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a b s t r a c t

In this work, the 2-D creeping flow of Bingham plastic fluids past a cylinder of square cross-section has
been studied numerically. The governing differential equations (continuity and momentum) have been
solved over a wide range of Bingham number as 1 6 Bn 6 105. Similar to the case of a circular cylinder,
three zones of unyielded regions are seen to be present in the vicinity of the submerged cylinder, namely,
caps attached to the top and bottom surfaces of the square cylinder, two sectors situated on the lateral
sides undergoing rigid-body like motion and the usual far away unyielded regions. The influence of
the Bingham number on their size and on the stress (normal and shear components) field in the vicinity
of the cylinder is discussed in detail. In addition, the corresponding rate of strain, pressure and stress con-
tours are also presented to facilitate the visualization of the structure of the flow field for scores of values
of Bingham number. Also, the present numerical drag results have been correlated with the Bingham
number via a simple expression thereby enabling their interpolation for the intermediate values of Bing-
ham numbers.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Many structured substances encountered in wide-ranging
industrial settlings exhibit the so-called viscoplastic behaviour
[1–4]. Typical examples include foams, filled polymer melts and
solutions, clay and mineral suspensions and certain polymer solu-
tions [1,2]. This class of materials is characterized by the existence
of a threshold stress level (known as yield stress) below which the
fluid does not shear and deforms like an elastic solid. Once the ap-
plied stress exceeds the yield stress, such a fluid may exhibit a con-
stant shear viscosity (Bingham plastic fluid) or a shear-thinning
viscosity (often approximated by the familiar Herschel–Bulkley
fluid model) [3,4]. Whether a true yield stress exists or not, the
flow behaviour of many complex materials can be well approxi-
mated by postulating the presence of a yield stress. Owing to the
wide occurrence of such fluids in the processing and/or manufac-
turing of food stuffs, personal-care and pharmaceutical products,
drilling muds, and cleaning fluids, significant research effort has
been expended in elucidating the influence of yield stress on
momentum and heat transfer characteristics for such fluids in cir-
cular and non-circular ducts, and mixing vessels. [3,4]. Owing to
the presence of yield stress, parts of the flow domain are character-
ized by the so-called yielded or fluid-like regions (whenever the
prevailing stress levels are higher than the yield stress) and
ll rights reserved.

: +91 512 2590104.
unyielded or solid-like regions where the stress level is below
the yield stress.

In contrast, the analogous studies on external flows like that
over objects of different shapes are much more limited. From a the-
oretical stand point, the constitutive equations for visco-plastic flu-
ids have discontinuity inherent in them which makes the
delineation of the boundaries separating the yielded and unyielded
regions rather difficult, in both numerical treatments and experi-
mental studies. An inspection of the available literature on this
subject [4] reveals that a bulk of the theoretical, numerical and
experimental studies is concerned with the flow past a sphere
[5–15]. While in some of the experimental studies [5–7,15], the
objective has been to establish the dependence of drag coefficient
on the pertinent dimensionless groups like Bingham number, Old-
royd number, and power-law index, for freely falling spheres in
model test fluids with yield stress in unconfined and confined
media. While some authors [10] have attempted to evaluate the
yield stress of the fluid from the measurement of force–velocity
data by extrapolating them to zero velocity. Yet others [11] have
examined the combined effects of thixotropy and yield stress on
the sedimentation velocity of a sphere in a stationary medium.
The first numerical study for the creeping flow of a Bingham plastic
fluid past an unconfined sphere is due to Beris et al. [12]. They used
the free-boundary formulation together with a finite element/
Newton method. Not only they provide detailed results on the
flow, stress field and drag coefficient, they also put forward a
dimensionless criterion for ascertaining whether a sphere (of
known size and density) will settle under its own weight in a
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Nomenclature

Bn Bingham number (�s0d/lBV), dimensionless
CD drag coefficient, dimensionless
CDP pressure drag coefficient, dimensionless
d side length of square cylinder, m
FD drag force per unit length of cylinder, N m�1

FDP pressure drag force per unit length of cylinder, N m�1

L side of the square domain, m
m growth rate parameter, s
p pressure, Pa
V velocity vector, m s�1

V average velocity, m s�1

Vx velocity component in x-direction, m s�1

Vy velocity component in y-direction, m s�1

x,y Cartesian co-ordinates, m

Greek symbols
d viscoplastic boundary layer thickness, m
r Del operator, m�1

g apparent viscosity, Pa s
/ obtuse angle in static zone, Zr2, �
_c rate of strain tensor, s�1

lB plastic viscosity, Pa s
s extra stress tensor, Pa
s0 yield stress, Pa
h Meridian angle around circular cylinder, �
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viscoplastic medium of known density and yield stress. Subse-
quently, Mitsoulis and co-workers [13,14] have extended this work
for the flow of Bingham and Herschel–Bulkley fluid models over a
sphere in cylindrical tubes to ascertain the extent of wall effects.
They used the so-called fixed-domain approach. However, both
the free-boundary and fixed domain yield nearly identical values,
as noted by Liu et al. [16]. In the preceding numerical studies
[13,14], the discontinuity in the constitutive equations for visco-
plastic materials was treated via the so-called regularization meth-
od due to Papanastasiou [17]. Broadly, there is a fair degree of
match between the experimental and predicted values of the
yielded regions and drag coefficient for a sphere settling in Bing-
ham and Herschel–Bulkley model fluids [4].

Similarly, a few studies are also available on the 2-D creeping
flow past a circular cylinder. The earliest results for an unconfined
circular cylinder are due to Adachi and Yoshioka [18] who obtained
approximate upper and lower bounds on drag coefficient by
employing the velocity and stress variational principles. The trial
velocity and stress functions used by them [18] lead to the exis-
tence of elliptical fluid-like zones surrounding the cylinder without
any appeal to the fact that whether or not it was a yield surface. In
spite of this limitation, together with the approximate nature of
their analysis, they concluded that the lower bound predictions
of drag were reliable for Bn 6 100 whereas the purely plastic pre-
dictions based on the slip-line analysis were adequate for
Bn > 100. These inferences are however based on intuitive and heu-
ristic considerations without any sound justification. The first full
numerical study of the creeping flow of Bingham plastic fluids past
a cylinder confined symmetrically between two plane walls is due
to Roquet and Saramito [19]. They employed an anisotropic auto-
adaptive mesh procedure together with the augmentation
Lagrangian based finite element scheme. For the first time, they
identified three unyielded zones particularly the so-called polar
caps and islands for a range of values of the blockage ratio (height
of the channel/diameter of cylinder) in the range 1.25–2, albeit a
great majority of their results corresponds to the blockage ratio
of 2. Subsequently, a similar study was reported by Mitsoulis
[20] who varied the blockage ratio from 2 to 50, the latter value
was regarded to be adequate to approximate the limiting case of
the unconfined flow condition. By analogy with the wall effects
on a sphere, the wall effects were found to be significant at low
Bingham numbers. This is simply due to the fact that the yielded
or fluid-like regions progressively diminish with the increasing va-
lue of the Bingham number and thus, it is likely that the fluid has
already solidified before reaching the physical wall and therefore,
no wall effect is expected under such conditions. Over the range
0.01 6 Bn 6 1000, Mitsoulis [20] has reported the effect of Bing-
ham number on the size of various unyielded regions around the
cylinder. He also developed drag relationships based on his numer-
ical predictions. Similarly, a recent study has also been reported by
Tokpavi et al. [21] who used the Bingham constitutive equation
with the Papanastasiou’s regularization and reported the drag
coefficient (CD) and flow kinematics as a function of the Oldroyd
number which is similar to the Bingham number. A viscoplastic
boundary layer was also identified in the limit of plastic flow
(i.e., high Oldroyd number limit) and the viscoplastic boundary
layer thickness was expressed as a function of the Oldroyd number.
A detailed study on the shapes and location of the rigid zones was
also reported. They supplemented their numerical predictions by
employing the perfectly plastic analysis valid at high Bingham
numbers (Bn ?1). The two drag predictions were in almost per-
fect agreement. The creeping flow past an unconfined circular cyl-
inder in a Herschel–Bulkley viscoplastic fluid medium was
investigated by Besses et al. [22] and the location of rigid zones,
kinematics of the flow and drag coefficient were examined as a
function of the shear-thinning index and the Oldroyd number
(Od). Their results show that the size of rigid (unyielded) zones in-
creases as the degree of shear-thinning increases or the power-law
index is lowered. They also examined the role of partial slip on the
surface of the cylinder and found that the slippage can reduce the
hydrodynamic drag on the cylinder by about 33% with reference to
its value for the no-slip condition. Zisis and Mitsoulis [23] explored
the effect of blockage on the Poiseuille flow past a circular cylinder
in a plane channel and proposed a correlation for the drag coeffi-
cient in terms of the blockage ratio and Bingham number. In con-
trast to the aforementioned studies in the creeping flow regime
(Re = 0), Mossaz et al. [24] have recently examined the role of iner-
tial forces (finite value of Reynolds number) on the onset of flow
separation and of vortex shedding from a circular cylinder sub-
merged in viscoplastic fluids. Indeed, both these phenomena (flow
separation and vortex-shedding) differ significantly in this case
from that in Newtonian and power-law fluids. Broadly, the yield
stress of the fluid acts to stabilize the flow and vortex shedding
is thus deferred to higher Reynolds numbers than that in Newto-
nian fluid and power-law fluids [25].

Recently, Putz and Frigaard [26] have not only critically re-
viewed the pertinent literature on this subject, but have also ob-
tained new results for an elliptical cylinder confined between
two plane walls via the use of weak formulations in terms of the
resistance and mobility problems. Most of the aforementioned
studies have employed the exponential regularization schemes of
Papanastasiou [17], a few authors have also examined the merits
and de-merits of this approach [16,27]. Liu et al. [16] compared
the performance of the two regularization schemes, namely Papa-
nastasiou [17] and Bercovier and Engelman [28] which was em-
ployed in [12], as applied to the creeping flow of Bingham model
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Fig. 1. Schematic diagram of flow domain.
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fluids past a sphere. They concluded that while the drag predic-
tions obtained with these two schemes are in good agreement, it
is not possible to identify the apparently unyielded regions simply
by using large values of the regularization parameter. Similarly,
Frigaard and Nouar [27] evaluated the performance of different
regularization schemes and concluded that regularization methods
would result in maximum errors in lubrication-type flows as well
as the viscosity regularization approach can lead to unrealistic pre-
dictions about the stability of flow.

In addition to the aforementioned studies pertaining to the flow
past single spheres and cylinders, there have been a few experi-
mental and numerical studies on hydrodynamic interactions be-
tween two spheres [9,29] and two cylinders [30,31]. Finally,
before leaving this section, two more categories of studies need
to be mentioned here, for these are also pertinent in the present
context. Firstly, Oldroyd [32] developed a theoretical framework
to analyze the boundary layer flow of Bingham plastic fluids past
a plane surface at low Reynolds numbers. In the limit of large Bing-
ham number and sufficiently small Reynolds number, by neglect-
ing the acceleration terms, he was able to obtain an analytical
solution to the approximate boundary layer equations for the flow
past a plate. Broadly, the inclusion of normal stress term leads to
the boundary layer thickness to vary along the surface as d � x2/3

rather than the familiar d � x1/2 variation seen for Newtonian flu-
ids. Piau [33] has revisited the analysis of Oldroyd [32] by obtain-
ing a similarity solution. Secondly, intuitively it appears that in the
limit of Bn ?1, the shearing motion of the fluid ceases and there-
fore the hydrodynamic forces acting on structures of different
shapes can be evaluated by assuming the perfectly plastic flow.
This approach has been shown to yield reliable predictions for cir-
cular cylinders at large values of Bingham number by using the
plasticity/slip-line analysis [34], albeit this approach does not en-
tail the use of fluid characteristics at large Bingham numbers. On
the other hand, behaviour in the limit of Bn ?1 has been treated
well in Ref. [21] as far as the prediction of the drag force on a
cylinder is concerned. Aside from spheres and cylinders, some
experimental results are also available on drag forces for square
cross-sections in soils [35], flat plates [37] and non-spherical parti-
cles in visco-plastic polymer solutions which have been thoroughly
reviewed in Ref. [4]. Similarly, as noted earlier, numerical predic-
tions for elliptical cross-section cylinders have been reported in
[26]. Also, Knappett et al. [35] estimated the ultimate load on the
cylinders of square and circular cross-sections using a wedge based
upper-bound plasticity analysis and their predictions are in line
with their own experiments carried out in a modified shear box.
It is generally believed that such analyses are good under the
conditions when no-slip condition is applicable [36]. It is also
worthwhile to make another observation here. In the case of the
circular cylinder, the slip-line analysis based on the perfectly
plastic regime and the yield-surfaces revealed by numerical simu-
lations at high Bingham numbers are very similar and close to each
other and therefore the two drag predictions are in almost perfect
agreement.

From the foregoing discussion, it is abundantly clear that with
the notable exceptions of spheres and cylinders, no numerical re-
sults are available on the creeping flow of viscoplastic fluids past
two-dimensional bodies of other shapes. This work endeavours
to extend the currently available body of knowledge by studying
the creeping flow of a Bingham plastic fluid past a 2-D cylinder
of square cross-section. The hydrodynamic forces exerted on sup-
port structures of rectangular cross-sections are relevant in marine
and estuary flow applications. In the continuous thermal treatment
of foodstuffs, food particles like sliced carrots and potatoes, etc.
may be approximated like square bars and these are processed in
xanthan gum and other polymer solutions which can exhibit visco-
plastic behaviour under appropriate conditions. Apart from these
potential pragmatic applications, there is a considerable theoreti-
cal interest in understanding the flow behaviour of yield stress flu-
ids in geometries with sharp corners, e.g. see [38–41]. For instance,
Atkinson and El-Ali [38] concluded that the behaviour of a yield-
stress fluid around a sharp corner is more like that of a Newtonian
fluid. This is so presumably due to the high shear rates which make
the magnitude of the yield stress negligibly small as compared to
the corresponding flow stress, i.e., jlB

_cj � js0j. Therefore, the visco-
plastic flow past a square cylinder might also shed some light on
this aspect of the bluff body flows. In particular, the governing dif-
ferential equations are solved numerically together with the Bing-
ham fluid model within the framework of Papanastasiou [17].
Extensive results on the location and size of unyielded regions,
stress field and drag coefficient are presented over the range of
Bingham number 1 6 Bn 6 105.

2. Problem formulation

Consider an unconfined square cylinder of side, d, past which a
Bingham plastic fluid is flowing slowly so that the inertial forces
are negligible. To approximate the truly unconfined flow condition,
the approach we adopt here is to assume an artificial domain (of
square shape) with stress-free boundary walls. The length of the
domain is 2L/d and the square cylinder is situated at its centre. Un-
der the creeping flow assumption, this problem can be solved using
two axes of symmetry and hence one needs to solve the governing
differential equations over only one quarter of the computational
domain as shown in Fig. 1. Since the cylinder is infinitely long in
the z-direction, there is no flow in z-direction and no flow variable
depends upon z, i.e. Vz = 0 and @ðÞ

@z ¼ 0. Thus, the flow is two-dimen-
sional. For the incompressible, steady and creeping flow, the equa-
tions of motion can be written as follows:

r � V ¼ 0 ð1Þ

�rpþr � s ¼ 0 ð2Þ
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The deviatoric part of the stress tenser s is given by the Bingham
plastic constitutive relation [1] which for a simple shear flow can
be written as follows:

s ¼ s0 þ lB
_c if jsj > js0j ð3Þ

_c ¼ 0 if jsj 6 js0j ð4Þ

Unfortunately, owing to its discontinuous nature, it is very difficult
to solve numerically the field equations together with Eq. (3). In or-
der to overcome this difficulty, Papanastasiou [17] proposed a mod-
ified model with a growth rate parameter (m) which provides not
only a smooth transition from no-flow region to flow region, but
also leads to better convergence and accurate prediction of the size
and shape of rigid zones. Hence by using the Papanastasiou modifi-
cation, the Bingham plastic model can be re-written as follows:

s ¼ s0½1� expð�m _cÞ� þ lB
_c ð5Þ

It is clear from Eq. (5) that with high values of the growth rate
parameter, m, the model tends towards the original Bingham plastic
model but at the same time at very high values of the growth rate
parameter, numerical problems begins to emerge. In addition, as
noted in previous studies [27], this model represents the solid re-
gion by a fluid of very high viscosity. The location of the rigid zones
within the flow region also depends on the value of the growth rate
parameter and therefore it is necessary to establish the influence of
this parameter on the numerical results. Mitsoulis [20] examined
the effect of the regularization parameter on the drag coefficient
for a circular cylinder and found that a value of m = 103 s was suffi-
cient. On the other hand, for the results to be free from such numer-
ical artifacts, Tokpavi et al. [21] used m = 104 s and m = 105 s for low
and high plasticity effects respectively. Evidently, a prudent choice
of the value of m is vital for the results to be free from such numer-
ical artifacts.

For incompressible fluids, the deviatoric stress tensor can be
written as follows:

s ¼ 2g _c ð6Þ

and the scalar viscosity g is given by:

g ¼ lB þ
s0

j _cj ½1� expð�mj _cjÞ� ð7Þ

where _c is rate-of-strain tensor which is given by

_c ¼ 1
2
ðrV þrVTÞ ð8Þ

The magnitude of rate of deformation tensor and deviatoric stress
tensor is given by

j _cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

trð _c2Þ
r

ð9Þ

jsj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

trðs2Þ
r

ð10Þ

In the limit of creeping flow, this problem is governed by the single
dimensionless group called the Bingham number which is the ratio
of the yield stress to viscous stress and can be written in the follow-
ing manner:

Bn ¼ s0d
lBV

ð11Þ

Note that this definition of Bingham number differs by a factor of
two from the Oldroyd number used in [21]. The variables appearing
in the governing equations and boundary conditions are rendered
dimensionless using d, V and s0 as scaling variables for length,
velocity and stress components respectively.
As noted earlier, this problem can be considered with two planes
of symmetry; hence one quarter of the domain is used to reduce the
required computational efforts (see Fig. 1). In light of these symme-
try planes, the following boundary conditions are used in this work:

� Along the y-axis symmetry (line AF in Fig. 1)
Vx ¼ 0 and
@Vy

@x
¼ 0 ð12Þ

� Along the x-axis symmetry (CD)
Vx ¼ 0 and
@Vy

@y
¼ 0 ð13Þ

� On the surface of the cylinder: no-slip condition is prescribed,
i.e.,

Vx ¼ 0 and Vy ¼ 0 ð14Þ

� On the boundaries (AB) and (BC)
Vx ¼ 0 and Vy ¼ V ð15Þ

� The pressure point constrained boundary condition is used at
point C and a zero value of pressure is prescribed at this point.

The drag coefficient is the measure of the total force exerted by
the fluid on the cylinder in the direction of flow and it is defined
here as:

CD ¼
FD

s0d
ð16Þ

And the pressure component of the drag coefficient, CDP, can be ex-
pressed as follows:

CDP ¼
FDP

s0d
ð17Þ

The scaling considerations suggest both CD and CDP to be functions
of the Bingham number only. This work endeavours to explore and
develop this functional relationship for a square cylinder.

3. Numerical solution methodology

The governing differential equations subject to the aforemen-
tioned boundary conditions have been solved numerically using
the finite element based solver COMSOL Multiphysics (Version
4.0) for both meshing the computational domain as well as to map
the flow domain in terms of the primitive variables u–v–p. Since gra-
dients are expected to be steep near the cylinder surface as well as
near the interface between the rigid (unyielded) and fluid (yielded)
zones, a fine mesh is required in both these regions. In this study,
quadrilateral cells with non-uniform spacing have been used to
mesh these regions of the computational domain. Furthermore,
the steady, 2-D, creeping flow module is used with PARDISO scheme
to solve the system of equations. The Bingham plastic model with
Papanastaiou regularization [17] was used for approximating the
extra stress tensor in the momentum equation. A user defined func-
tion (UDF) has been introduced for this purpose and to estimate the
value of absolute viscosity. The solution was always initiated using
the converged Newtonian flow field. A relative convergence crite-
rion of 10�5 for the equations of continuity and momentum were
used and further reduction in the tolerance level had a negligible
effect on the results (less than 0.01% in CD and CDP, for example).

4. Choice of numerical parameters

Evidently, the accuracy and reliability of the numerical solution
depends on an appropriate choice of domain and grid characteris-
tics. In the present context, the domain is characterized by a square



Table 1
Domain independence test at Bn = 1.

Domain size (L) Elements CD CDP

2 3000 38.31 30.12
3 7500 37.19 29.65
5 10,600 34.32 29.12
7 12,500 33.43 22.41

10 17,900 33.43 22.31
15 18,547 33.43 22.31
20 19,654 33.43 22.31

Table 2
Grid independence test.

Grid Elements CD CDP

Bn = 1 Bn = 1 	 105 Bn = 1 Bn = 1 	 105

G1 9500 33.02 14.85 21.31 11.05
G2 14,500 33.21 14.89 21.62 11.67
G3 19,300 33.43 14.91 22.43 12.08
G4 25,200 33.43 14.92 22.45 12.09
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Fig. 2. Effect of regularization parameter, m on the location of yield surface at
Bn = 10 and Bn = 105.
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of side length L. In this work, the effect of the domain was studied
by systematically varying the value of L/d as 2, 3, 5, 7 and 10. The
resulting change in the values of the pressure and total drag coef-
ficients is summarized in Table 1, where it is clearly seen that there
is no significant change in the results when the domain size is in-
creased from L/d = 7 to L/d = 10. On other the hand, the required
CPU time increased several fold. Thus, L/d = 7 denotes an accept-
able compromise between the accuracy of the results on one hand
and the required computational effort on the other. Furthermore,
in order to show the adequacy of the value of L/d used here, limited
additional simulations were also performed using L/d = 15 and 20.
The resulting values were found to be virtually indistinguishable
from that obtained with L/d = 7. Next, we turn our attention to
the selection of an optimum grid. Four non-uniform grids which
were sufficiently fine close to the cylinder as well as to the inter-
face between the solid and fluid zones for accurate prediction of
the yield surface were investigated. The effect of the grid charac-
teristics on the value of the pressure and total drag coefficients is
shown in Table 2 for the extreme value of the Bingham number.
Once again, grid G3 is seen to be satisfactory, for there is a negligi-
ble change in the results obtained with G3 and G4. Initially, the
approximate location of yield surfaces was identified using a rela-
tively coarse mesh and the numerical resolution in this region was
progressively improved by systematically refining the mesh. Thus,
in a sense, a manual adaptive mesh was used to delineate the posi-
tion of the yield surface with a degree of precision. Also, a mesh
found suitable for maximum value of the Bingham number is likely
to be satisfactory for lower values of the Bingham number.

As noted earlier, the location of the rigid zones strongly depends
upon the value of the regularization parameter, m. A low value of m
may lead to an incorrect prediction of the location of the yield sur-
face [12]. On the other hand, very high values may result in
Table 3
Drag on a square cylinder in Newtonian fluids at Re = 1.

Authors Drag coefficient CD

Sharma and Eswaran [42] 14.416
Dhiman et al. [43] 14.330
Present 14.521 (COMSOL)

14.440 (FLUENT)

Table 4
Drag on a circular cylinder in Bingham plastic fluid (Re = 0).

Bn Drag coefficient CD

Tokpavi et al. [21] Zisis and Mitsoulis [23] Present

1 – 22.060 20.314(21.061)*

10 14.644 15.629 14.251(14.921)
1 	 102 12.536 12.592 12.421(12.520)
5 	 102 12.166 11.700 12.214(12.305)
1 	 103 12.096 11.700 11.987(11.981)
1 	 105 11.985 11.700 11.954 (11.921)

* Values in parenthesis are based on m = 1000 s.

Table 5
Drag coefficient in the limit of infinite plasticity for a circular
cylinder.

References C1D

Randolph and Houlsby [34] 11.940
Adachi and Yoshioka [18] 10.280
Tokpavi et al. [21] 11.940
Present 11.954
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numerical oscillations in the solution and it generally leads to poor
convergence [16]. Most of the previous studies have used m = 103 s
[13,14]. An extensive study has been performed by Tokpavi et al.
[21] on this aspect who classified the flow into two regimes
depending upon the value of the Bingham number, low plasticity
(small values of Bn) and high plasticity (large values of Bn) respec-
tively. They used m = 104 s for the so-called low plasticity flow and
m = 105 s for the high plasticity effects. Additional exploration was
x

x

Zr1

S1

Zr3

S2Zr2
S3

y1 y3y2

ϕ

Fig. 4. Schematic representation of the characteristics of the rigid
carried out in the present study. Fig. 2 shows the effect of the value
of m on the shape of the yield stress. It is clearly seen that the re-
sults are virtually indistinguishable from each other for m P 106 s
at both values of the Bingham number. Based on these observa-
tions, we have used m = 106 s for all simulations reported herein.
However, strictly speaking, this method of choosing an appropriate
value of m is a matter of trial and error. On the other hand, in an
envisaged application if one were able to identify two independent
scales to normalize the velocity and strain rate, one can then devel-
op a systematic strategy to choose the value of m to deal with the
so-called small strain rates in an unambiguous manner.
5. Results and discussion

Extensive new results on the detailed kinematics of the creep-
ing visco-plastic fluid flow (Re = 0) over a square cylinder have
been obtained spanning five-orders of magnitude variation of the
Bingham number. However, prior to undertaking the detailed pre-
sentation and discussion of the new results, it is instructive to
demonstrate the reliability and precision of the solution methodol-
ogy and of the choice of the numerical parameters used in this
work. This objective is accomplished by way of presenting a few
benchmark comparisons with the prior results available in the
literature.

5.1. Validation of results

While no prior results are available for a square cylinder in
Bingham plastic fluids except for that of Knappett et al. [35] in
the fully plastic regime, reliable numerical results are now avail-
able for this configuration in Newtonian fluids [42,43] and for a cir-
cular cylinder [19–21] and a sphere [12] in Bingham plastic media.
x1

2

3

zones around a square cylinder (flow is in upward direction).



Fig. 5. Effect of Bingham number on the unyielded fluid zones (dashed line represents bi-viscosity model).
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These are used here for validating the present solution methodol-
ogy. Note that an in-house finite volume code with different do-
main and grid structure was used in Refs. [42,43]. Table 3 shows
a comparison for a square cylinder in Newtonian fluids where an
excellent match is seen to exist between the present and literature
values of the drag coefficient at Reynolds number of unity. It is
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appropriate to add here that the differences of this order are not at
all uncommon in such numerical studies, e.g., see [44]. Next, Ta-
ble 4 shows a similar comparison for the creeping flow of Bingham
plastic fluids past a circular cylinder for a range of values of the
Bingham number. While the present results are seen to be virtually
indistinguishable from that of Tokpavi et al. [21], the present val-
ues differ by about 8–9% from that of Zisis and Mitsoulis [23], espe-
cially at low values of the Bingham number. While the exact
reasons for such a large discrepancy are not immediately obvious,
one possible explanation is the relatively small value of m = 103 s
used in their study, To add further weight to this assertion, the re-
sults obtained with m = 103 s are also included in parentheses and
clearly these values are seen to be closer to that of Zisis and Mit-
soulis [23]. Finally, it needs to be emphasized here that the number
of elements is much larger in the present case than that used in
[23] and this may partly be responsible for these differences. Fur-
thermore, as noted earlier, at very high values of the Bingham
number, the flow can be assumed to be purely plastic in nature
and in this limit, the present results are compared in Table 5 with
that based on the plasticity theory [21,34], It is clearly seen here
that the results deduced from the plasticity theory are in good
agreement with the present results at high Bingham numbers for
a circular cylinder. Such a close correspondence inspires confi-
dence in the reliability of numerics used in this work.
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Table 6
Comparison of the size of rigid zones between a square and circular cylinder at
Bn = 20.

Circular cylinder [21] Square cylinder

x1
d 0.60 0.73
x2
d

0.91 1.55
x3
d 2.75 2.78
y1
d

0.55 0.81
y2
d

1.60 1.96
y3
d

1.87 2.22
In addition to such overall comparisons, Fig. 3 shows a compar-
ison in terms of the present prediction of pressure distribution on
the surface of a circular cylinder with that of Tokpavi et al. [21] and
once again, an excellent match is seen to exist. In our view, such a
close correspondence between the surface pressure profiles pro-
vides a much more stringent testimony to the reliability of the
present results than that seen in Tables 3–5. In view of the afore-
mentioned comparisons, the new results reported herein for a
square cylinder are believed to be reliable to within 1–2%.
5.2. Definition of rigid zones and fluid zones

The yield surface is the interface between the unyielded (solid-
like) and yielded or fluid-like zones. In the case of the flow past a
circular cylinder and sphere, the shape and location of the yield
surface has been examined by several authors and we essentially
follow a similar approach here to define the rigid zones. As in the
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case of a circular cylinder and a sphere, three distinct solid zones
are observed in the present case also; however, they are different
in shape in the case of a square cylinder studied here. A schematic
of such regions together with their definitions is shown in Fig. 4.

� A far-field solid zone, Zr1, is characterized by the values of x1

and y3 and the corresponding yield surface is designated as S1
(Fig. 4). This zone is dynamic in that the material is moving as
a solid plug with a uniform velocity V. The shape of S1 is qual-
itatively similar to that observed for a sphere [13].
� Two stagnant zones, Zr2, at the top and at the bottom of the

cylinder are characterized by their height y1 and the obtuse
angle, /. As in the case of circular cylinder and sphere, this
zone is of triangular shape. The yield surface is denoted by
S2. In the case of a circular cylinder, this zone is referred to
as ‘‘polar caps’’. These zones are static and are attached to
the cylinder [21].
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� Two dynamic zones, Zr3, equidistant from the cylinder on the
either side about the x-axis, are characterized by x2 and x3. In
contrast to the other rigid zones, the shape of these zones is
quite different from that observed in the case of circular cylin-
ders and spheres. This zone is undergoing a rigid body-like rota-
tion and the strength of rotation increases with the increasing
value of the Bingham number. This yield surface is denoted by
S3 which also moves with a constant velocity V. In the case of
a circular cylinder, these zones are referred to as ‘‘islands’’ [21].

Naturally, the size of the aforementioned boundaries demarcat-
ing the unyielded and yielded zones would vary with Bingham
number.

5.3. Effect of Bingham number on unyielded zones

The effect of Bingham number on the size and shape of the rigid
zones is shown in Fig. 5. Similar to the trends seen for a circular
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cylinder [21], the size of all rigid zones indicate Zr1, Zr2, Zr3 de-
creases with Bingham number, but beyond a certain Bingham
number, it changes very little. The shaded regions in Fig. 5 show
the unyielded zones. As expected, the size of the yield surface S1
decreases with the increasing Bingham number while that of the
yield surfaces S2 and S3 increases thereby affirming the diminish-
ing significance of viscous deformation induced by the flow. In-
cluded in this figure are also the predictions of the bi-viscosity
model where the two results are seen to be in very good agreement
with each other. We note here that the shape of the yield surfaces
differ somewhat – mainly in the shape of the ‘‘islands’’ – from the
kinematic failure mechanism (the ‘‘slip lines’’) assumed in the plas-
ticity theory of Knappett et al. [35] (see Fig. 10 in [35]).

The change in the static zone, Zr2 is reported in Fig. 6. It is clear
from Fig. 6 that on increasing the Bingham number, the size of the
zone, Zr2 increases but at the same time the angle, / decreases and
becomes constant in the limit of large Bingham numbers, i.e.,
Bn ?1. The same trend has been reported in the case of a circular
cylinder [21]. At very high value of the Bingham number, the angle,
becomes 90� which is the same as that predicted from the plastic-
ity theory [35] and in the case of circular cylinders [21].

Fig. 6 shows the influence of the Bingham number on the
dimensions of various rigid zones in both x- and y-directions. It
is clear that the size of zone Zr3 increases slightly with the
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increasing Bingham number until Bn 
 103 beyond which it essen-
tially reaches the infinite Bingham number limit. In contrast, there
is a significant decrease in the size of zone Zr3 in the x-direction
with increasing Bingham number thereby making it thinner and
thinner. The data also shows that with increasing Bingham number
the size of zones Zr1 and Zr2 decreases in the y-direction while
that of zone Zr3 increases. Finally, we have compared, Table 6,
the relative dimensional characteristics of the rigid zones for circu-
lar and square cylinders at Bn = 20. The size of the rigid zones in
both x and y-directions is always greater for a square cylinder than
that for a circular cylinder. This may be due to the presence of the
sharp corners in the case of a square cylinder.
5.4. Flow kinematics

Fig. 7 shows the sensitivity of the maximum (non-dimensional)
shear rate at the surface of the cylinder to the grid used and the va-
lue of the growth rate parameter, m. Although the drag coefficient
is essentially unaffected in this range of parameters over the whole
range of Bingham number (see Table 2 for example), it is clear that
the maximum value of shear rate is quite (�10%) sensitive to the
value of the growth rate parameter, especially at high Bingham
number. Similarly, the shear rate is seen to be much more sensitive
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to the choice of the solution grid thereby contributing to the degree
of difficulty of such numerical studies.

Fig. 8 shows the velocity profile at the symmetry line in the y-
direction (i.e. along line x = 0 in Fig. 1). The constant velocity in seg-
ments I–II and III–IV in Fig. 8 represents the rigid zones Zr2 and Zr1
respectively and the segment where the velocity is changing
abruptly, segment III–IV, is nothing but the viscous fluid zone. It
is also evident from Fig. 8 that zone Zr2 is a static zone and the
zone Zr1 is a dynamic zone, moving with the plug velocity. These
results show the profound influence of the Bingham number on
the velocity profile up to about Bn 6 � 103 beyond which it be-
comes independent of Bingham number, thereby suggesting it to
approach the limit of the fully plastic flow.

Fig 9 shows the velocity profile along the line of symmetry in
the x-direction (i.e. along y = 0 in Fig. 1). Once again, there are four
different deformation regions seen here; the first region; I–II, rep-
resents thin viscoplastic boundary layer fluid zone wherein very
high shear rates cause abrupt change in the velocity profile. The re-
gion II–III represents the rigid zone, Zr3, which is, in fact, undergo-
ing solid body rotation. The segment III–IV represents another
fluid-like zone where the velocity is monotonically decreasing
from point III to IV. Finally in the region, IV–V, the velocity profile
becomes flat thereby suggesting a constant velocity, which repre-
sents the far-field rigid zone Zr1, moving as a solid plug. Here also,
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the Bingham number is seen to exert very little influence beyond
Bn > 103.

Fig 10 shows the effect of Bingham number on the viscoplastic
boundary layer thickness. The minimum thickness of the boundary
layer has been calculated here by equating the velocity Vy = 0.999V
at the first point on line of symmetry in x-direction (i.e., @Vy

@x ¼ 0)
from the surface of the cylinder. The variation of the boundary
layer thickness with Bingham number is found to be qualitatively
similar to that seen for a circular cylinder [21]. One can argue that
the increasing Bingham number is equivalent to the increasing va-
lue of Reynolds number both of which lead to the progressive thin-
ning of the momentum boundary layer. The present results can be
well approximated by the following expressions:

d
d
¼ 0:48Bn�0:27 for 1 6 Bn 6 103 ð18aÞ

d
d
¼ 0:11Bn�0:05 for 2	 103

6 Bn 6 105 ð18bÞ

Eq. (18a) reproduces the present numerical results with an average
error of 11.5% which arises to a maximum of 20% whereas the cor-
responding values for Eq. (18b) are less than 0.1%.

Fig 11 represents the magnitude of dimensionless strain rate
tensor along the lines of symmetry in x- and y-directions at
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Bn = 10. There are two peaks on the first curve (broken line), one of
these corresponds to the surface of the cylinder and the other one
is situated in the fluid zone in between zones Zr1 and Zr3. This
behaviour is also seen to be qualitatively similar to that for a
circular cylinder [21]. The second curve (solid line) has only one
maximum and it is seen to occur between zones Zr1 and Zr2. All
three peak values increase with Bingham number, as shown in
Fig 12.
5.5. Stress, velocity, pressure and shear rate fields on the surface of the
cylinder

Figs. 13–15 show representative contours of various kinematic
variables like stress, velocity, pressure and shear rate thereby giv-
ing an idea about the detailed structure of the flow on and/or near
the surface of the square cylinder. Evidently, in the limit of low
plastic effect, i.e., small value of Bn, there is a significant variation
in stresses in the vicinity of cylinder. On the other hand, in the limit
of high plastic effects, there is an increasing density of contour
lines near the cylinder thereby suggesting that the fluid-like zones
shrink in size with the increasing value of the Bingham number,
akin to thinning of the boundary layer. As Bn ?1 the contour lines
of the normal stress approach the expected limiting behaviour, i.e.,
sxx
s0
! 1, as also exhibited by the shear stress sxy

s0
(see Fig. 15). On the
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other hand, Fig. 14 shows the contours of normal stress difference
syy�sxx

s0
and it is clear that in the limit of Bn ?1, it correctly ap-

proaches the expected limiting value of j syy�sxx

s0
j ! 2. Fig. 16 depicts

representative contours of the velocity, pressure and shear rate and
as expected the slip line fields are seen to evolve slowly emerging
in the limit of high Bingham number.
5.6. Drag coefficient

While the results presented in the preceding sections provide
useful insights into the detailed structure of the flow and stress
fields in the vicinity of the cylinder, reliable values of drag coeffi-
cient are frequently needed in process design calculations. For
the present configuration and creeping flow regime, the drag coef-
ficient is expected to be a function of the Bingham number only.
Fig. 17 shows the dependence of the total and pressure drag coef-
ficients on the Bingham number where both are seen to exhibit the
classical inverse dependence on the Bingham number, which is
also in line with that observed for a circular cylinder [21]. The
dependence of the drag coefficient on Bingham number weakens
for Bingham numbers above 10 ultimately becoming independent
of Bn at about Bn P 100. The numerical data shown in Fig. 17 has
been correlated using the non-linear regression analysis approach
as follows (over the range 1 6 Bn 6 105):
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Fig. 16. Contours diagram: (a and d) velocity in y-direction, (b and e) pressure and (c and f) shear rate.
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Table 7
Values of drag coefficient for a square cylinder calculated by bi-viscosity model.

Bn Papanastasiou model Bi-viscosity model

1 33.43 33.42
10 19.02 19.02

102 15.72 15.71
103 15.04 15.03
104 14.92 14.96
105 14.91 14.92
106 14.91 14.92
107 14.91 14.92
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CD ¼ 14:91þ 18:55
Bn0:66 ð19aÞ

CDP ¼ 12:07þ 10:40
Bn0:62 ð19bÞ

Finally, to add further weight to our claim regarding the validity
of the regularization scheme used here, computations have also
been carried out by using the bi-viscosity model with lyield = 104lB,
similar to that used in [45] and the resulting values of the drag
coefficient are summarized in Table 7 where the two results are
seen to be virtually indistinguishable from each other. Such a close
match inspires confidence in the use of the Papanastasiou
regularization method at least as far as the drag calculations are
concerned.

6. Conclusions

The creeping flow of a Bingham plastic fluid past a 2-D square
cylinder has been studied numerically using the finite element
method. The inherent discontinuity in the original Bingham consti-
tutive relation has been treated through the Papanastasiou regular-
ization technique together with a growth rate parameter. The
results based on this model have also been compared with that
based on the bi-viscosity approach to ascertain their reliability. Fi-
nally, the results reported herein span five orders of magnitude
variation in the value of Bingham number (1 6 Bn 6 105) and at
Bn = 105, these are seen to approach their limiting values thereby
becoming independent of the Bingham number. The detailed struc-
ture of the flow field is studied in terms of the spatial variation of
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velocity and stress components which, in turn, help delineate the
location, size and shape of the yield surfaces demarcating the so-
called fluid (yielded) and solid (unyielded) like regions in the flow
domain. Essentially, three types of unyielded regions are identified
which are qualitatively similar (but larger) to that reported for a
circular cylinder. As expected, all yielded regions shrink progres-
sively with the increasing Bingham number. The utility of the no-
tion of the viscoplastic boundary layer has also been demonstrated.
In the limit of high Bingham number, the location of rigid zones
and the value of drag coefficient is found to be constant and
consistent with the predictions of bi-viscosity model.
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