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a b s t r a c t

In this study, two-dimensional steady-state simulations of laminar natural convection in square enclo-
sures with differentially heated horizontal walls with the bottom wall at higher temperature have been
conducted for yield-stress fluids obeying the Bingham model. Heat and momentum transport are inves-
tigated for nominal values of Rayleigh number (Ra) in the range 103–105 and a Prandtl number (Pr) range
of 0.1–100. The mean Nusselt number Nu is found to increase with increasing values of Rayleigh number
for both Newtonian and Bingham fluids. However, weaker convective transport in Bingham fluids leads to
smaller values of Nu than that obtained in the case of Newtonian fluids with the same nominal value of
Rayleigh number Ra. The mean Nusselt number Nu decreases with increasing Bingham number in the
case of yield stress fluids, and, for large values of Bingham number Bn, the value rapidly approaches to
unity (Nu ¼ 1:0) as thermal conduction dominates the heat transfer. However, this variation in the pres-
ent configuration is found to be markedly different from the corresponding variation of Nu with Bn for the
same nominal values of Ra and Pr in the differentially-heated vertical sidewall configuration. The effects
of Prandtl number have also been investigated in detail and physical explanations are provided for the
observed behaviour. Guided by a detailed scaling analysis, new correlations are proposed for the mean
Nusselt number Nu for both Newtonian and Bingham fluids which are demonstrated to satisfactorily
capture the correct qualitative and quantitative behaviours of Nu for the range of Ra, Pr and Bn considered
in this analysis.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Natural convection of fluid contained in rectangular enclosures
is one of the most widely studied configurations in thermal fluids
problems due, in part, to its relevance in solar collectors, electronic
cooling, energy storage and management and food preservation and
heating. In addition to these applications it is a prototypical
geometry which allows many fundamental issues to be studied in
a well-controlled way. Ostrach [1] provides an extensive review
of such flows. Different configurations for natural convection in
rectangular enclosures are possible depending on the exact bound-
ary conditions at the enclosure walls. One of the most important
configurations is where the horizontal walls are differentially
heated with the bottom wall kept at higher temperature and the
vertical walls insulated, which is referred to as the Rayleigh-Bénard
configuration in the present analysis. It is worth highlighting here
that the classical Rayleigh-Bénard configuration is considered to
be long and wide in the horizontal direction to avoid the influences
of vertical walls [2,3]. However, natural convection in finite-sized

enclosures with differentially-heated horizontal walls with the
bottom wall at higher temperature is often loosely referred to as
‘‘Rayleigh-Bénard’’ in the heat transfer literature (see Refs. [4–8])
and we choose to adopt this convention in the current manuscript
for the sake of a concise description of the boundary condition in
the subsequent discussion. The analysis presented in this paper
focuses on the Rayleigh-Bénard (RB) configuration and thus the
discussion in the remainder of this introduction, unless otherwise
stated, will be confined to this particular boundary condition.

To date, most numerical studies of RB natural convection in rect-
angular enclosures have been carried out for Newtonian fluids
(Refs. [1,4,6,8] and references therein provides a detailed overview
of this literature) and comparatively limited effort has been ex-
pended on the study of RB natural convection of non-Newtonian
fluids in rectangular enclosures. Here the natural convection of
so-called yield stress materials in RB configuration has been consid-
ered (inelastic shear-thinning fluids have been investigated in Refs.
[9,10] and viscoelastic fluids in Refs. [5,7]). Yield stress materials
behave like a solid material below some critical (yield) stress but
are fluid-like beyond this stress. In particular, this analysis primar-
ily concentrates on the fluid flow effects on the heat-transfer char-
acteristics i.e. once the material has yielded. Although a number of
studies have probed the effects of yield stress on the hydrodynamic
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stability of RB natural convection [2], and investigated weakly non-
linear convection [11], the effects of yield stress for Ra well above
the critical conditions have hitherto not been investigated. The
aim of this paper is therefore to investigate the effects of yield
stress, Rayleigh and Prandtl numbers on the mean Nusselt number
in the Rayleigh-Bénard configuration using two regularizations of
the well-known Bingham model. The Bingham model is the sim-
plest model for yield stress fluids, as it assumes a linear strain rate
dependence of shear stress for the yielded fluid (i.e. beyond the
yield stress). Recently, Vola et al. [12] and Turan et al. [13–15] have
used the Bingham model to numerically investigate the related
problem of natural convection and heat transfer characteristics of
yield stress fluids in rectangular enclosures with differentially-
heated vertical sidewalls. However, convection initiates as soon as
a temperature difference is induced in the differentially heated ver-
tical sidewall configuration, whereas convection starts only when a
critical Rayleigh number is surpassed in the RB configuration. Thus
the behaviour of Nu in response to the weakening of convection due
to increasing yield stress in Bingham fluids in the RB configuration
is expected to be qualitatively and quantitatively different from the
differentially-heated vertical sidewall configuration with the same
nominal values of Rayleigh and Prandtl numbers.

In the present study the effects of yield stress on heat and
momentum transport for a square enclosure in the Rayleigh-Bénard
configuration has been analysed for a large range of Rayleigh num-
bers (103 < Ra < 105) and Prandtl numbers (0.1 < Pr < 100). The wide
range of Prandtl numbers considered in this study enables the
development of a robust correlation for the mean Nusselt number.
Although real yield stress fluids are unlikely to have such low Pr val-
ues, such as Pr = 0.1, which is characteristic of molten metals, they
are included here for the sake of completeness.

2. Models for yield stress and non-dimensional groups

The Bingham model for yield stress fluids can be expressed in
the following manner [16]:

_c ¼ 0 for s 6 sy; ð1Þ

s ¼ lþ sy

_c

� �
_c for s > sy; ð2Þ

where _cij ¼ @ui=@xj þ @uj=@xi are the components of the rate of
strain tensor _c; s is the stress tensor, sy is the yield stress, l is
the so-called plastic viscosity of the yielded fluid, s and _c are the
second invariants of the stress and the rate of strain tensors in a
pure shear flow respectively, which are expressed as:

s ¼ 1
2
s : s

� �1=2

; ð3Þ

_c ¼ 1
2

_c : _c
� �1=2

: ð4Þ

O’Donovan and Tanner [17] proposed the bi-viscosity model to mi-
mic the stress-shear rate characteristics for a Bingham fluid as:

s ¼ lyield
_c for _c 6

sy

lyield
; ð5Þ

s ¼ sy

_c
� l

lyield

sy

_c

" #
_cþ l _c for _c >

sy

lyield
; ð6Þ

where lyield is yield viscosity, and l the plastic viscosity. This model
replaces the solid material by a fluid of high viscosity and it was
suggested by O’Donovan and Tanner [17] that a value of lyield equal
to 1000 l mimics the true Bingham model in a satisfactory manner
(with the proviso, of course, that below the yield stress the material
still flows albeit very slowly). In the present study the bi-viscosity
model is predominantly used but in order to assess the sensitivity
of the simulations to the regularisation, a limited number of simu-
lations have also been carried out based on the regularisation pro-
posed by Papanastasiou [18]:

s ¼ sy

_c
ð1� e�m _cÞ þ l

� �
_c; ð7Þ

where m is the stress growth exponent which has the dimension of
time. The regularisation given by Eq. (7) also transforms the
‘‘unyielded’’ region to a zone of high viscosity but removes the

Nomenclature

B Oldroyd number (–)
Bn Bingham number (–)
cp specific heat at constant pressure (J/kg K)
e relative error (–)
Fs factor of safety (–)
g gravitational acceleration (m/s2)
h heat transfer coefficient (W/m2 K)
k thermal conductivity (W/mK)
L length and height of the enclosure (m)
Pr Prandtl number (–)
q heat flux (W/m2)
Ra Rayleigh number (–)
T temperature (K)
ui ith velocity component (m/s)
U, V dimensionless horizontal (U = u1L/a) and vertical veloc-

ity (V = u2L/a) (–)
# characteristic velocity (m/s)
xi coordinate in ith direction (m)
a thermal diffusivity (m2/s)
b coefficient of thermal expansion (1/K)
d, dth velocity and thermal boundary layer thickness (m)
h dimensionless temperature (h = (T � TC)/(TH � TC)) (–)
l plastic viscosity (Ns/m2)
lyield yield viscosity (Ns/m2)

q density (kg/m3)
sy yield stress (N/m2)
u general primitive variable
W stream function (m2/s)

Subscripts
cv control volume
C cold wall
ext extrapolated value
eff effective value
H hot wall
max maximum value
ref reference value
wall wall value

Superscript
cond value according to pure conduction solution

Special characters
DT difference between hot and cold wall temperature

(=(TH � TC)) (K)
Dmin,cell minimum cell distance (m)
r grid expansion ratio (–)
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discontinuity inherent in the bi-viscosity approach. Previous studies
[13–15] have shown that the maximum difference between the
mean Nusselt numbers predicted by the bi-viscosity and Papanasta-
siou regularisations for a given set of values of nominal Rayleigh,
Prandtl and Bingham numbers remains of the order of typical exper-
imental and numerical uncertainties (�2–3%).

In the present study, the heat transfer rate characteristics of
Bingham fluids in a square enclosure (of dimension L) is compared
with the heat transfer rate obtained in the case of Newtonian fluid
flows with the same nominal Rayleigh number Ra. The Rayleigh
number Ra denotes the ratio of the strengths of thermal transport
due to buoyancy force to that due to thermal conduction, which is
defined in the present study in the following manner:

Ra ¼ q2cpgbDTL3

l:k
¼ GrPr; ð8Þ

where Gr is the Grashof number and Pr is the Prandtl number,
which are defined as:

Gr ¼ q2gbDTL3

l2 and Pr ¼ lcp

k
: ð9Þ

The Grashof number provides the ratio of the strengths of buoy-
ancy and viscous forces while the Prandtl number depicts the ratio
of momentum diffusion to thermal diffusion. Alternatively, the
Prandtl number can be taken to represent the ratios of viscous
boundary layer to thermal boundary-layer thicknesses. These def-
initions are referred to as ‘‘nominal’’ values as they contain the
constant plastic viscosity l. Using Buckingham’s pi theorem it is
possible to show that for natural convection of Bingham fluids in
a square enclosure: Nu = f1(Ra, Pr, Bn) where the Nusselt number
Nu and Bingham number Bn are given by:

Nu ¼ h � L
k

and Bn ¼ sy

l

ffiffiffiffiffiffiffiffiffiffiffiffi
L

gbDT

s
; ð10Þ

where Nu represents the ratio of heat transfer rate by convection to
that by conduction in the fluid in question and the heat transfer
coefficient h is defined as:

h ¼ �k
@T
@x2

����
wf

� 1
ðTwall � Tref Þ

�����
�����; ð11Þ

where subscript ‘wf’ refers to the condition of the fluid in contact
with the wall, Twall is the wall temperature and Tref is the appropri-
ate reference temperature, which can be taken to be TC (TH) for the
hot (cold) wall respectively. The Bingham number Bn represents the
ratio of yield stress to viscous stresses. In Eq. (10) the viscous stress
ð¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p
=LÞ is estimated based on velocity and length scales

given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p
and L respectively. In Bingham fluid flows the vis-

cosity varies throughout the flow and an effective viscosity
expressed as: leff ¼ sy= _cþ l might be more representative of the
viscous stress within the flow than the constant plastic viscosity l.
Therefore the Rayleigh, Prandtl and Bingham numbers could have
been defined more appropriately if leff was used instead of l. How-
ever _c is expected to show local variations in the flow domain so
using a single characteristic value in the definitions of the non-
dimensional numbers may not yield any additional benefit in com-
parison to the definitions given by Eqs. (8)–(10). It is also worth not-
ing that Bn is not the same as the Bingham number ‘‘B’’ defined in
Ref. [2] and elsewhere – which perhaps should be called an Oldroyd
number. The Oldroyd number of Ref. [2] represents the ratio of yield
force to buoyancy force and is related to Bn used here through the
following expression: B ¼ Bn=Gr1=2 ¼ Bn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
:

In the present study the effects of Ra, Bn and Pr on Nu are
investigated systematically and suitable correlations proposed.
However, it is worth noting that in the present study the plastic

viscosity l and yield stress sy are taken to be independent of tem-
perature both for the sake of simplicity and also due to the experi-
mental evidence that the yield stress remains approximately
independent of temperature and the plastic viscosity is only a
weakly decreasing function of temperature for a well-known yield
stress system (‘‘Carbopol’’) in the temperature range 0–90 �C [19].

3. Numerical method

A finite-volume code is used to solve the coupled conservation
equations of mass, momentum and energy. In this framework, a
second-order central differencing is used for the diffusive terms
and a second-order up-wind scheme for the convective terms. Cou-
pling of the pressure and velocity is achieved using the well-known
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
algorithm [20]. The convergence criteria were set to 10�9 for all
the relative (scaled) residuals. The nominal Rayleigh numbers for
most of the simulations considered here remains well above the
critical limit, and under this condition the numerical round-off er-
rors are sufficiently large to serve as initial perturbations responsi-
ble for fluid motion in the enclosure. The same numerical
procedure was used in several previous studies [4–8]. Moreover,
the sensitivity of the steady-state solution to the initial condition
was carefully analysed for both Newtonian and Bingham cases by
obtaining the same numerical results using different initial condi-
tions (i.e. using either the conduction solution or a higher Ra sim-
ulation in which convection is already significant). In addition, no
hysteresis in terms of Bingham number was observed in the simu-
lations involving yield stress fluids.

3.1. Governing equations

For the present study steady-state flow of an incompressible
Bingham fluid is considered. The conservation equations for mass,
momentum and energy for incompressible fluids under steady-
state take the following form:

Mass conservation equation

@ui

@xi
¼ 0 ð12Þ

Momentum conservation equations

quj
@ui

@xj
¼ � @P

@xi
þ qgdi2bðT � TCÞ þ

@sij

@xj
ð13Þ

Energy conservation equation

qujcp
@T
@xj
¼ @

@xj
k
@T
@xj

� �
ð14Þ

where the cold wall temperature TC is taken to be the reference
temperature for evaluating the buoyancy term qgdi2b(T � TC) in
the momentum conservation equations following several previous
studies [1–15]. The stress tensor is evaluated using either Eqs. (5)
and (6) (bi-viscosity approach) or Eq. (7) (Papanastasiou
regularization).

In the bi-viscosity approximation to the Bingham model, the
ratio of the yield viscosity (lyield) to the plastic viscosity (l) was
taken to be 104. In order to assess the sensitivity of the value of
lyield, the simulations have been carried out for both lyield = 103l
and lyield = 104l, and the quantitative agreement between the
results are found to be satisfactory for all cases (i.e. maximum
deviation in the mean Nusselt number Nu ¼

R L
0 Nudx1=L is of the

order of 0.5%). Given this agreement, the body of results presented
in this paper are for lyield = 104l: one set of results are also
included for lyield = 105l to highlight the negligible effect.
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3.2. Boundary conditions

The simulation domain is shown schematically in Fig. 1 where
the two horizontal walls of a square enclosure are kept at different
temperatures with the lower wall kept at higher temperature
(TH > TC). The vertical walls are considered to be adiabatic in nat-
ure. Both velocity components (i.e. u1 and u2) are identically zero
on each boundary because of the no-slip condition and impenetra-
bility of rigid boundaries. The temperatures for cold and hot hori-
zontal walls are specified (i.e. T(x2 = 0) = TH and T(x2 = L) = TC). The
temperature boundary conditions for the vertical insulated bound-
aries are given by: o T/ o x1 = 0 at x1 = 0 and x1 = L.

3.3. Grid Independency study

The grid independence of the results has been established based
on a careful analysis of four different non-uniform meshes M1
(20 � 20), M2 (40 � 40), M3 (80 � 80) and M4 (160 � 160) the de-
tails of which are included in Table 1. For some representative sim-
ulations (Newtonian (Bn = 0) and Bn = 0.25 for Ra = 105 and Pr = 10)
the numerical uncertainty is quantified here using Richardson’s
extrapolation theory [21–23]. For a primitive variable u the Rich-
ardson’s extrapolation value is given by: uh=0 = u1 + (u2 � u1)/
(rp � 1) where u1 is obtained based on fine grid and u2 is the solu-
tion based on next level of coarse grid, r is the ratio between coarse
to fine grid spacings and p is the theoretical order of accuracy. In
this analysis the apparent order p was taken to be 2. The numerical
uncertainties for the mean Nusselt number Nu and the maximum

non-dimensional horizontal velocity (Umax) magnitude on the ver-
tical mid-plane of the enclosure are presented in Table 2. As seen in
Table 2, the maximum numerical uncertainty between meshes re-
mains at most 2% for Umax in all cases. The uncertainty in Nu is con-
siderably smaller than this value (<0.25%).

In addition to this grid-dependency study, mean Nusselt num-
bers obtained from the present numerical simulations for
Ra = 103–106 at Pr = 0.71 for Newtonian fluids are compared with
previous results [8] from the literature in Table 3. It is evident from
Table 3 that the present results agree extremely well with previous
numerical results by Quertatani et al. [8].The yield stress simula-
tions have been conducted for Bingham numbers Bn ranging from
0 to Bnmax where Bnmax is the Bingham number at which the mean
Nusselt number approaches to unity (i.e. Nu ¼ 1:0) and the solu-
tion is essentially the pure-conduction result.

4. Scaling analysis

A scaling analysis is performed to elucidate the anticipated ef-
fects of Rayleigh number, Prandtl number and Bingham number
on the Nusselt number for yield-stress fluids. The wall heat flux
q can be scaled as:

q � k
DT
dth
� hDT ð15Þ

where the � symbol is used to denote the equality of the order of
magnitudes of the quantities on left and right hand sides of the
equation in question. Eq. (15) gives rise to the following relation:

Nu � h:L
k
� L

dth
or Nu � L

d
f2ðRa; Pr;BnÞ ð16Þ

where the thermal boundary-layer thickness dth is related to the
hydrodynamic boundary-layer thickness d in the following manner:
d/dth � f2(Ra, Pr, Bn) where f2(Ra, Pr, Bn) is a function of Rayleigh,
Prandtl and Bingham numbers (i.e. Ra, Pr and Bn), which is expected
to increase with increasing Prandtl number. In order to estimate the
hydrodynamic boundary-layer thickness d, the equality of the order
of magnitudes of the inertial and viscous forces in the vertical direc-
tion (i.e. x2-direction) is considered:

q
#2

L
� s

d
ð17Þ

TC

g

x2

x1

u1 = 0, u2 = 0

u1= 0, u2 = 0
TH

= 0

u1 = 0
u2 = 0

= 0

u1 = 0
u2 = 0

L

Fig. 1. Schematic diagram of the simulation domain.

Table 1
Non-dimensional minimum cell distance (Dmin,cell /L) and grid expansion ratio (r)
values.

Grid M1
20 � 20

M2
40 � 40

M3
80 � 80

M4
160 � 160

(Dmin,cell/L) 4.1325 � 10�3 1.8534 � 10�3 8.7848 � 10�4 4.3001 � 10�4

r 1.5137 1.2303 1.1092 1.0532

Table 2
Numerical uncertainty for mean Nusselt number and maximum non-dimensional horizontal velocity component on the vertical mid-plane at
Ra = 1 � 105 and Pr = 10 for Newtonian and Bingham (Bn = 0.25) fluids.

Nu Umax

M2 M3 M4 M2 M3 M4

Newtonian fluid / 3.861 3.866 3.869 77.660 78.256 78.438
/ext 3.870 78.499
eext (%) 0.232 0.103 0.025 1.068 0.309 0.077

Bingham fluid (Bn = 0.25) / 3.572 3.573 3.574 61.190 62.126 62.435
/ext 3.5743 62.538
eext (%) 0.065 0.037 0.009 2.155 0.659 0.165

Table 3
Comparison of present simulation results for a Newtonian fluid
with the results by Quertatani et al. [8] for Pr = 0.71.

Ra Present study Quertatani et al. [8]

1 � 103 1.000 1.000
1 � 104 2.154 2.158
1 � 105 3.907 3.910
1 � 106 6.363 6.309
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where # is a characteristic velocity scale. For Bingham fluids the
shear stress s can be estimated as: s � sy + l#/d, which upon substi-
tution in Eq. (17) gives:

q
#2

L
� sy þ l#

d

� �
1
d

ð18Þ

Using Eq. (18) the hydrodynamic boundary-layer thickness can
be estimated as:

d ¼ 1
2

syL

q#2 þ
1
2

L

q#2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

y þ 4q
#3

L
l

s
: ð19Þ

For natural convection the flow is induced by the buoyancy
force and the equality of the order of magnitudes of inertial and
buoyancy forces gives:

#2

L
� gbDT: ð20Þ

This leads to an expression for the characteristic velocity scale:

# �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p
� ðl=qLÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
; ð21Þ

which can be used in Eq. (19) to yield:

d � l=qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p Bn
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ 4

Ra
Pr

� �1=2
s2

4
3
5; ð22Þ

where Ra and Bn are given by Eqs. (8) and (10) respectively. This
scaling gives rise to the following expression for the thermal bound-
ary-layer thickness dth:

dth �min L;
LPr1=2

f2ðRa;Bn;PrÞRa1=2

Bn
2
þ1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ4

Ra
Pr

� �1=2
s2

4
3
5

2
4

3
5: ð23Þ

The above expression accounts for the fact that the thermal
boundary-layer thickness becomes of the order of the enclosure
size L under very high values of Bn when the Bingham fluid acts
essentially as a solid material. Eq. (23) suggests that dth decreases
with increasing Ra, which acts to increase the wall heat flux. Sub-
stitution of Eq. (23) into Eq. (16) yields:

Nu � Max 1:0;
ðRa=PrÞ1=2

Bn
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ 4 Ra

Pr

� 	1=2
q� � f2ðRa; Pr;BnÞ

2
664

3
775: ð24Þ

The scaling predictions provide useful insight into the antici-
pated behaviour of the mean Nusselt number Nu in response to
variations of Ra, Pr and Bn. The analysis suggests that Nu is ex-
pected to decrease with increasing Bn for a given value of Ra
whereas Nu increases with increasing Ra for a given value of Bn.
It is also important to note that the Nusselt number behaviour
for Newtonian fluids can be obtained by setting Bn = 0 in Eq. (24).

5. Results & discussion

5.1. Rayleigh number effects

The variations of non-dimensional temperature h = (T � TC)/
(TH � TC) and horizontal velocity component U = u1L/a along the
vertical mid-plane for different values of nominal Rayleigh number

(a) (b)

x2 / L
0.0 0.2 0.4 0.6 0.8 1.0
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0.2

0.4

0.6

0.8
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5 x 104

1 x 104

5 x 103

1 x 103

Newtonian Fluid Case
Bn = 0

x2 / L
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Bn = 0.25
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-20

0

20

40

60

80

Ra = 1 x 103

5 x 103

1 x 104
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Bingham Fluid Case
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Fig. 2. Variations of non-dimensional temperature h and horizontal velocity component U along the vertical mid-plane (i.e. along x1/L = 0.5) for different Ra values at Pr = 10:
(a) Newtonian fluid, (b) Bingham fluid (Bn = 0.25).
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are shown in Fig. 2 for Newtonian (i.e. Bn = 0) and Bingham (i.e.
Bn = 0.25) fluids at Pr = 10. The distributions of the vertical velocity
component is not shown as the horizontal and vertical velocity
components remain of the same order of magnitude in square
enclosures in order to satisfy the continuity relation (i.e. u1/
L � u2/L). As a consequence of fluid motion the distributions of h
with x2/L become increasingly non-linear with increasing Ra. The
extent of non-linearity of the h distribution increases with
strengthening of convective transport within the enclosure. Such
an effect is confirmed from the distributions of U, which show that
the magnitude of U increases with increasing Rayleigh number.
These trends are consistent with the velocity scaling given by Eq.
(21), which indicates that U increases with increasing Ra for a gi-
ven value of Pr. Comparing the distributions of U for Bn = 0 and
Bn = 0.25 cases reveal that the velocity magnitudes in the Bingham
fluid cases are smaller than in the case of Newtonian fluids. The ef-
fects of flow resistance are stronger in Bingham fluids than in New-
tonian fluids which gives rise to a smaller magnitude of U in the
Bn = 0.25 case than in the Newtonian (i.e. Bn = 0) case. It is clearly
evident from Fig. 2 that heat transfer takes place predominantly
due to thermal conduction for small values of Rayleigh number
(e.g. Ra = 1000) for both Newtonian and Bingham fluids, as the

density change due to temperature variation remains too weak
to induce fluid motion to impart any influence on thermal trans-
port. Under this circumstance, the heat transfer takes place solely
due to thermal conduction, which gives rise to a linear distribution
of h with x2/L for small values of nominal Rayleigh number Ra. The
aforementioned physical descriptions can be verified from the con-
tours of h and non-dimensional stream function W = w/a shown in
Fig. 3. It is clear from Fig. 3 that the effects of convection are felt at
relatively higher Rayleigh number for Bingham fluids than in the
case of Newtonian fluids (see Ra = 5 � 103 cases for example) due
to stronger flow resistance in Bingham fluids. This is also reflected
in the smaller magnitude of W in Bingham fluids than in Newto-
nian fluids (see Fig. 3). For small values of Ra the isotherms remain
parallel to the horizontal walls indicating predominantly conduc-
tion mode of heat transfer. However, the isotherms become curved
with the strengthening of convective transport in the enclosure. As
the circulation pattern remain qualitatively similar at a given Ray-
leigh number, the isotherms for both Newtonian and Bn = 0.25
cases look similar. The ‘‘unyielded’’ zones according to the criterion
proposed by Mitsoulis [24] (i.e. zones of fluid where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12s12
p

6 sy)
are also shown in Fig. 3 for Bn = 0.25. It is worth noting that these
zones aren’t truly ‘‘unyielded’’ as indicated by Mitsoulis and Zisis

(a)

(b)

(c)

(d)

(e)

Newtonian  Fluid              
(Bn = 0)

Bingham Fluid         
(Bn = 0.25)

Newtonian  Fluid      
(Bn = 0)

Bingham Fluid         
(Bn = 0.25)

Fig. 3. Contours of non-dimensional temperature h and stream function W for Newtonian fluid and Bingham fluid (Bn = 0.25) at Pr = 10 for Ra = (a) 1 � 103 , (b) 5 � 103 , (c)
1 � 104 , (d) 5 � 104 and (e) 1 � 105.
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[25]. In the results shown in Fig. 3 a bi-viscosity regularisation is
employed to account for the Bingham fluid flow so there will al-
ways be extremely slowly moving fluid flow within these essen-
tially very high viscosity regions, which Mitsoulis and Zisis [25]
termed as the ‘‘apparently unyielded regions (AUR)’’. It is impor-
tant to indicate that the small islands of AUR alter with increasing
values of lyield (shown in Fig. 3 for lyield = 104l) while the mean
Nusselt number, and the streamfunction are independent of lyield

for lyield P 103l. For a given value of sy the AURs, which satisfyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s12s12
p

6 sy, are expected to shrink with an increase in lyield. As
the AURs are dependent on the precise choice of lyield and the value
of Nu remains independent of the shape and size of AURs for
lyield P 103l, their effects on heat transfer are clearly minimal.

The variation of the mean Nusselt number Nu with Bn for differ-
ent values of Ra at Pr = 10 are shown in Fig. 4 (the cases correspond-
ing to Ra = 103 are not shown because the mean Nusselt number Nu
remains equal to unity for all fluids). The results shown in Fig. 4 are
primarily obtained from the bi-viscosity regularisation but the use
of the exponential form of the Bingham model (due to Papanasta-
siou [18]) was found to give virtually identical results as shown in
Fig. 4c. Fig. 4c also highlights the negligible effect of further increas-
ing the lyield parameter in the bi-viscosity model. The variation in
Nusselt number between the regularisation methods for nominally
identical conditions was usually smaller than 0.1% and small differ-
ences became apparent only at large Bingham numbers, when the
Nusselt number approaches unity, (still less than 3% in Nu). These
differences are, for all practical purposes, unimportant for the
following discussion. Fig. 4 indicates that Nu decreases with

increasing Bn, which is consistent with the scaling estimate given
by Eq. (24). The weaker convection strength in the Bingham fluids
than in the case of Newtonian fluids results in a smaller value of Nu
in Bingham fluids. An increase in Bn implies that higher stress
needs to be created to induce fluid motion and thus thermal con-
vection within the enclosure. This increased flow resistance at
higher values of Bingham number Bn gives rise to weaker thermal
convection in the enclosure, which is reflected in the small values
of Nu for high values of Bn. It can be seen from Fig. 4 that Nu at a
given set of values of Ra and Pr decreases with increasing Bn before
dropping to Nu ¼ 1:0 at a Bingham number Bnmax such that Nu re-
mains equal to unity for Bn P Bnmax. The heat transfer for
Bn P Bnmax takes place due to thermal conduction which is re-
flected in the unity value of mean Nusselt number (i.e. Nu ¼ 1:0),
which can be confirmed from Fig. 5 where the variations of hRMS

and URMS with Bn are presented. The quantity uRMS is the root-
mean-square (rms) value of a primitive variable u with respect
to the pure-conduction solution (i.e. U = 0 and h = x2/L). The quan-

tity uRMS is evaluated as: /RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

cvð/cv � /cond
cv Þ

2DVcv=Vdomain

q
where DVcv is the volume of the control volume in the context of
the finite-volume technique, Vdomain is the domain volume, ucv is
the quantity in question at the centre of the control volume,
ucond

cv is the quantity in question at the centre of the control volume
according to the pure-conduction solution. It is evident from Fig. 5
that both hRMS and URMS decrease with increasing Bn for a given set
of values of Ra and Pr suggesting that the steady state solution
approaches to the steady-state pure-conduction solution with
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increasing Bn. The weakening of convection strength with increas-
ing Bn is also evident from the decrease in URMS with increasing Bn.
A comparison between Figs. 4 and 5 reveals that hRMS and URMS as-
sume negligible values for Bn P Bnmax indicating a purely conduc-
tion-driven thermal transport which is reflected in the unity value
of the mean Nusselt number Nu.

Fig. 4 shows that the mean Nusselt number Nu increases with
increasing Ra for a given set of values of Pr and Bn for Bn < Bnmax,
which is also consistent with the scaling estimates given by Eq.
(24). An increase in Ra gives rise to strengthening of convection
for a given set of values of Pr and Bn for Bn < Bnmax and this is re-
flected in the high values of Nu for high Ra. The strengthening of
fluid motion with increasing Ra can also be confirmed from
Fig. 5, which shows an increase in URMS with increasing Ra for a gi-
ven set of values of Bn and Pr. Stronger fluid flow at higher values
of Rayleigh number can overcome the flow resistance up to greater
values of Bingham number which gives rise to an increase in Bnmax

with increasing Ra for a given value of Pr.

5.2. Bingham number effects

In order to demonstrate the effects of Bingham number on nat-
ural convection of Bingham fluids in square enclosures, the varia-
tions of non-dimensional temperature h and horizontal velocity
component U along the vertical mid-plane for different values of
Bn at Ra = 104 and 105 are shown in Fig. 6 for Pr = 10. It can be seen
from Fig. 6 that the variation of h with x2/L becomes increasingly
linear for increasing Bn as the convective strength diminishes with

increasing Bingham number and a tendency towards the linear
variation of h with x2/L indicates that the relative contribution of
thermal conduction to the overall heat transfer increases with
increasing Bn. The diminishing strength of convection with
increasing Bn can be confirmed from the decreasing magnitudes
of U with increasing Bn. The isotherms are more non-linear at
Ra = 105 than in the Ra = 104 case due to stronger convection at
higher values of Rayleigh number which can further be confirmed
from the higher magnitudes of U in the Ra = 105 case than in the
Ra = 104 case. The above behaviour can be substantiated from the
contours of h and W at Ra = 104 and 105 in Fig. 7 for Pr = 10. It
can be seen from Fig. 7 that the magnitude of W decreases with
increasing Bingham number due to weakening of fluid motion
and this is reflected in the increased size of AURs for higher values
of Bn. At high values of Bn the whole enclosure becomes an AUR
and under this condition the fluid flow becomes too weak to influ-
ence the heat transfer and thus the heat transfer takes place solely
due to thermal conduction. This pure-conduction limit is reflected
in the parallel horizontal isotherms in Fig. 7. The isotherms become
increasingly curved with decreasing Bn due to strengthening of
convective transport.

The strengthening of flow resistance, which gives rise to weak-
ening of convective transport, leads to a concomitant decrease of
Nu with increasing Bn as shown in Fig. 4 as has been observed pre-
viously in the context of differentially heated vertical sidewalls in
square enclosures [13–15]. However, it is worth noting that the
variation of Nu with Bn in rectangular enclosures with differen-
tially-heated vertical sidewalls (see Fig. 12 of Ref. [13] for example)
is both quantitatively and qualitatively different from the variation
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of Nu with Bn in the RB configuration for the same nominal values
of Ra and Pr. In the case of differentially-heated vertical sidewalls
Nu decreases gradually from the Newtonian value (i.e. Bn = 0) with
increasing Bn and eventually settles to unity. In contrast, the vari-
ation of Nu with Bn in Fig. 4 shows a gradual decrease from the
Newtonian value with increasing Bn before exhibiting a rapid drop
of Nu to unity at Bn = Bnmax.

5.3. Prandtl number effects

The effects of Pr on the mean Nusselt number Nu for Newtonian
fluids (i.e. Bn = 0) is shown in Fig. 8, which shows Nu slightly in-
creases between Pr = 0.1 and 1.0 but the change in Nu is marginal
between Pr = 1.0 and 1000. The heat transfer characteristics in the
present configuration depend on the relative strengths of inertial,
viscous and buoyancy forces. For small values of Pr the thermal
boundary-layer thickness remains much greater than the hydrody-
namic boundary-layer thickness and thus the inertial and buoy-
ancy forces principally govern the thermal transport. In contrast,
for large values of Pr the hydrodynamic boundary-layer thickness
remains much greater than the thermal boundary-layer thickness
thus the transport characteristics are primarily governed by buoy-
ancy and viscous forces (see the scaling analysis by Bejan [26]). For
Pr� 1, an increase in Pr decreases the thermal boundary-layer
thickness in comparison to the hydrodynamic boundary-layer
thickness, which acts to increase the heat flux which is reflected
in the increasing Nusselt number. In the case of Pr� 1, a change

in Prandtl number modifies the relative balance between viscous
and buoyancy forces so the heat transport in the thermal boundary
layer gets only marginally affected. This marginal modification is
reflected in the weak Prandtl number dependence of Nu for large
values of Pr (i.e. Pr� 1) observed in Fig. 8. It is also evident from
Fig. 8 that the present numerical results for Newtonian fluids are
in good agreement with previous results [8,27] for Pr = 0.71. In
the present study a correlation for the mean Nusselt number Nu
for Newtonian fluids is proposed in the following manner:

Nu ¼ aRam Pr
1þ Pr

� �n

: ð25iÞ

The values of the coefficients a, m and n were determined by an
iterative minimisation function of a commercial software package
which provides the following values:

a ¼ 0:178; m ¼ 0:269; n ¼ 0:02: ð25iiÞ

For the parameters given by Eq. (25ii), the correlation of Eq. (25i)
satisfactorily captures the variation of Nu with Pr for Newtonian flu-
ids (i.e. a maximum relative error 4.65% with a mean relative error
2.65% for 103

6 Ra 6 105 and 0.1 6 Pr 6 103). It is worth noting that
setting Bn = 0 in Eq. (24) yields a scaling estimate of
Nu � ðRa=PrÞ0:25f2ðRa; PrÞ which is in excellent agreement with the
correlation given by the scaling analysis (i.e. Eq. (25i)). Given the
simplicity of the scaling argument the slight disagreement between
the exponents of Rayleigh number (i.e. 0.269 as opposed to 0.25) is
not surprising.
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The variations of Nu with Bn for different Prandtl numbers at
Ra = 104 are shown in Fig. 9a, which show that unlike Newtonian
fluids the mean Nusselt number Nu decreases with increasing Pr
for large values of Bn. However, the mean Nusselt number Nu in-
creases with increasing Pr for very small values of Bn, which is con-
sistent with the behaviour obtained for Newtonian fluids (see
Fig. 8). Moreover, the value of Bingham number Bnmax for which
Nu approaches to unity decreases with increasing Pr. The same
qualitative behaviour is also observed for other values of Ra. This
variation clearly demonstrates that Bnmax depends on Pr for a given
value of Ra, which can be confirmed from Fig. 9b where the values

of Bnmax are estimated here by carrying out simulations and iden-
tifying the Bingham number at which Nu assumes a value of 1.01
(i.e. Nu ¼ 1:01). As the Nusselt number variation close to Bnmax is
so rapid – see Fig 4d for example where Nu decreases by a factor
of two with a 5% increase in Bingham number – this criteria allows
a very accurate determination of Bnmax (cf. sidewall heating case
results [13–15] where estimating Bnmax is much more difficult).

From the foregoing it can be concluded that the effects of Pr on
natural convection at a given value of Ra are not fully independent
of Bn. This inference is an artefact of how the nominal Ra is defined
in the present analysis (see Eq. (8)). In the case of natural convec-

(a) (b)
Fig. 7. Contours of non-dimensional temperature h and stream function W for Bingham fluids at Pr = 10 for Ra = (a) 1 � 104, (b) 1 � 105.
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tion in Bingham fluids an effective viscosity leff can be estimated
as:

leff ¼ sy= _cþ l; ð26Þ

which can be scaled as:

leff � syd=#þ l: ð27Þ

Using Eq. (22) in Eq. (27) gives rise to:

leff � l Bn
Bnl
2q#L

þ l
2#Lq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ 4

q#L
l

s" #( )
þ l: ð28Þ

Using velocity scale # �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p
gives:

leff =l � Bn
Bn

2Gr1=2 þ
1

2Gr1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ 4Gr1=2

q� �
 �
þ 1: ð29Þ

Based on Eq. (29) an effective Grashof number Greff can be de-
fined as:

Greff ¼
q2gbDTL3

l2
eff

¼ Gr Bn
Bn

2Gr1=2 þ
1

2Gr1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ 4Gr1=2

q� �
 �
þ 1

� ��2

: ð30Þ

The variation of Greff with Pr according to Eq. (30) is shown in
Fig. 10 for different values of Bn, which suggests that the effective
Grashof number decreases with increasing Pr for a given value of
Ra and this reduction in Greff becomes increasingly rapid with
increasing values of Bn. The effects of the buoyancy force become
progressively weak in comparison to the viscous effects with
increasing Pr for large values of Bn when Ra is held constant. This
reduced strength of buoyancy force relative to the viscous force
gives rise to a weakening of convective transport which acts to de-
crease Nu with increasing Pr. This effect is relatively weak for small
values of Bn where an increase in Prandtl number acts to reduce
the thermal boundary-layer thickness which in turn acts to in-
crease the heat-transfer rate as discussed earlier in the context of
Newtonian fluids. By contrast, for large values of Bn the effects of
thinning of the thermal boundary-layer thickness with increasing
Pr are overcome by the reduction of convective transport strength
due to a smaller value of the effective Grashof number. This reduc-
tion in strength of convective transport gives rise to a decrease in
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Nu with increasing values of Pr (for a given value of Ra) when the
Bingham number attains large values. Eventually this gives rise to
smaller values of Bnmax for higher Pr values as shown in Fig. 9a (for
constant Ra). As a consequence Bnmax depends on both Rayleigh
and Prandtl numbers, and Bnmax increases with increasing Rayleigh
number for a given value of Prandtl number, whereas it decreases
with increasing Prandtl number for a given value of Rayleigh num-
ber as shown in Fig. 9b.

According to Eq. (27) an effective Rayleigh number can be de-
fined as: Raeff ¼ qgbDTL3=leff a � RaCWT=½Bnðd=LÞ þ 1�. It has been
demonstrated in Eq. (22) that d increases with increasing Bn for a
given set of values of nominal Rayleigh and Prandtl numbers. This
expression suggests that Raeff decreases with increasing Bn for a gi-
ven set of values of Ra and Pr and convection ultimately stops once
Raeff drops below a critical limit where heat transfer takes place
purely due to thermal conduction. This effect is reflected in the
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sudden drop of Nu to unity for values close to Bnmax in Figs. 4 and
9a.

The value of Bnmax can be estimated using Nu ¼ 1 � L=d�
f2ðRa; Pr;BnÞ, which leads to the following expression according
to Eq. (22):

f2ðRa; Pr;BnmaxÞ
Ra1=2

Pr1=2 �
Bnmax

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2

max þ 4
Ra
Pr

� �1=2
s2

4
3
5; ð31Þ

which can be manipulated to yield:

Bnmax � f2ðRa; Pr;BnmaxÞ
Ra1=2

Pr1=2 �
1

f2ðRa; Pr;BnmaxÞ
: ð32Þ

Eq. (32) demonstrates that Bnmax depends on both Ra and Pr,
which is consistent with the simulation results. It is worth noting
that the buoyancy force is expected to be of the same order of
the force induced by yield stress when the fluid is about to yield.
The equilibrium of buoyancy and yield stress effects under the
aforementioned condition gives rise to the following relation:

qgbDT � sy

d
� sy

Lf2
: ð33Þ

The above relation can further be rewritten in terms of Oldroyd
number as: B � f2 when the fluid is about to yield (consistent with
the findings in Ref. [2]).

5.4. Correlation for Nu

Guided by the scaling estimate given by Eq. (24) a correlation
for the mean Nusselt number Nu is proposed here in the ranges gi-
ven by 0.1 6 Pr 6 100, 103

6 Ra 6 105 and 0 6 Bn 6 Bnmax:

Nu ¼ 1þ ARa1=2

Bn
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ 4 Ra

Pr

� 	1=2
q� � 1� Bn

Bnmax

� �0:6
" #b

ð34Þ

lim
Bn!Bnmax

Nu ¼ 1þ A:Ra1=2

Bnmax
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2

max þ 4ðRa
Pr Þ

1=2
q� � 1� Bnmax

Bnmax

� �0:6
" #b

¼ 1:0 ð35Þ

where A, b and Bnmax are input parameters in the correlation. The
parameter A needs to be chosen in such a manner that Eq. (34) be-
comes identically equal to Eq. (25i) when the Bingham number Bn
goes to zero (i.e. Newtonian fluid). This gives rise to the following
expression for A:

A ¼ aRam�0:25 Prn�0:25

ð1þ PrÞn
� 1

Ra0:25Pr0:25 : ð36Þ

The simulation data indicates that the parameter b depends on
both Ra and Pr and it has been found that the variation of b with Ra
and Pr can be accurately expressed with the help of the following
power-law:

b ¼ 0:025Ra0:171Pr0:095: ð37Þ

It has been discussed earlier that Bnmax is dependent on Ra and
Pr and here the value of Bnmax is estimated by fitting the simulation
results:

Bnmax ¼ ½0:0019 lnðRaÞ � 0:0128�Ra0:55Pr�0:50: ð38Þ

The prediction of Bnmax according to Eq. (38) is compared to the
corresponding values obtained from simulation results in Fig. 9b
and a satisfactory agreement is obtained. The scaling relation given
by Eq. (32) shows that Bnmax is expected to have a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra=Pr

p
depen-

dence and the empirical relation given by Eq. (38) is in remarkable

agreement with the expected behaviour of Bnmax predicted by
Eq. (32). According to Eq. (38) the Oldroyd number Bmax ¼
Bnmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
scales as: Bmax � [0.0019 ln (Ra) � 0.0128]Ra0.05. As

Bn approaches to Bnmax the strength of convective transport within
the enclosure becomes too weak to impart any significant influence
on heat transfer to give rise to a significantly non-unity Nu despite
the fluid being yielded in some regions. By contrast, the equilibrium
is maintained between yield stress and buoyancy induced stresses
when the fluid is about to yield (see the differences between Eqs.
(31) and (33)). The present computational results demonstrate that
Bmax ¼ Bnmax

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr=Ra

p
varies with Rayleigh number and is not con-

stant for all cases (although it remains of the same order varying
at most by a factor of 5).

The predictions of the correlation given by Eq. (34) is compared
with the simulation results in Fig. 11, which demonstrates that the
correlation given by Eq. (34) satisfactorily captures both qualita-
tive and quantitative variations of Nu with Bn for the range of Ra
and Pr analysed in this study. However, the correlation given by
Eq. (34) undepredicts Nu for small values of Bn for Ra = 104 and this
disagreement originates principally due to the limitation of the
correlation of the Newtonian fluids (Eq. (25i)) in predicting Nu
for small values of Ra (see Fig. 8), which in turn affects the predic-
tion of Eq. (34) through the value of A.

6. Conclusions

In this study, steady laminar natural convection of yield-stress
fluids obeying the Bingham model in a square enclosure with differ-
entially heated horizontal walls with the bottom wall at higher
temperature has been numerically analysed. The effects of nominal
Rayleigh number Ra, Prandtl number Pr and Bingham number Bn on
momentum and thermal transport have been investigated in detail.

The mean Nusselt number Nu is found to increase with increas-
ing values of the Rayleigh number for both Newtonian and Bing-
ham fluids but the Nusselt numbers obtained for Bingham fluids
are smaller than those obtained in the case of Newtonian fluids
with the same numerical values of nominal Rayleigh number. It
is found that the mean Nusselt number for Bingham fluids de-
creases with increasing Bingham number, and, for large values of
Bingham number (i.e. Bn P Bnmax), the value of mean Nusselt
number rapidly approaches unity (i.e. Nu ¼ 1) as thermal conduc-
tion becomes the dominant mode of heat transfer. The conduction-
dominated regime occurs at large values of Bn for increasing values
of Ra as the convective transport strengthens with increasing Ray-
leigh number. The variations of Nu with respect to Bn in this con-
figuration are found to be markedly different in comparison to the
corresponding variations in the case of differentially-heated verti-
cal sidewalls for the same nominal values of Ra and Pr. In the case
of differentially-heated side walls Nu decreases gradually with
increasing Bn and eventually assumes a value equal to unity for
large values of Bn, whereas a gradual reduction in Nu from the
Newtonian value (i.e. Bn = 0) with increasing Bn is followed by a
sudden drop in Nu to unity for the enclosures with differentially
heated horizontal walls with bottom surface at higher tempera-
ture. The mean Nusselt number Nu increases weakly with increas-
ing Pr for small values of Prandtl number in the case of Newtonian
fluids but the mean Nusselt number remains insensitive to the
change in Prandtl number for Pr P 10. For low Bingham number
flows (for a given value of the Rayleigh number) the mean Nusselt
number is found to increase with increasing Prandtl number but
the opposite behaviour was observed for large values of the Bing-
ham number. The relative strengths of buoyancy, inertial and vis-
cous forces are shown to be responsible for this non-monotonic
Prandtl number dependence of the mean Nusselt number Nu in
Bingham fluids.
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The simulation results are utilised to propose new correlations
for Nu for both Newtonian and Bingham fluids guided by a scaling
analysis. These correlations are shown to satisfactorily capture the
variation of Nu with Ra, Pr and Bn for all the ranges of Rayleigh, Pra-
ndtl and Bingham numbers considered in this study.
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