gfort within the enclosure. The conduction-driven thermal
¥ with increasing Rawgr. A comparison betweentransport is reflected in the linear variation of tempera-
Bnow e =0 and By e = 0.25 cases reveals that théure in the vertical direction. As the thermal boundary-
isotherms for Bingham fluid are less curved than the Nelayer thickness,,;, increases with increasing B r r,
tonian case for the same nominal value of Rayleigh nuthe magnitude 0Bcw yr ~ 8:4/L also increases with
ber. This behavior is a consequence of weaker advectioereasing Bingham number in the case of the CWHF
strength in Bingham fluids than in the Newtonian casmundary condition. For large values of Bingham number
for the same nominal value of Ra 7, which can be the heat transfer takes place due to conduction and under
confirmed from the smaller magnitude ®fin the Bing- pure conduction the temperature distributions for both the
ham case than in the Newtonian case for a given valG&/T and CWHF boundary conditions become equal to
of Racwyr. Due to increased flow resistance in Bingeach other. Thus the distributions@fw+ and®cw u
ham fluids the effects of convection are felt at higher vapproach each other with increasing Bingham number for
ues of Raw g than that in Newtonian fluids. For ex-a given numerical value of Rayleigh number. Comparing
ample, convection becomes strong enough to make flosvs under nominal Rayleigh number (i.e.,&Rar and
isotherms curved for Newtonian fluids at Rayr =5 Racwgmr) equal to 1x 10* and 1x 10° indicates that
x 10, whereas at the same value of nominal Rayleigiivective transport strengthens with increasing Rayleigh
number the isotherms remain parallel to horizontal waltsimber which is reflected in the higher magnitudd/of
for Bnew gr = 0.25, indicating conduction-driven theras suggested by Egs. (8a) and (8b). The above behavior
mal transport. can be substantiated from the contour®efy g and
U at Rawpgr = 10* and 10 in Fig. 5 for Pr = 10 for
the CWHF boundary condition. The corresponding vari-
ations for the CWT boundary condition are not explicitly
The variations of nondimensional horizontal velocitghown here because of their qualitative similarities to the
component/ and temperature (i.80cwr and0cwrr) CWHF boundary condition. It can be seen from Fig. 5
along the vertical midplane for different Bingham nunthat the magnitude o¥ decreases with increasing Bing-
bers for nominal Rayleigh numbers (i.e., Rar and ham number due to weakening of fluid motion and this
Racwrr) equal to 1x 10* and 1 x 10° are shown is reflected in the increased size of AURs for higher val-
in Fig. 4. It is evident from Fig. 4 that the magniues of By gr. At high values of Baw g the whole
tude of U decreases with increasing Bingham numbenclosure becomes an AUR and under this condition the
for a given Rayleigh number for both CWT and CWHHuid flow becomes too weak to influence the heat transfer
boundary conditions because the effects of flow resead thus the heat transfer takes place solely due to thermal

4.2 Effects of Bingham Number
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3.6E-10
2.4E-10.

04— —-0.4

Ocwir (Bnayur =0) Ocwir (Bnayur =0.25) (e) ¥ (Bnewnr = 0) ¥ (Bnewgr = 0.25)

FIG. 3: Contours of nondimensional temperat@egy g =, Stream function, and unyielded zones (gray) for Newto-
nian fluid and Bingham fluid at Pr = 10 for Ba -z = (a) 1x10%, (b) 5x10%, (c) 1x10%, (d) 5x10%, and(e) 1x10°.
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FIG. 4. Variations of nondimensional temperatewr (Ocwrr) and horizontal velocity componettcy
(Ucwrr) along the vertical midplane (i.e., alorg/L = 0.5) for Bingham fluids at Pr = 10 for Rgyr(Racw ur) =
(@)1 x 10%, (b) 1 x 10°.

conduction. This pure-conduction limit is reflected in theumber at which the temperature profile becomes linear
parallel horizontal isotherms in Fig. 5. The isotherms balong the vertical direction (i.e., fluid flow is too weak

come increasingly curved with decreasingBng » due to influence thermal transport) increases with increasing
to strengthening of advective transport. Due to strongeayleigh number for both CWT and CWHF boundary

advective transport at higher values of Rayleigh nuroenditions. It has been noted earlier that the effects of ad-
ber, the flow can resist the effects of yield stress up vection are stronger for the CWT boundary condition than
a higher value of Bingham number. Thus the Binghaimthe case of the CWHF boundary condition and thus the
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BnCWHF =0.3 B”lCWHF =1.5

@) (b)

FIG. 5: Contours of nondimensional temperaté¢gy g », Stream function?, and unyielded zones (gray) for Bing-
ham fluids for the CWHF boundary condition at Pr = 10 forRay» = (a) 1 x 10%, (b) 1 x 10°.

fluid flow within the enclosure resists the effects of adeen from Fig. 4 that it is possible to have nonlinear tem-
ditional flow resistance due to yield stress up to a highgerature distribution along the vertical direction for the
value of Bingham number in case of the CWT bounda@GWT boundary condition for a Bingham number&nr
condition than in the CWHF boundary condition. It can bfer which temperature distribution is linear along the
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direction for the CWHF boundary condition for the sam: 55

. . . o CWHF
numerical value of Bingham number By g . This ten- sol|==— Ea1scwnp)
dency is particularly prevalent for high values of Rayleig S e lsewn
number (e.g., Rawr = Racwpr = 10°) where the ef- (| & Gromenn
fects of advection are prominent. o (/’”

®

4.3 Behavior of Mean Nusselt Number Nu S o I g ———————- g-——————- j/
The effects of Pr on the mean Nusselt numbler for S SRR e e F==r=—th ‘Lk
Newtonian fluids (i.e., Bawr = 0 and Brwpyr = o Racyy =5x10%
0) are shown in Fig. 6, which showNu slightly in- Tk [T Racyr)
creases between Pr = 0.1 and 1.0 but the chang&in  2° R mERiii
is marginal between Pr = 1.0 and 1000. The heat trar | hd -
fer characteristics in the present configuration depel
on the relative strengths of inertial, viscous, and buo' " 1 " 00

ancy forces. For small values of Pr the thermal boundar
layer thickness remains much greater than the hydroay-

namic boundary-layer thickness and thus the inertial apfls. 6: Variation of mean Nusselt numbétu with

buoyancy forces principally govern the transport behaRayleigh Rayw - (Racw 1) and Prandtl Pr numbers for
ior. In contrast, for large values of Pr the hydrodynamigewtonian fluids.

boundary-layer thickness remains much greater than the
thermal boundary-layer thickness, thus the transportchar
acteristics are primarily governed by buoyancy and vis-
cous forces [see the scaling analysis by Bejan (1984}e comparable in both CWT and CWHF boundary condi-
For Pr< 1, an increase in Pr decreases the thermins. For large values of Rayleigh number the difference
boundary-layer thickness in comparison to the hydrodfytz,«[\,\,ee,«.(|:gaOWT/|:>r)1/4 and(RaoWHp/Pr)1/5 widens
namic boundary-layer thickness, which acts to increaggd that is reflected in the value N being smaller in
the heat flux which is reflected in the increasing Nussghe CWHE case than that in the CWT case for the same
number. In the case of B¢ 1, a change in Prandtl numbehumerical values of Rayleigh and Prandtl numbers as can
modifies the relative balance between viscous and bugg-observed from Fig. 6. It has been demonstrated earlier
ancy forces so the heat transport in the thermal boundgit the strength of advection is stronger in the CWT case
layer gets only marginally affected. This modification ighan in the CWHF case for the same values of Rayleigh
reflected in the weak Prandtl number dependendsiwof and Prandtl numbers [see Egs. (8a) and (8b)] and this is
for large values of Pr (i.e., Pe 1) for both CWT and reflected in the value dfiu being greater in the CWT case
CWHF boundary conditions in Fig. 6. than in the CWHF case. The simulation results for the
The heat transfer coefficieht can be scaled a8 = CWT boundary condition are also in agreement with pre-
q/AT ~ kAT /AT8y, ~ k/8:, and thus the mean Nus-ious findings (Corcione, 2003; Quertatani et al., 2008).
selt numbeNu can be taken to scale &8I = hi/k ~ In the present study a correlation for the mean Nusselt
L/8:y (Turanetal., 2010, 2011). Using Egs. (12) and (13imberNu for Newtonian fluids is proposed in the fol-
one can obtain the followinju in Newtonian fluids (i.e., lowing manner for 10 > Racyr > 5 x 10° (10° >
Bnowr = 0 and Brewgr = 0): Racwur > 5 x 10°):

Nu ~ (Racwr/Pn'/* f3(Racwr, P (CWT) and

Pr

NU ~ (Racwrr/PN'/° f28(Racwur, Pr) 1+ Pr
x (CWHF 14 — Pr "
( ) (1) U= aRe&y <—1 T Pr) (15a)

Equation (14) suggests thidti values are likely to be dif-

ferent between the CWT and CWHF configurations fdre values of the coefficiengs m, andn were determined
the same numerical value of Rg-r and Raw gr. For by an iterative minimization function of a commercial
small values of Rayr and Raw i the values oNu software package which provides the following values:
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a=0.178 m = 0.269 n = 0.02 for CWT, stress needs to be created to induce fluid motion and thus
a=0.289 m = 0.214 n = 0.017 for CWHF (15b) thermal convection within the enclosure. This increased
flow resistance at higher values of Bingham number gives
For the parameters given by Eg. (15b), the correlatioise to weaker thermal convection in the enclosure, which
given by Eq. (15a) satisfactorily captures the variation &f reflected in the small values &fu for high values of
Nu in the range given by & 10° < Racw < 10°, 5 x Bingham number. It can be seen from Fig. 7 tihat
10° < Racwmr < 107, and 0.1< Pr < 10° for Newto- at a given set of values of Rayleigh and Prandtl num-
nian fluids. The correlation given by Eq. (15a) is in godders decreases with increasing Bingham number before
agreement with the scaling estimates given by Eq. (Idrppping toNu = 1.0 at a Bingham number Bp, such
and the small difference in the exponent of Rayleigh nuitihat Nu remains equal to unity for Bayr > BNpax
ber between Eqgs. (14) and (15a) are not unexpected gi8ncwrr > Bnmax). It has been discussed earlier that
the simplicity of the scaling relations. &, increases with increasing Bingham number for both
The variation ofNu with Bingham number for dif- CWT and CWHF boundary conditions [see Egs. (12) and
ferent values of Rayleigh number at Pr = 10 are shoh3)], which leads to a decrease Nu with increasing
in Fig. 7 (the cases corresponding todRar = 10° and Bingham number aBlu scales adlu ~ L /5., (Turan et
Racwmr = 10° are not shown because the mean Nugk, 2010, 2011). Figure 7 shows that the mean Nusselt
selt numberNu remains equal to unity for all fluids).numberNu increases with increasing Rayleigh number
The results shown in Fig. 7 are primarily obtained frofior a given set of values of Prandtl and Bingham num-
the biviscosity regularization but the use of the Papan&srs for Briowr < BNmax (Bnew rr < BNmax), Which
tasiou model (1987) was found to give virtually identiis also consistent with the scaling estimates gf [see
cal results. The variation in Nusselt number between th@s. (12) and (13)] suggesting a decreasg;inwith in-
regularization methods for nominally identical condisorcreasing Rayleigh number for a given set of values of
was usually smaller than 0.1% and small differences Hingham and Prandtl numbers. An increase in Rayleigh
came apparent only at large Bingham numbers, when thember gives rise to strengthening of convection for a
Nusselt number approaches unity (still less than 3% given set of values of Prandtl and Bingham numbers
Nu). Thus these differences are, for all practical purposésf, Bncwr < BNpmax (Bnewrmr < Bhmax) and this
unimportant for the following discussion. Figure 7 indiis reflected in the high values ®fu for high values of
cates thalNu decreases with increasing Bingham nunRécwr (Racwr ). Stronger fluid flow at higher values
ber. An increase in Bingham number implies that highef Rayleigh number can resist the flow resistance up to
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FIG. 7: The interrelation between the mean Nusselt nundheand Bingham number Biy(Bncw i) at Pr=10
for Racwr(Racwrr) = (@) 1 x 10* and(b) 1 x 10°.
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greater values of Bingham number which gives rise to &lsingd ~ /g (Ty — Tc)L andd ~ /gBqdn L/k in
increase in Bp, With increasing Rayleigh number for ahe CWT and CWHF configurations, respectively, yields

given value of Prandtl number for both CWT and CWHEhe following scaling oft.g /1t
boundary conditions. It is worth noting that the variation
of the mean Nusselt number with Bingham number in the /1~ [Bnowr f3(Racwr, Bnowr, PH)(8:/L) + 1]
case of natural convection of Bingham fluids in rectangi@for CWT) (17a)
lar enclosures with differentially heated vertical sidégva
(Turan et al., 2010, 2011) is quantitatively and qualita-
tively different from the results presented here. Met /1~ [Bnew nr fa(Recw i r, Bnow i r, P)
As Nu for Newtonian fluids in the case of the CWHF x (84,/L)/? + 1] (for CWHF) (17b)
boundary condition remains smaller than that in the case.
of the CWT boundary condition, the Nusselt number {{Sing Eas. (17&) and (17b) for the CWT and CWHF
Bingham fluids also assumes a smaller value in the cas@8fndary conditions, respectively, gives rise to
the CWHF boundary condition than in the CWT bound- _ 3
ary condition for the same numerical values of Rayleigh,Raeﬂr =pgB(Tu—Te)L”/uenax~Raowr /[Bhowr
Bingham, and Prandtl numbers (see Fig. 7). Moreover, X f3(Racwr, Bnowr, P1)(8:n/L) +1]
Fig. 7 indicates that Bp., in the CWHF case assumes (for CWT) (18a)
smaller values than in the case of the CWT boundary
condition. This is unlike the natural convection of Bing-
ham fluids in enclosures with differentially heated verti- Ref = pgBaL" /kuerroc ~ Racw e/ [Bewrr
cal side walls where Bp., for both CWT and CWHF X f4(Racewmr,Bnoewnr, Pr)(ém/L)l/2 +1]
boundary conditions were found to be the same (Turan  (for CWHF) (18b)
et al., 2011). In differentially heated sidewalls fluid flow
within the enclosure initiates as soon as a finite tempefsssumingfs; and f4 attain similar values for a given set
ture difference is induced between the vertical walls (Bef numerical values of nominal Rayleigh, Bingham, and
jan, 1984). Thus the fluid flow progressively weaker®randtl numbers, it can be inferred from Egs. (18a) and
and ceases to influence the heat transfer rate by ad\y@8&b) that Rag in the CWHF boundary condition is likely
tion as the Bingham number increases in the differentiatty assume a smaller value than in the CWT configuration
heated side wall configuration, which is reflected in far a given set of numerical values of nominal Rayleigh,
linear temperature distribution between vertical sidésvaBingham, and Prandtl numbers becadge/ L < 1 and
(Turan et al., 2011). Under that situation, the temperatuyg is greater in the CWHF case than inthe CWT case due
distributions for the CWT and CWHF boundary condito a smaller value dflu in the CWHF configuration. This
tions approach the pure-conduction solution and the defdicates that Rg decays more rapidly with increasing
initions of nominal Rayleigh and Bingham numbers b&ingham number in the CWHF case than in the CWT case
come equivalent to each other (i.e.,/Rar = Racwyr for a given set of values of nominal Rayleigh and Prandtl
and Brewr = Bnewgr), which in turn leads to the numbers. Once Ra becomes smaller than R&, con-
same numerical value of Bp, for differentially heated duction becomes the primary mechanism of heat transfer
vertical side walls (Turan et al., 2011). By contrast, thehich is reflected in the unity value of mean Nusselt num-
Rayleigh number in the RB configuration must excedxr Nu. This situation is encountered at a smaller value
a critical limit Ra.,;; before any fluid flow is induced of nominal Bingham number in the CWHF case than in
within the enclosure and any noticeable influence is félite CWT case for high values of nominal Rayleigh num-
on the mean Nusselt numblu (Bejan, 1984). The ac-ber (e.g., Rawr = Racwyr = 10° in Fig. 7) where
tual Rayleigh number in Bingham fluids is a local quarsy;, < L for small values of Bingham number. This leads
tity and can assume very different values in comparisonttoa smaller value of Bp. (i.e., the Bingham number be-
its nominal value because the effective viscosity in Bingpw which Nu assumes a value greater than unity) in the
ham fluid changes from one point to another. An effect@VHF case than in the CWT case for high values of nom-
viscosity . can be estimated as inal Rayleigh number. For small values of Rayleigh num-
berd;,/L ~ O(1), and thus the values of Raremain
comparable for both CWT and CWHF boundary condi-
Mest ~ K[Ty0/ud + 1] (16) tions, which give rise to comparable values of,Bn for
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the CWT and CWHF boundary conditions at small valug@sis inference is an artifact of how the nominal Rayleigh

of nominal Rayleigh number (i.e., Ry = Racwgyr number is defined in the present analysis [see Eg. (5a)].

=10'in Fig. 7). Following Egs. (17) and (18) it is possible to estimate an
The variations ofNu with Bingham number for dif- effective Grashof number Gy in the following manner:

ferent Prandtl numbers at Bar = Racwmr = 10 B

are shown in Fig. 8, which show that unlike Newto- Cleff = p*9B(Tn — To)L*/ugs ~ RacwrPr

nian fluids the mean Nusselt numbéu decreases with  /[Bnewr f3(Racwr, Bnewr, Pr) (8, /L) + 1]2

increasing Pr for large values of Bingham number for (for cwT) (19a)

both CWT and CWHF boundary conditions. However, for

small values of Bingham number the mean Nusselt num- ) P .

berNu increases with increasing Pr for very small valuddler = p~gBqL"/kugg ~ Racw mrPr

of Bingham number, which is consistent with the behay{Bne v i+ f4(Racw m 7, Bhow e, P8, /L)Y 2 +1)?

ior obtained for Newtonian fluids (see Fig. 6). %)reove(for CWHF) (19b)

the value of Bingham number Bp, for which Nu ap-

proaches unity decreases with increasing Pr. The saltieas been shows,;, /L increases with increasing Bing-

qualitative behavior is also observed for other values ledm number for both CWT and CWHF boundary condi-

Rayleigh number. This variation clearly demonstrates thans, asNu ~ L /5, decreases with increasing Bingham

Bny.x depends on Pr for a given value of Rayleigh nunmumber (see Fig. 7). Moreove and f, are expected

ber, which can be confirmed from inspection of Tablet8 increase with increasing Pr which suggests that an in-

where the values of BR, are estimated here by carryingrease in Prandtl number leads to a large drop ux @

out simulations and identifying the Bingham number &rge values of Bingham number. This suggests that the

which Nu obtains a value of 1.01 (i.eNu = 1.01). effects of the buoyancy force become increasingly weak
From the foregoing it can be concluded that the effedtscomparison to the viscous effects with increasing Pr for

of Pr on natural convection at a given value of Rayleidharge values of nominal Bingham number when the nom-

number are not fully independent of Bingham numbeénal Rayleigh number is held constant. This weakened
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FIG. 8: Variations of mean Nusselt numhidu with Prandtl number for Bingham fluids at R@r(Racwrr) = 10*
for (a) CWT and(b) CWHF boundary conditions.
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TABLE 3:Values of Bn, . at different values of Rayleigh and Prandtl numbers

Racwt (Racwhr) 5x10° 1x10% 5x 10 1x10°

Pr CWT CWHF CWT CWHF CWT CWHF CWT CWHF

0.1 0.83 1.19 2.56 2.62 10.86 8.85 17.06  13.32

1 0.27 0.38 0.82 0.83 3.44 2.80 5.40 4.22

10 0.09 0.12 0.26 0.27 1.09 0.89 1.71 1.34

100 0.03 0.04 0.09 0.09 0.35 0.28 0.54 0.40
buoyancy force relative to the viscous force gives rise to.a_ ACWTRalc/VQVT
weakening of advective transport which acts to decreal =1+ /2]
Nu with increasing Pr. This effect is relatively weak for Bnowr + l\/BnQ ) <R30WT)
small values of nominal Bingham number where an in- 2 2 ow Pr
crease in Pr acts to reduce the thermal boundary-layer b
thickness which in turn acts to increase the heat trans- Bnowr \ 21
fer rate as discussed earlier in the context of Newtonian - ( BNyax ) (1)

fluids. In contrast, for large values of nominal Bingham

number, the effects of thinning of the thermal boundaryych thalimp, ey Bay., NU= 1.0 andAcyr, by and
layer thickness with increasing Pr are superseded by the,,.. are input parameters in the correlation. The pa-
reduction of convective transport strength due to a smali@ieterAy, 7 needs to be chosen in such a manner that
value of Ggg. This reduction gives rise to a decreaseq. (21) becomes identically equal to Eq. (15a) when
in Nu with increasing values of Pr (for a given value ahe Bingham number goes to zero (i.e., Newtonian fluid).

nominal Rayleigh number) when the nominal Bingharmhis gives rise to the following expression fagy 7
number attains large values. Eventually this gives rise

to the beginning of the conduction-dominated regime for A — 0.178 R:019 Pr 02

smaller values of BR. for higher Pr values as shown in owr ’ wT (14 Pp%%?

Fig. 8. As a consequence of this, Bn. depends on both 1

Rayleigh and Prandtl numbers, and.Br increases with - W (22)
increasing Rayleigh number, whereas it decreases with in- wT

creasing Pr (see Table 3). The simulation data indicate that the paramdigrde-

Using Eq. (12) the mean Nusselt numb&r ~ L/, pends on both Ray - and Pr and it has been found that

for Bingham fluids in the CWT boundary condition ighe variation ob, with Racy7 and Pr can be accurately
expressed with the help of the following power law:

given by
by = 0.025Re 4 PrP-09 (23)
1/2
NU ~ max {1’ RacWTfB(R?%WTa Bn, Pr) It has been discussed earlier that,Bn is dependent on
Pr Racwr and Pr and here the value of Bp. is estimated
by empirically fitting the simulation results:
- BNpax = [0.0019 In(Racwr) — 0.0128]
Bnewr 1 2 Racwr\ /2 . .
X |—5 3 BnCWT+4( or ) (20) x Ry -Pr 059 (for CWT) (24)

The predictions of the correlation given by Egs. (21)-(24)

are compared witiNu obtained from numerical simula-
Following the above scaling estimate a correlation ftions in Fig. 9, which shows that the correlation satisfac-
Nu can be proposed for the CWT boundary condirily predictsNu in the ranges given by 04 Pr < 100
tion: and 10 < Racwr < 10°.
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FIG. 9: Comparison of the prediction of the correlation (—) giventxys. (21)—(24) and simulation results for
CWT case.
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FIG. 10: Comparison of the prediction of the correlation (—) giventxys. (25) and (26) and simulation resubt$ (
for CWHF case.
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It is difficult to obtain a scaling estimate 6f;, from values of Rayleigh and Prandtl numbers due to stronger
Eq. (13), thus a correlation fddu is proposed here in theflow resistance in Bingham fluids. Moreové&u mono-
following manner for the CWHF boundary condition contonically decreases with increasing Bingham number ir-
sidering the qualitative similarities in the Bingham nunrespective of the boundary condition. Bingham fluids are
ber dependence of mean Nusselt number between C#Abwn to exhibit a nonmonotonic Pr dependenceNon

and CWHF boundary conditions: and a detailed physical explanation has been provided
12 for this behgvior. Although variation dﬂ_u in response
NU—1+ AcwurRady gr to chgnges in R_ayle|gr_1, Erandtl, and Bingham numbers
BN 1 R 1/2] remains qualitatively similar for both CWT and CWHF
M+—\/BnQCWT+4 (M) boundary conditionsNu for the CWHF boundary con-
2 2 Pr dition assumes smaller values than in the CWT config-
0,757 b2 uration for large values of Rayleigh number for a given
y [1 _ (BnCWHF) ] (25) set of values of Prandtl and Bingham numbers. Detailed
BNiax scaling analysis has been carried out to explain the differ-
ences in the heat transfer behavior between the CWT and
where CWHF boundary conditions. Guided by this scaling anal-
pr0-213 ysis, correlations of the mean Nusselt numbler have
Acwur = 0.205 R&G s ———o05= been proposed for natural convection of Bingham fluids
(14 Pr) in square enclosures with differentially heated horizbnta
_ 1 (26a) walls for both CWT and CWHF boundary conditions. It
RsE ;PP has been shown that the proposed correlations satisfacto-
rily capture the variation dflu in response to the changes
1019 0540 in Rayleigh, Prandtl, and Bingham numbers for the cases
by = 0.0818R&y i Pt (26b) considered here. It is worth noting that thermal conduc-
tivity, specific heat, plastic viscosity, and yield stress a
Bnyax = [0.04121In(Racw gr) — 0.3201] considered to be independent of temperature in this analy-
x R&287 Pr 050 (for CWHF) (26¢) sis and the effects of the aforementioned temperature de-

pendence will be investigated in future analyses by the
The above expression ofcy - ensures that Eq. (25)present authors.
becomes exactly equal to Eq. (15a) for Newtonian fluids
(i.e., Brew g r = 0). Moreoverlimp, ¢ ywup—Bnm., NU =
1.0 according to Eqg. (25). The predictions of the correlflile-EFERENCES
tion given by Egs. (25) and (26) are compared vl Balmforth, N. J. and Rust, A. C., Weakly nonlinear viscopitas
obtained from numerical simulations in Fig. 10, which convection,J. Non-Newtonian Fluid Mech., vol. 158, pp. 36—
shows that the correlation satisfactorily preditsin the 45, 2009.
ranges given by 0. Pr< 100 and 10 < Racwryr < Barnes, H. A, The yield stress—a review ertvto pet'—
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