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In this study, two-dimensional steady-state simulations of laminar natural convection of Newtonian flu-
ids in rectangular enclosures with differentially heated side walls have been conducted. Two Prandtl
numbers Pr = 0.71 and 7.0 – typical values for air and water – and a range of different aspect ratios
AR(=H/L where H is the enclosure depth and L is the enclosure width) ranging from 1/8 to 8 for constant
heat flux boundary conditions are investigated for Rayleigh numbers in the range 104–106. To demon-
strate the difference between the aspect ratio effects between the constant wall temperature and con-
stant wall heat flux boundary conditions, simulations have also been carried out for the same range of
numerical values of Rayleigh number for the constant wall temperature boundary condition. It is found
that the mean Nusselt number Nu increases with increasing values of Rayleigh number for both constant
wall temperature and constant heat flux boundary conditions. The effects of aspect ratio AR have also
been investigated in detail and it has been found that the effects of thermal convection (diffusion)
strengthens (weakens) with increasing aspect ratio and vice versa, for a given set of nominal values of
Rayleigh number and Prandtl number for both types of boundary conditions. In the case of constant wall
temperature boundary condition, the mean Nusselt number increases up to a certain value of the aspect
ratio ARmax but for AR > ARmax the mean Nusselt number starts to decrease with increasing AR. In contrast,
the mean Nusselt number is found to increase monotonically with increasing AR for the constant wall
heat flux boundary condition in the range of values of aspect ratio, Rayleigh number and Prandtl number
considered in this study. Detailed physical explanations are provided for the observed phenomenon. Suit-
able correlations are proposed for the mean Nusselt number Nu for both constant wall temperature and
wall heat flux boundary conditions which are shown to satisfactorily capture the correct qualitative and
quantitative behaviour of Nu for the range of Rayleigh number and aspect ratio considered here.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Natural convection in rectangular enclosures filled with Newto-
nian fluids has been analysed extensively by several researchers
and interested readers are referred to Ostrach (1988), Gebhart
et al. (1988), Khalifa (2001) and Ganguli et al. (2009) for detailed
reviews. Although several boundary conditions for this problem
are possible, differentially heated vertical side walls is one of the
most analysed configurations (e.g. deVahl Davis, 1983). Unless sta-
ted otherwise, to avoid unnecessary repetition, the remainder of
this paper will deal with this configuration for different aspect ra-
tios (i.e. AR = H/L, in which H is the enclosure depth and L is the
enclosure width) for Newtonian fluids. It has been shown in several
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previous studies (e.g. Elder, 1965; Gill, 1966; Newell and Schmidt,
1970; Yin et al., 1978; Bejan, 1979; Elsherbiny et al., 1982; Lee and
Korpela, 1983; Wakitani, 1996) that AR plays a major role in the
natural convection process in this configuration. However, natural
convection in rectangular enclosures is often studied separately for
tall (AR� 1) and shallow (AR� 1) enclosures and the vertical side
walls are usually subjected to constant temperatures. Based on an
extensive experimental analysis of this problem for tall enclosures
Elder (1965) identified three distinct regions; a region in the vicin-
ity of the vertical side walls where the temperature gradients are
nearly horizontal and largest, an interior region where vertical
temperature gradients appear and an end region strongly influ-
enced by the boundary conditions. For small values of Rayleigh
number1 (i.e. RaCWT < 103), the isotherms remain parallel to the
1 The definition of Rayleigh number RaCWT will be provided later in Section 2 of this
paper.
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Nomenclature

a constant (–)
AR aspect ratio (AR = H/L) (–)
cA, cB, cC correlation parameter (–)
cp specific heat at constant pressure (J/kg K)
c1, c2, c3 correlation parameter (–)
CB correlation parameter (–)
e relative error (–)
f1, f2, f3, f4 functions relating thermal and hydrodynamic bound-

ary layers (–)
F fraction determining the ratio of the hydrodynamic

boundary layer thickness on horizontal surface to the
height of the enclosure (–)

g gravitational acceleration (m/s2)
g1, g2 functions (–)
GrCWT Grashof number for the constant wall temperature con-

figuration (–)
GrCWHF Grashof number for the constant wall heat flux configu-

ration (–)
h heat transfer coefficient (W/m2 K)
H height of the enclosure (m)
k thermal conductivity (W/m K)
K thermal gradient in horizontal direction (K/m)
L length of the enclosure (m)
n correlation parameter (–)
nB (–) exponent of aspect ratio for self similar variation of

mean Nusselt number in the boundary-layer regime (–)
Nu Nusselt number (–)
Nu1 convective contribution to Nusselt number (–)
Nu2 conduction contribution to Nusselt number (–)

Subscripts
c core
cen centre of the domain
conv convection contribution
C cold wall
CWHF constant wall heat flux
CWT constant wall temperature
diff diffusion contribution
ext extrapolated value
H hot wall

Special characters
T⁄ reference temperature (=TC for CWT case and =Tcen for

CWHF case) (K)

DT difference between hot and cold wall temperature
(=(TH � TC)) (K)

DT1 the temperature difference between the horizontal
walls (K)

DTchar characteristic temperature difference (K)
DTcond temperature difference between vertical walls for pure

conduction (K)
Nu mean Nusselt number (–)
p apparent order of accuracy (–)
P pressure (N/m2)
Pr Prandtl number (–)
q wall heat flux (W/m2)
qe,qf correlation parameters (–)
_Q thermal energy flow rate evaluated using an energy-flux

integral over any cross-section at a given height (W)
RaCWT Rayleigh number for the constant wall temperature con-

figuration (�)
RaCWHF Rayleigh number for the constant wall heat flux config-

uration (–)
T temperature (K)
ui ith velocity component (m/s)
U, V dimensionless horizontal (U = u1L/a) and vertical veloc-

ity (V = u2L/a) (–)
# characteristic velocity in vertical direction (m/s)
xi coordinate in ith direction (m)
a thermal diffusivity (m2/s)
b coefficient of thermal expansion (1/K)
dij Kronecker’s delta (–)
d, dth hydrodynamic and thermal boundary layer thickness

(m)
hCWT dimensionless temperature, (hCWT = (T � Tcen)/(TH � TC))

(–)
hCWHF (–) dimensionless temperature (hCWHF = (T � Tcen)k/qL) (–)
l dynamic viscosity (N s/m2)
v kinematic viscosity (m2/s)
q density (kg/m3)
sij(s) stress tensor (Shear stress) (Pa)
u general primitive variable
w stream function (m2/s)
max maximum value
ref reference value
wall wall value
Dmin,cell minimum cell distance (m)
rx, ry grid expansion ratio in x1 and x2 directions (–)
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vertical boundaries and heat transfer takes place primarily due to
conduction. For 103 < RaCWT < 105, large values of temperature gradi-
ents are confined to near wall regions and a temperature stratifica-
tion with an almost uniform vertical temperature gradient is
established at the core. Complex secondary and tertiary flows appear
in the interior region for larger values of RaCWT. Gill (1966) and New-
ell and Schmidt (1970) used analytical and computational methods
respectively, to analyse natural convection in tall enclosures for high
values of RaCWT where most of the heat transfer takes place in the
thermal boundary layer adjacent to the vertical side walls. Gill
(1966) obtained an asymptotic solution for tall enclosures in the lim-
it of very large values of Rayleigh number (i.e. RaCWT ?1) with fi-
nite values of AR by matching the conditions of the core flow with
the top and bottom boundary layers. Bejan (1979) subsequently re-
fined the analysis of Gill (1966) and proposed expressions for mean
values of Nusselt number for tall enclosures which are in good agree-
ment with experimental data (Elder, 1965). A number of papers have
investigated natural convection in tall enclosures both experimen-
tally (Yin et al., 1978; Elsherbiny et al., 1982; Wakitani, 1996) and
numerically (Lee and Korpela, 1983; Le Quéré, 1990; Wakitani,
1997; Zhao et al., 1997; Frederick, 1999; Lartigue et al., 2000; Dong
and Zhai, 2007; Ganguli et al., 2009) and interested readers are re-
ferred to Ganguli et al. (2009) and references therein for a more de-
tailed discussion.

Cormack et al. (1974a) analytically analysed natural convection
in shallow enclosures (i.e. AR� 1) under asymptotic conditions of
AR ? 0 for constant values of RaCWT and identified two convection
regimes, namely, the parallel-flow regime and boundary layer re-
gime. In the parallel flow regime, two horizontal counter-currents
appear in the central core and the horizontal temperature gradient
remains uniform throughout the interior region with the isotherms
parallel to the vertical walls. In contrast, in the boundary-layer re-
gime the regions of high thermal gradients are confined in the
boundary layers adjacent to the vertical walls and convection
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currents within the enclosure play a key role in thermal transport.
Based on their analysis (for AR � 0.1), an approximate criterion for
the parallel-flow regime was proposed by Cormack et al. (1974a)
in the following manner: Ra2

CWTAR9
6 105. Subsequently Cormack

et al. (1974b) numerically investigated the transition between par-
allel-flow and boundary-layer regimes for enclosures with aspect
ratios AR ranging from 0.05 to 1 and the simulation results were
compared with the predictions of the asymptotic analysis by
Cormack et al. (1974a). Cormack et al. (1974b) demonstrated that
the parallel-flow regime appears with decreasing AR (RaCWT) for a gi-
ven value of RaCWT (AR) and the thermal boundary-layer structure
transforms to a linear variation of temperature within the enclosure.
However, the Nusselt number obtained from the numerical simula-
tions (Cormack et al., 1974b) was found to be greater than predic-
tions of the asymptotic theory (Cormack et al., 1974a) for high
values of Ra2

CWTAR9. Bejan and Tien (1978) developed a complete
set of analytical results for the mean Nusselt numbers correspond-
ing to the three different regimes of convection in rectangular enclo-
sures (parallel-flow regime, intermediate flow regime and
boundary-layer regime, which are discussed in Section 3 in detail)
and it was demonstrated that their analysis satisfactorily predicts
the mean Nusselt number obtained from numerical (Cormack et
al., 1974b) and experimental (Imberger, 1974) studies. In a subse-
quent study Bejan (1980) demonstrated that expressions of mean
Nusselt number proposed in Bejan (1979) and Bejan and Tien
(1978) do not, in fact, yield the same numerical value for square
enclosures (i.e. AR = 1.0). Bejan et al. (1981) established a limiting
condition (i.e.RaCWT > AR�7) for which convection begins to play an
important role in thermal transport in enclosures with differentially
heated side walls based on an experimental investigation involving
water. All of these aforementioned studies have been carried out for
the differentially heated vertical side walls subjected to constant
wall temperatures. The effects of aspect ratio on natural convection
of Newtonian fluids in differentially heated vertical side walls sub-
jected to constant wall heat flux (instead of constant wall tempera-
ture) have not been addressed in the existing literature.

This paper aims to address the aforementioned deficit in the
existing literature. In this respect the main objectives of this paper
are as follows:

1. To demonstrate the difference between the aspect ratio effects
on natural convection in rectangular enclosures with differen-
tially heated vertical side walls for constant wall temperature
(CWT) and constant wall heat flux (CWHF) boundary
conditions.

2. To explain the physical differences in the aspect ratio depen-
dence of mean Nusselt number between the CWT and CWHF
boundary conditions.

3. To propose a correlation for mean Nusselt number for the
CWHF configuration for the aspect ratio range 1/8 6 AR 6 8.

In order to meet the above objectives two-dimensional steady-
state simulations have been carried out for aspect ratio 1/8 6 AR 6 8
in the Rayleigh number range 104–106 at Prandtl numbers Pr = 0.71
and 7.0. It has been shown by Turan et al. (2010) that the mean Nus-
selt number in a square enclosure (i.e. AR = 1) changes only margin-
ally with an increase in Prandtl number in the Rayleigh number
range considered here. Thus, the present simulations have been car-
ried out for just two values of Prandtl number representing two
common Newtonian fluids such as air (Pr = 0.71) and water
(Pr = 7). However given the weak Pr dependence demonstrated in
the square enclosure (Turan et al., 2010) it is likely the findings re-
ported here will be applicable for fluids with Pr� 7.

The rest of the paper will be organised as follows. The necessary
mathematical background and details concerning the numerical
implementation will be provided in the next section of the paper.
Following this, the simulation results will be presented and subse-
quently discussed. Finally the main results will be summarised and
conclusions will be drawn.

2. Mathematical background

2.1. Non-dimensional numbers

The Rayleigh number represents the ratio of the strengths of
thermal transports due to buoyancy to thermal conduction, which
can be defined as follows for the CWHF boundary condition:

RaCWHF ¼
q2cpgbqL4

lk2 ¼ GrCWHFPr ð1Þ

where GrCWHF is the Grashof number in the CWHF condition and Pr
is the Prandtl number, which are defined as:

GrCWHF ¼
q2gbqL4

l2k
and Pr ¼ lcp

k
ð2Þ

For the CWT configuration the Rayleigh and Grashof numbers
are defined as:

RaCWT ¼
q2cpgbDTL3

lk
¼ GrCWTPr and GrCWT ¼

q2gbDTL3

l2 ð3Þ

The Grashof number provides the ratio of the strengths of buoy-
ancy and viscous forces while Pr describes the ratio of the strengths
of momentum diffusion to thermal diffusion. Alternatively, Pr can
be taken to represent the ratio of the hydrodynamic boundary
layer to thermal boundary layer thicknesses. Using dimensional
analysis it is possible to show that the Nusselt number for the
CWHF (CWT) configuration is given by Nu = g1(RaCWHF,Pr,AR)
(Nu = g2(RaCWT,Pr,AR)) where Nu is given by:

Nu ¼ hL
k

ð4Þ

where the heat transfer coefficient h is defined as:

h ¼ �k
@T
@x1

����
����
wf

� 1
jTx¼0 � Tx¼Lj

¼ q
Tx¼0 � Tx¼L

����
���� ð5Þ

where subscript ‘wf’ refers to the condition of the fluid in contact
with the wall.

2.2. Governing equations

For the present study steady-state flow of an incompressible
Newtonian fluid with constant temperature independent thermo-
physical properties (e.g. specific heat cp, viscosity l and thermal
conductivity k) is considered. For incompressible Newtonian fluids
the conservation equations for mass, momentum and energy under
steady state can be written using tensor notation (i.e. x1 = x is the
horizontal direction and x2 = y is the vertical direction) as:

Mass conservation equation

@ui

@xi
¼ 0 ð6Þ

Momentum conservation equations

quj
@ui

@xj
¼ � @P

@xi
þ qgbdi2ðT � T�Þ þ l @2ui

@xj@xj
ð7Þ

Energy conservation equation

qujcp
@T
@xj
¼ @

@xj
k
@T
@xj

� �
ð8Þ
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where the temperature at the geometrical centre of the domain is
taken to be the reference temperature T⁄ for evaluating the buoy-
ancy term qgbdi2(T � T⁄) in the momentum conservation equations
for the CWHF configuration. For the CWT configuration, the cold
wall temperature TC serves as the reference temperature T⁄. The
Kronecker delta di2 ensures that the buoyancy term qgbdi2(T � T⁄)
remains operational only in the momentum equation for the verti-
cal direction (i.e. x2-direction). The left hand sides of Eqs. (6) and (7)
indicate the advective transport of momentum and thermal energy
respectively. The terms on the right hand side of Eq. (6) denote the
effects of pressure, buoyancy and viscous forces respectively. The
right hand side of Eq. (7) depicts the effects of thermal diffusion
due to conduction. In the present study the governing equations
are solved in non-dimensional form, which are provided in
Appendix A.

2.3. Boundary conditions

The simulation domain is shown schematically in Fig. 1 where
the two vertical walls of a rectangular enclosure are subjected to
either constant wall heat flux or constant wall temperature,
whereas the other boundaries are considered to be adiabatic (i.e.
@T=@x2jx2¼0 ¼ 0 and @T=@x2jx2¼H ¼ 0Þ in nature. The velocity compo-
nents (i.e. u1 = u and u2 = v) are identically zero on each boundary
because of the no-slip condition and impenetrability of rigid bound-
aries. For the CWHF configuration, the heat fluxes for the hot and
cold vertical walls are specified according to Fourier’s law of heat
conduction (i.e. �kð@T=@x1Þjx1¼0 ¼ q and �kð@T=@x1Þjx1¼L ¼ qÞ. In
contrast, for the CWT case, the temperatures for the cold and hot
vertical walls are specified (i.e. T(x1 = 0) = TH and T(x1 = L) = TC).
The temperature boundary conditions for the horizontal insulated
boundaries are given by: @T/@ x2 = 0 at x2 = 0 and x2 = H. The non-
dimensional forms of the above boundary conditions are provided
in Appendix A for the sake of completeness.

2.4. Numerical implementation

A finite-volume code is used to solve the coupled conservation
equations of mass, momentum and energy in non-dimensional
form. A second-order central differencing scheme is used for the dis-
cretisation of the viscous and thermal diffusion terms in Eqs. (6) and
(7) and a second-order up-wind scheme is used for the advective
terms in Eqs. (6) and (7). Coupling of the pressure and velocity is
achieved using the well-known SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) algorithm (Patankar, 1980), which
implicitly takes care of the divergence free nature of incompressible
g
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Fig. 1. Schematic diagram of
fluid flow (i.e. mass conservation for incompressible fluid:
r �~u ¼ 0Þ. The discretised equations for a grid point P can be sum-
marised in the following manner: aP/P ¼

P
anb/nb þ bP where / is

the primitive variable in question and aP and bP are the discretisa-
tion coefficients at point P and subscript ‘nb’ is used to refer to the
grid points in the neighborhood of point P. The convergence criteria
were set to 10�9 for all the relative (scaled) residuals R/ which is de-
fined as: R/ ¼

P
Cell�P

P
anb/nb þ bP � ap/P

�� ��=PCell�P jap/Pj.

2.5. Grid independency results

The grid independence of the results has been assessed based
on an analysis of five different non-uniform meshes M1
(40 � 40), M2 (80 � 80), M3 (160 � 160), M4 (80 � 160) and M5
(80 � 320) and the details of these grids are included in Table 1.
For AR 6 1 (M1–M2–M3) and for AR > 1 (M2–M4–M5) different
meshes were used to assess the numerical uncertainty. For some
representative simulations (RaCWHF = 106 and Pr = 7 for AR = 0.5
and 4) the numerical uncertainty is quantified here using Richard-
son’s extrapolation theory (Roache, 1997). For a primitive variable
/ the Richardson’s extrapolation value is given by: /h=0 = /1 +
(/2 � /1)/(rp � 1) where /1 is obtained based on fine grid and /2

is the solution based on next level of coarse grid, r is the ratio be-
tween coarse to fine grid spacings and p is the theoretical order of
accuracy. In this analysis the apparent order of accuracy p was ta-
ken to be 2. The numerical uncertainties for the mean Nusselt
number Nu ¼

R H
0 Nudx2=H and the maximum non-dimensional ver-

tical velocity (Vmax) magnitude on the horizontal mid-plane of the
enclosure are presented in Table 2. As seen in Table 2, the maxi-
mum numerical uncertainty levels between meshes are at most
less than 2% for Nu and Vmax in both aspect ratio cases. Based on
these uncertainties, mesh M2 was used for AR 6 1, mesh M4 used
for AR = 2 and mesh M5 was used for AR = 4 and 8. Using these
meshes it has been estimated that the Nu values reported here
are accurate to within 0.1%. In addition to this grid-dependency
study, the simulation results for square enclosures were compared
with the benchmark data of deVahl Davis (1983) and the agree-
ment between the results was found to be very good and entirely
consistent with the aforementioned grid-dependency studies.
Interested readers are referred to Table 3 of Turan et al. (2010)
for further details on benchmarking of the square configuration
case (i.e. AR = 1.0) with CWT boundary condition. Moreover, the
variation of Nu with AR for the CWT boundary condition are found
to be in agreement with the data presented in Bejan (1980) (see
Fig. 6 later in this paper), which also serves as a validation for
the present simulations.
g  q
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the simulation domain.



Table 1
Non-dimensional minimum cell distances (Dxmin, cell/L, Dymin, cell/H) and grid
expansion ratios (rx, ry) values.

Grid M1 40 � 40 M2 80 � 80 M3 160 � 160

AR = 0.125 Dxmin, cell/L – 8.7848 � 10�4 –
rx – 1.1092 –
Dymin, cell/H – 7.0278 � 10�4 –
ry – 1.0274 –

AR = 0.25 Dxmin, cell/L – 8.7848 � 10�4 –
rx – 1.1092 –
Dymin, cell/H – 3.5139 � 10�3 –
ry – 1.0566 –

AR = 0.5 Dxmin, cell/L 1.8534 � 10�3 8.7848 � 10�4 4.3001 � 10�4

rx 1.2303 1.1092 1.0532
Dymin, cell/H 3.6608 � 10�3 1.7570 � 10�3 8.6086 � 10�4

ry 1.1741 1.0836 1.0409

AR = 1 Dxmin, cell/L – 8.7848 � 10�4 –
rx – 1.1092 –
Dymin, cell/H – 8.7848 � 10�4 –
ry – 1.1092 –
Grid M2 80 � 80 M4 80 � 160 M5 80 � 320

AR = 2 Dxmin, cell/L – 8.7848 � 10�4 –
rx – 1.1092 –
Dymin, cell/H – 4.3924 � 10�4 –
ry – 1.0532 –

AR = 4 Dxmin, cell/L 8.7848 � 10�4 8.7848 � 10�4 8.7848 � 10�4

rx 1.1092 1.1092 1.1092
Dymin, cell/H 8.7848 � 10�4 4.2750 � 10�4 2.1962 � 10�4

ry 1.1092 1.0532 1.0262

AR = 8 Dxmin, cell/L – 8.7848 � 10�4 –
rx – 1.1092 –
Dymin, cell/H – 5.4905 � 10�5 –
ry – 1.0371 –

Table 2
Numerical uncertainty for mean Nusselt number Nu and maximum non-dimensional
vertical velocity component Vmax on the horizontal mid-plane (i.e. y/H = 0.5) at
RaCWHF = 106 and Pr = 7 for AR = 0.5 and 4.

AR = 0.5 AR = 4

M1 M2 M3 M2 M4 M5

/ðNuÞ 5.3979 5.4056 5.4077 7.0783 7.0874 7.0876
/ext 5.408 7.088
eext (%) 0.194 0.052 0.013 0.134 0.0056 0.0028

/(Vmax) 51.298 51.819 52.013 51.960 51.137 51.079
/ext 52.078 51.022
eext (%) 1.50 0.498 0.125 1.84 0.224 0.112
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3. Results and discussion

3.1. Distributions of non-dimensional temperature and velocity

The distributions of non-dimensional temperature for CWT (i.e.
hCWT = (T � Tcen)/(TH� TC)) and CWHF (i.e. hCWHF = (T � Tcen)k/qL) con-
figurations along the horizontal mid-plane (i.e. at y/H = 0.5) are
shown in Fig. 2 for Ra = 104 � 106 and Pr = 7.0 where Tcen is the tem-
perature at the centre of the domain. The distributions of non-dimen-
sional vertical velocity component V = u2L/a for the corresponding
cases are shown in Fig. 3. The case for which the highest mean Nusselt
number Nu ¼

R H
0 hdy=k ¼ Numax is obtained is also indicated in Figs. 2

and 3 by an asterisk in the legend. It can be seen from Fig. 2 that the
temperature gradient @T/@x1 at the vertical wall in the CWT
configuration increases with increasing AR up to an aspect ratio value
ARmax for which the maximum value of Nu is obtained. For AR > ARmax

the temperature gradient @T/@x1 at the vertical wall decreases with
increasing AR for the CWT configuration. In contrast, in the CWHF
configuration the temperature gradient @T/ox1 next to the wall must
remain unchanged to satisfy the boundary condition (i.e.
�kð@T=@x1Þx1¼0 ¼ q and �kð@T=@x1Þx1¼L ¼ qÞ. It is evident from
Fig. 2 that for small values of AR (e.g. AR� 1.0) the temperature pro-
file remains linear in nature indicating conduction-dominated ther-
mal transport. The temperature distribution becomes non-linear for
high values of AR at a given value of RaCWT(RaCWHF) in the CWT
(CWHF) configuration as the effects of convection strengthen for
higher values of AR. It can be seen from Fig. 3 that the magnitude of
V remains small for small values of aspect ratio indicating weak con-
vective transport at these aspect ratios. It is evident from Fig. 3 that
the magnitude of V monotonically increases with increasing AR for
a given value of RaCWT in the CWT configuration. Although this trend
is not strictly monotonic in the CWHF configuration, the magnitude of
V attains high values for high values of AR.

It can also be observed from inspection of Figs. 2 and 3 that the
temperature profile becomes increasingly non-linear and the mag-
nitude of V increases with increasing Rayleigh number for both
CWT and CWHF configurations. The strengthening of convective
transport at high values of Rayleigh number can also be observed
from Figs. 4 and 5 where the contours of non-dimensional temper-
ature h and stream function W = w/a are shown respectively. The
stream function is defined as w ¼

R
u1dx2 �

R
u2dx1 which indicates

that the distributions of u1 with x2 and u2 with x1 ultimately deter-
mine the magnitude of the stream function. The distributions of
streamlines in Fig. 5 are helpful in understanding the nature of
the flow pattern within the enclosure. Fig. 4 shows that the iso-
therms remain parallel to the vertical walls at small aspect ratio
indicating predominantly conduction-driven thermal transport.
Moreover, the magnitude of W remains small everywhere in the
enclosure for small values of AR supporting the notion that convec-
tive effects are weak. Figs. 4 and 5 suggest that the effects of con-
vection strengthen with increasing values of RaCWT and RaCWHF for
a given value of AR, which is reflected in the curved isotherms and
the greater magnitudes of W for higher values of Rayleigh number.

3.2. Effects of Rayleigh number and aspect ratio

3.2.1. Aspect ratio effects at different Rayleigh number
Figs. 2 and 3 highlight that the value of ARmax decreases with

increasing RaCWT in the CWT configuration. In marked contrast, in
the CWHF configuration the maximum mean Nusselt number Nu
is obtained for the highest value of AR irrespective of RaCWHF. It is
evident from Figs. 2 and 3 that the thermal transport is predomi-
nantly confined to the boundary layer for the aspect ratio ARmax

and thus it is important to understand the thermal transport in
the boundary-layer regime for both CWT and CWHF configurations.

3.2.2. Effects of Rayleigh number on velocity magnitude
Equating the order of magnitudes of the inertial force and buoy-

ancy force in the vertical direction yields:

#2=H � gbDTchar ð9Þ

where # is a characteristic velocity scale and DTchar is a characteris-
tic temperature difference which can be taken as the temperature
difference between the vertical walls DT in the CWT configuration.
For both the configurations the wall heat flux can be scaled as:

q � kDTchar=dth ð10Þ

which can be used to estimate DTchar as:

DTchar � qdth=k ð11Þ

Equating the order of magnitude of the buoyancy and viscous
forces in the boundary layer gives rise to:
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Fig. 2. Variations of non-dimensional temperature h along the horizontal mid-plane (i.e. y/H = 0.5) at Pr = 7 for RaCWHF(RaCWT): (a) 104, (b) 105 and (c) 106 (� highlights the AR
in which the maximum mean Nusselt number Nu occurs).
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qgbDTchar � l #

d2 ð12Þ

where d is the hydro-dynamic boundary layer thickness.
Using Eq. (9) in Eq. (12) yields the following scaling for # and d

for the CWT configuration:

# � ða=LÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RaCWTPrAR

p
and d � LðARÞ0:25ðPr=RaCWTÞ0:25 ð13Þ

whereas the following scaling estimate can be obtained for the
CWHF configuration:

d � LðARÞ0:2ðPr=RaCWHFÞ0:2½f1ðRaCWHF; Pr;ARÞ	0:2 ð14Þ

where f1(RaCWHF,Pr,AR) is a function which accounts for the ratio of
hydrodynamic boundary layer thickness to thermal boundary layer
thickness in the CWHF configuration. Using Eqs. (9), (11) and (14)
gives rise to the following estimate of # in the CWHF configuration:
# � ða=LÞRa2=5
CWHFPr3=5AR3=5

=f 2=5
1 ð15Þ

It is worth noting that the magnitudes of the inertial, buoyancy
and viscous forces remain of the same order for both CWT and
CWHF boundary conditions according to the scaling estimates pre-
sented in Eqs. (13)–(15). According to Eqs. (13) and (15) the non-
dimensional vertical velocity component V for the CWT and CWHF
configurations scales in the following manner for the aspect ratios
where the heat transfer is primarily driven by boundary layer
transport:
V � #L=a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RaCWTPrAR

p
ðfor CWTÞ and V � #L=a

� Ra2=5
CWHFPr3=5AR3=5

=f 2=5
1 ðfor CWHFÞ ð16Þ
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Fig. 3. Variations of non-dimensional vertical velocity component V along the horizontal mid-plane (i.e. y/H = 0.5) at Pr = 7 for RaCWHF(RaCWT): (a) 104, (b) 105 and (c) 106

(� highlights the AR in which the maximum mean Nusselt number Nu occurs).
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Given that the above analysis is based on an order-of-magni-
tude estimation, the scaling relations given by Eqs. (13)–(16)
(and the ones which appear later in this paper) are expected to
be useful in predicting the qualitative trends but they do not nec-
essarily yield accurate quantitative predictions. Fig. 3 shows that
the magnitude of V increases with increasing AR for a given set
of values of Rayleigh number, Prandtl number, a and L for both
CWT and CWHF configurations where the thermal transport pri-
marily takes place within the boundary layer (i.e. boundary layer
regime according to Bejan and Tien (1978)), which is consistent
with the qualitative trends predicted by Eq. (16).

3.2.3. Effects of aspect ratio and Rayleigh number on temperature
difference between vertical walls

For the CWHF configuration the temperature difference be-
tween the vertical walls DT can be scaled as:
DT � qdth=k

� ðDTÞcondðARÞ0:2ðPr=RaCWHFÞ0:2½f1ðRaCWHF; Pr;ARÞ	�0:8 ð17Þ

where (DT)cond = qL/k is the temperature difference between the
vertical walls under pure conduction. Eq. (17) qualitatively indi-
cates that DT is expected to decrease in comparison to
(DT)cond = qL/k with increasing RaCWHF for a given value of AR, which
is consistent with the observations made from Fig. 2. The tempera-
ture difference between the vertical walls for the CWHF configura-
tion becomes exactly equal to that obtained for the CWT
configuration when heat transfer takes place purely due to conduc-
tion. Thus, the temperature difference between vertical walls for the
CWHF configuration remains smaller than that obtained in the CWT
configuration for the same numerical values of RaCWHF and RaCWT

(see Fig. 2). It is worth noting that Eq. (17) suggests that DT is likely
to increase with AR but such a trend is not clearly visible from Fig. 2
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Fig. 4. Contours of non-dimensional temperature h for convection at Pr = 7 for RaCWHF = 104 (1st row) and RaCWHF = 106 (2nd row).
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for the aspect ratios where boundary-layer type transport is evi-
dent. Although both AR and RaCWHF have an exponent of 0.2 in
the scaling relation given by Eq. (17), the magnitude of RaCWHF re-
mains much greater than AR and the value of AR0.2 remains of the
order of unity for the AR values at which the boundary-layer regime
is evident. Thus, the effects of RaCWHF are likely to be more promi-
nent than the effects of AR for the parameter range explored here.

3.2.4. Effects of aspect ratio and Rayleigh number on heat flow rate
The total amount of thermal energy flow rate _Q can be obtained

by an energy-flux integral over any cross-section at a given height,
which can be expressed in the following manner _Q ¼

R L
0 ½qcpu2T�

k@T=@x2	dx1 for the convection regime where boundary-layer
transport plays the key role (Gill, 1966; Bejan, 1979). The contribu-
tion of thermal transport due to advection within the boundary
layer is given by Bejan (1979):

_Q conv ¼
Z L

0
qcpu2T dx1 ð18iÞ

As the fluid velocity outside the boundary layer becomes negli-
gible in this configuration the integral

R L
0 qcpu2Tdx1 can alterna-

tively be written as:Z L

0
qcpu2Tdx1 


Z d

0
qcpu2T dx1 ð18iiÞ

The contribution of thermal diffusion to _Q within the boundary
layer is given by Bejan (1979):

_Q diff ¼
Z L

0
�k

@T
@x2

dx1 ð19Þ

Using the scaling estimate given by Eq. (13) the order of magni-
tude of heat transfer due to convection can be estimated as:
_Qconv � ðkDTÞRa0:25

CWTPr0:75AR0:75 for the CWT boundary condition
according to Bejan et al. (1981). The maximum magnitude of _Qdiff

for the CWT boundary condition can, in turn, be estimated as:
_Qdiff � ðkDTÞAR�1 (Bejan et al., 1981). Following similar scaling

arguments as followed by Bejan et al. (1981) and using Eqs. (14),
(15) and (17) the contribution of _Q conv can be estimated as:
_Qconv ¼ ðqLÞPrARf�1

1 whereas the maximum magnitude of _Qdiff

scales as: _Qdiff � ðqLÞAR�0:8ðPr=RaCWHFÞ0:2f�0:8
1 . The above scaling

estimates indicate that the effects of convection strengthen with
increasing AR whereas the thermal diffusion effects weaken with
increasing AR for both the CWT and CWHF configurations. The
above conclusion is in full agreement with analytical results ob-
tained by Bejan (1979) for the CWT boundary condition. The quan-
tities kDT and qL remain unchanged for the CWT and CWHF
configurations and thus according to the above scaling of _Qconv ,
the convective transport in the CWHF configuration strengthens
more rapidly with increasing AR than in the CWT configuration
for a given set of values of Rayleigh and Prandtl numbers. In con-
trast, according to the above scaling of _Q diff , the thermal diffusion
strength decreases more rapidly with increasing AR in the CWT
configuration than in the CWHF configuration for a given set of val-
ues of Rayleigh and Prandtl numbers.

As the convection strength increases and the diffusion strength
decreases significantly with increasing AR in the CWT configura-
tion, the maximum mean Nusselt number Nu increases up to an as-
pect ratio ARmax when the strengthening of convection dominates
over the weakening of thermal diffusion. However, for AR > ARmax

the mean Nusselt number Nu in the CWT configuration starts to
decrease with increasing AR as the weakening of diffusion strength
dominates over the strengthening of convective strength. The
strengthening of convective transport relative to the weakening
of diffusive thermal transport is more prevalent in the CWHF con-
figuration than in the CWT configuration for the same numerical
values of Rayleigh number, which leads to a monotonic increase
in Nu with increasing AR in the CWHF configuration.
3.2.5. Effects of aspect ratio and Rayleigh number on the mean Nusselt
number

The variation of Nu with AR for both the CWT and CWHF con-
figurations at Pr = 7 and 0.71 are shown in Fig. 6a and b respec-
tively. It can be seen from Figs. 6a and b that the variation of
Nu with AR for Pr = 0.71 remains both qualitatively and quantita-
tively similar to the corresponding variation obtained for Pr = 7 in
both the CWT and CWHF configurations. Thus detailed results are
confined to a single Prandtl number (Pr = 7) in this paper for the
sake of conciseness. The aforementioned non-monotonic variation
of Nu with AR in the CWT configuration can be seen from Fig. 6a.
The value of ARmax at which Nu attains its maximum value de-
pends on the relative strengths of thermal advection and diffusion
mechanisms and the scalings of _Qconv and _Q diff for the CWT
boundary condition suggest that ARmax is expected to change with
RaCWT. Fig. 6a does indeed demonstrate that the value of ARmax

decreases with increasing RaCWT. The variation of Nu with AR
for the CWT configuration is consistent with previous studies
(Bejan, 1980; Dong and Zhai, 2007; Ganguli et al., 2009). As the
strengthening (weakening) of thermal advection (diffusion) in
the CWHF configuration with increasing AR is more (less) rapid
than in the CWT configuration, the mean Nusselt number Nu in-
creases monotonically with increasing AR in the CWHF configura-
tion as shown in Fig. 6b.

3.2.6. Comparison between CWT and CWHF configurations
As DT assumes smaller values in the CWHF configuration than

in the CWT configuration for the same values of RaCWT and RaCWHF

(see Fig. 2 and Eq. (17)), the magnitude of the velocity induced in
the CWHF case remains smaller than in the CWT case for the same
numerical values of Rayleigh number (see Fig. 3). For cases where
the aspect ratio is approximately one, smaller velocity magnitudes
and weaker convection strength in the CWHF configuration than in
the CWT configuration lead to reduced values of Nu in the CWHF
case in comparison to the CWT case (for the same numerical values
of Rayleigh number). However, at large values of AR (i.e.
AR > ARmaxÞ Nu begins to decrease with increasing AR for the
CWT configuration whereas Nu increases monotonically with
increasing AR for the CWHF configuration and this eventually gives
rise to higher values of Nu in the CWHF case than the correspond-
ing value in the CWT case for the same numerical values of Ray-
leigh number (see Fig. 6a and b).

It can be concluded from Eqs. (18i) and (19) that the advective
thermal transport starts to overcome the thermal diffusive trans-
port when ðkDTÞRa0:25

CWTPr0:75AR0:75 > ðkDTÞAR�1 which suggests that
for RaCWT > Pr�3AR�7 convection plays a key role in thermal trans-
port. This is consistent with the criterion (i.e. RaCWT > AR�7) pro-
posed by Bejan et al. (1981). Similarly for the CWHF
configuration advection starts to overcome the diffusive transport
when ðqLÞPrARf�1

1 > ðqLÞAR�0:8ðPr=RaCWHFÞ0:2f�0:8
1 which implies for

RaCWHF > Pr�4AR�9 convection plays a key role in the CWHF config-
uration. This suggests that convection plays a significant role and
the boundary-layer regime of convection can be realised for all
the AR P 1 cases in both CWT and CWHF configurations. According
to the above criteria the values of RaCWT(RaCWHF) above which con-
vective transport is important for AR = 0.125, 0.25 and 0.5 are of
the order of 106, 104 and 102 (108, 105 and 102) for the CWT
(CWHF) configuration respectively.

3.3. Behaviour of mean Nusselt number Nu and Nusselt number
correlations

3.3.1. Nusselt number scaling for the boundary-layer regime
The heat transfer coefficient h can be scaled as:

q � kDT=dth � hDT ð20iÞ
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Fig. 6. Comparison between the variations of mean Nusselt number Nu with aspect ratio AR for Pr = 0.71 and 7.0 at RaCWHF (RaCWT) = 104, 105 and 106 for (a) constant wall
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Based on Eq. (20i) the mean Nusselt number Nu can be esti-
mated as:

Nu ¼ hL
k
� L

dth
ð20iiÞ

Using the scaling for d from Eqs. (13) and (14) one obtains:

Nu � RaCWT

PrAR

� �1=4

f2ðRaCWT; Pr;ARÞ ðfor CWTÞ;

Nu � RaCWHF

PrAR

� �1=5

½f1ðRaCWHF; Pr;ARÞ	0:8ðfor CWHFÞ ð20iiiÞ

where f2(RaCWT,Pr,AR) is a function which accounts for the ratio of
hydrodynamic boundary layer thickness to thermal boundary layer
thickness in the CWT configuration. A similar scaling of Nu for the
CWT configuration was also reported by Bejan (1979).

3.3.2. Scaling of velocity magnitude for the parallel-flow regime
In the parallel-flow regime the vertical velocity component at

the core of the enclosure vanishes and the fluid flow in the
enclosure is made up of two counter-flowing horizontal streams
and the temperature gradient in the horizontal direction K = @T/
@x1 � DT/L � q/k remains constant. Under this condition the stea-
dy-state vorticity (i.e. x = (@u2/@x1 � @u1/@x2)) transport equation
takes the following form:

quj
@x
@xj
¼ qgb

@T
@x1
þ @2s21

@x1@x1
þ @2s22

@x1@x2
� @2s11

@x1@x2
� @2s12

@x2@x2
ð21iÞ

The term on the left hand side of Eq. (21i) accounts for advec-
tion of vorticity whereas the first term on right hand side indicates
the vorticity generation/destruction due to buoyancy and the last
four terms on the right hand side of Eq. (21i) indicate the molecular
diffusion of vorticity. The contribution of �@2s12=@x2

2

� �
is the lead-

ing-order contributor to the vorticity diffusion and the asymptotic
analysis by Cormack et al. (1974a) indicates an equilibrium is
maintained between the buoyancy and viscous contributions at
the core region of the enclosure for the parallel-flow regime (Bejan
and Tien, 1978). Equating the order of magnitude of vorticity gen-
eration/destruction by buoyancy and the molecular diffusion of
vorticity at the middle of the domain yields:
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qgbK � � @
2s12

@x2
2

or qgb
DT
L
� @

@x2
2

l @u1

@x2

� 	
or qgb

DT
L

� luc

F3H3 ð21iiÞ

which leads to the following scaling for the horizontal velocity com-
ponent at the core:

uc � F3ðqgbKH3=lÞ ð21iiiÞ

where the hydrodynamic boundary layer thickness on the horizon-
tal surfaces is scaled as: d � FH with F being an appropriate fraction
(i.e. 0 < F < 1). Thus uc scales in the following manner for the CWT
and CWHF configurations:

uc � ða=LÞF3
CWTRaCWTAR3 ðfor CWTÞ; uc

� ða=LÞF3
CWHFRaCWHFAR3 ðfor CWHFÞ ð21ivÞ

It is worth noting that the asymptotic analysis by Cormack et al.
(1974a) also suggests uc � (a/L)RaCWTAR3 for the CWT configura-
tion whereas Eq. (21iv) is derived here based on scaling arguments.

Equating the order of magnitudes of the convective and diffu-
sive terms of the energy transport equation gives the following
relation for the CWT configuration:

qcpu1
@T
@x1
� k

@2T
@x2

2

or qcpuc
DT
L
� k

DT1

F2
CWTH2 f3ðRaCWT; PrÞ2 ð21vÞ

where DT1 is the characteristic temperature difference between the
horizontal adiabatic walls and the thermal boundary layer thickness
adjacent to the horizontal walls is scaled as: dth � FH/f3(RaCWT,Pr).
Eq. (21iv) yields the following relation for the CWT configuration:

qcpucK � k

L2 DTF3
CWTRaCWTAR3 � kf 2

3

F2
CWTH2 DT1 or DT1

� RaCWTF5
CWTAR5DT=f3ðRaCWT; PrÞ2 ð21viÞ

Eq. (21iv) is derived here based on scaling arguments but it is in
excellent agreement with analytical results by Cormack et al.
(1974a) who also indicated that DT1 scales as DT1 � RaCWTAR5DT
in the CWT configuration.

Equating the order of magnitudes of the advective and diffusive
terms of the energy transport equation for the CWHF configuration
yields:

qcpu1
@T
@x1
� k

@2T
@x2

2

or qcpuc
q
k
� k

DT1

F2
CWHFH2 f4ðRaCWHF; PrÞ2 ð21viiÞ

Using Eq. (21iv) in Eq. (21vii) gives:

DT1 � RaCWHFF5
CWHFAR5 qL

k
1
f 2
4

ð21viiiÞ

where the temperature difference between the vertical walls DT in
the CWHF configuration remains of the order of qL/k in the parallel-
flow regime (i.e. DT � qL/k).

3.3.3. Scaling of mean Nusselt number in the parallel flow regime
3.3.3.1. CWT configuration. The mean Nusselt number Nu can be
estimated by carrying out an energy flux analysis over any vertical
cross-section (Bejan and Tien, 1978):

Nu ¼ L
HkDT

Z H

0
qcpu1T � k

@T
@x1

� 	
dx2 ¼ Nu1 þ Nu2 ð22iÞ

where Nu1 and Nu2 originate due to convective and diffusive effects
which are given by:
Nu1 ¼
L

HkDT

Z H

0
qcpu1Tdx2 and

Nu2 ¼ �
L

HkDT

Z H

0
k
@T
@x1

dx2 ð22iiÞ

Using Eqs. (21iv) and (21vi) Nu1 can be scaled for the CWT con-
figuration as:

Nu1 ¼
L

HkDT

Z H

0
qcpu1Tdx2 �

LqcpucDT1H
HkDT

� Ra2
CWTF8AR8

=f 2
3 ð22iiiÞ

whereas Nu2 can be scaled as:

Nu2 ¼ �
L

HkDT

Z H

0
k
@T
@x1

dx2 ¼
HDTLk
HDTLk

¼ 1 ð22ivÞ

Thus in the parallel-flow regime (i.e. RaCWTAR3 ? 0) the mean
Nusselt number Nu can be given in the following way for the
CWT configuration:

Nu ¼ 1þ aCWTRa2
CWTF8

CWTAR8
=f 2

3 ð22vÞ

where aCWT is an appropriate constant. It is worth noting that
Eq. (22v), which is derived here based on scaling arguments,
is in remarkable agreement with the expression NuA ¼ 1þ
Ra2

CWHFAR8=362880 obtained by Cormack et al. (1974a) based on
asymptotic analysis.

3.3.3.2. CWHF configuration. Using Eqs. (21iv) and (21viii) the Nus-
selt number Nu1 in the CWHF configuration can be estimated as:

Nu1 ¼
L

HkDT

Z H

0
qcpu1Tdx2 �

LqcpucDT1H
HkðqL=kÞ

� Ra2
CWHFF8

CWHf AR8
=f 2

4 ð23iÞ

whereas Nu2 can be scaled as:

Nu2 ¼ �
L

HkDT

Z H

0
k
@T
@x1

dx2 ¼
LqH

HkðqL=kÞ ¼ 1 ð23iiÞ

Thus in the parallel-flow regime (i.e. RaCWHFAR3 ? 0) the mean
Nusselt number Nu can be given in the following manner for the
CWHF configuration:

Nu ¼ 1þ aCWHFRa2
CWHFF8

CWHFAR8
=f 2

4 ð23iiiÞ

where aCWHF is an appropriate constant.

3.3.4. Nusselt number correlations for CWT configuration
The variations of Nu shown in Fig. 6a and b are now replotted

in Fig. 6c and d for Pr = 7 and 0.71 respectively to show Nu values
for both the CWT and CWHF boundary conditions and for the
purpose of comparing the performance of the existing correla-
tions for the CWT boundary condition. Eqs. (22v) and (23iii) indi-
cate that Nu for small values of AR (i.e. AR� 1) attains
comparable values for the same numerical values of RaCWT and
RaCWHF in both the CWT and CWHF configurations. This feature
can be confirmed from Fig. 6c and d which show that Nu at iden-
tical values of RaCWT and RaCWHF remain almost the same for
small values of AR in both the CWT and CWHF configurations
(see AR = 0.125 case in Fig. 6c and d). However in the CWT config-
uration the convective transport starts to play a key role at a
much smaller value of Rayleigh number than that in the CWHF
configuration and, as a result of this, the mean Nusselt number
Nu in the CWHF configuration is smaller than in the CWT config-
uration for the AR = 0.25 and 0.5 cases at the same numerical val-
ues of RaCWT and RaCWHF (see Fig. 6c and d).
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3.3.4.1. Correlations for the parallel-flow regime. Cormack et al.
(1974a) carried out an asymptotic analysis in the CWT configura-
tion for the RaCWTAR3 ? 0 limit and obtained the following expres-
sion for the mean Nusselt number (i.e.Nu ¼

R H
0 Nudx2=H):

Nu ¼ 1þ Ra2
CWTAR8

=362880 ð24Þ

It is worth noting that the analytical result given by Eq. (24) is
remarkably similar to the scaling estimate given by Eq. (22v). The
temperature difference between the horizontal walls DT1 in the
RaCWTAR3 ? 0 limit is given by (Cormack et al., 1974a):

DT1 ¼ RaCWTAR5DT=720 ð25Þ

Bejan and Tien (1978) argued that DT1 6 DT/10 in the parallel-
flow regime (i.e.RaCWTAR3 ? 0) which yields the following criterion
for this regime:

RaCWT < 72ðARÞ�5 ð26Þ

The other extreme convection condition is referred to as the
‘boundary-layer regime’ by Bejan and Tien (1978) where RaCWT as-
sumes large values and DT1 remains comparable to D T (i.e.
DT1 � DT).

3.3.4.2. Correlations for the boundary-layer regime. In the boundary-
layer regime the high values of temperature gradient are confined
to two thin boundary layers adjacent to the vertical walls. Bejan
and Tien (1978) obtained the following correlation for the bound-
ary-layer regime for the CWT configuration:

Nu ¼ 0:623Ra1=5
CWTAR�2=5 ð27Þ

In this regime the horizontal temperature gradient is given by:

K ¼ @T
@x1
� 60:93Ra3=5

CWTAR9=5 DT
H

ð28Þ

Bejan and Tien (1978) argued that the inception of the bound-
ary-layer regime can be indicated by K < 0.1(DT/L) which gives rise
to the following criterion:

RaCWT > 4:4� 104AR�14=3 ð29Þ

Some of the characteristics of both the boundary layer and
RaCWT AR3 ? 0 regimes are observed if the Rayleigh number RaCWT

falls in the range:

72ðARÞ�5
< RaCWT < 4:4� 104AR�14=3 ð30Þ

Bejan and Tien (1978) termed this as the ‘intermediate regime’.
Bejan and Tien (1978) combined Eqs. (24) and (27) to come up
with the following correlation which can be applied for all the
three aforementioned regimes:

Nu¼1þ Ra2
CWTAR8

=362880

 �n

þ 0:623Ra1=5
CWTAR�2=5


 �nh i1=n

where

n¼�0:386 ð31Þ

Berkovsky and Polevikov (1977) proposed the following corre-
lation for square enclosures including Prandtl number effects in
the CWT configuration:

Nu ¼ 0:18
RaCWTPr
0:2þ Pr

� �0:29

ð32Þ

Recently the present authors (Turan et al., 2010) proposed a
new correlation for square enclosures which was shown to provide
better agreement with the predictions of numerical simulations for
the CWT configuration (Shyy and Chen, 1990; Turan et al., 2010)
than the correlation proposed by Berkovsky and Polevikov (1977):

Nu ¼ 0:162Ra0:293
CWT

Pr
1þ Pr

� �0:091

ð33Þ
Eq. (33) is qualitatively consistent with the scaling estimation
given by Eq. (20iii), which suggested Nu � ðRaCWT=PrÞ1=4

f2ðRaCWT; PrÞ and, given the simplicity of the scaling analysis, the
small difference in the exponent of Rayleigh number is not
surprising.

For tall enclosures (i.e. AR� 1 but in practice usually
20 > AR > 2) the mean Nusselt number for the CWT configuration
is often expressed as: Nu ¼ c1Rac2

CWTARc3 and Bejan’s analysis (Bejan,
1979) demonstrated that the constants c1, c2 and c3 are functions of
RaCWT and AR. Bejan (1979) also showed that the analytical results
of Gill (1966) leads to the following expression of Nu for extremely
large values of aspect ratio (i.e. Ra1=7

CWTAR!/):

Nu ¼ 0:364½RaCWT=ðPrARÞ	1=4 ð34Þ

According to Bejan (1979) Nu for tall enclosures is given by:

Nu ¼ CB½RaCWT=ðPrARÞ	1=4
Z qe

�qe

ð1� qf Þ
6ð1þ qf Þ

2ð7� q2
f Þ

ð1þ q2
f Þð1þ 3q2

f Þ
14=3 dqf ð35Þ

where CB and qe are functions of Ra1/7AR and CB (qe) is found to de-
crease (increase) from 1.0 to 0.912 (0.1 to 1.0) with increase in
Ra1=7

CWTAR from 0 to 1000 (Bejan, 1979). Bejan (1979) found that Nu
for tall enclosures deviate from the asymptotic value when
Ra1=7

CWTAR < 100 and the prediction of Eq. (35) approaches to that
of Eq. (34) for (RaCWT/AR)1/4 P 10.

Different mean Nusselt number correlations for the CWT config-
uration have been proposed for tall enclosures based on experimen-
tal (Yin et al., 1978; Elsherbiny et al., 1982; Wakitani, 1996) and
computational (Lee and Korpela, 1983; Le Quéré, 1990; Wakitani,
1997; Zhao et al., 1997; Frederick, 1999; Lartigue et al., 2000; Dong
and Zhai, 2007; Ganguli et al. (2009)) studies and interested readers
are referred to Ganguli et al. (2009) for an extensive review and the
assumptions behind the respective correlations. One of the most
used correlations for tall enclosures with AR > 5 for the CWT bound-
ary condition was proposed by Elsherbiny et al. (1982):

Nu ¼ MaxðNu1c;Nu2c;N3cÞ ð36iÞ

where Nu1c, Nu2c and Nu3c are given by:

Nu1c ¼ 0:0605Ra1=3
CWT;

Nu2c ¼ 1þ 0:104Ra0:293
CWT

1þ ð6310=RaCWTÞ1:36

" #3
2
4

3
5

1=3

and

Nu3c ¼ 0:242ðRaCWT=ARÞ0:272 ð36iiÞ

The performance of the aforementioned correlations for the
mean Nusselt number will be compared to Nu obtained from
numerical simulations in the next sub-section.

3.3.5. Predictions of correlations for CWT configuration
Fig. 6c and d demonstrate that Eq. (31) proposed by Bejan and

Tien (1978) satisfactorily captures the variation of Nu with AR for
AR < 1 and the agreement between the prediction of Eq. (31) and
the numerical results improves with decreasing aspect ratio. How-
ever, this expression underpredicts the value of Nu for the aspect
ratios of the order of unity (i.e. AR � 1). The extent of this under-
prediction increases with increasing value of RaCWT. Eq. (35) pro-
posed by Bejan (1979) satisfactorily predicts the mean Nusselt
number Nu with AR for large values of aspect ratio (i.e. AR� 1).
However, the expression by Bejan (1979) overpredicts Nu for as-
pect ratio equal to unity and the extent of this overprediction
increases with increasing RaCWT. The correlation (Eq. (36ii)) by Els-
herbiny et al. (1982), although only proposed for AR > 5, exhibits
satisfactory quantitative agreement with the present simulation
data for tall enclosures with AR P 2 (see Fig. 6c and d). However,
the correlation by Elsherbiny et al. (1982) (Eq. (36ii)) also
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overpredicts the value of Nu for square enclosures for all the values
of Rayleigh number considered in this study (see Fig. 6c and d). The
arithmetic mean of the predictions of Eqs. (31) and (35) yield a sat-
isfactory agreement with numerical prediction of Nu for AR = 1.0 as
demonstrated in Fig. 6c and d. The predictions of the correlations
proposed by Berkovsky and Polevikov (1977) (Eq. (32)) and Turan
et al. (2010) (Eq. (33)) for square enclosures are also shown in
Fig. 6c and d, which indicates that both Eqs. (32) and (33) satisfac-
torily predict Nu for square enclosures.

3.3.6. Correlations for CWHF configuration and their assessment
3.3.6.1. Correlation for AR > 1. Eq. (20iii) suggests that the mean
Nusselt number Nu for a square enclosure is expected to scale as
Nu � ðRaCWHF=PrÞ1=5½f1ðRaCWHF; PrÞ	0:8 and based on this scaling
analysis a correlation for square enclosure in the CWHF configura-
tion is suggested here in the following form:

Nu ¼ 0:209Ra0:249
CWHF

Pr
1þ Pr

� �0:031

ð37iÞ

which is sufficiently close to the Rayleigh number dependence pre-
dicted by the scaling estimate in Eq. (20iii) to give confidence in this
approach. For 8 P AR > 1 cases a correlation is proposed for Nu in
the following manner by analyzing the simulation results:

Nu ¼ 0:209Ra0:249
CWHF

Pr
1þ Pr

� �0:031

ðcA ln ARþ 1Þ ð37iiÞ
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Fig. 7. Variation of mean Nusselt number Nu with aspect ratio AR (�) for the CWHF boun
at: (a) Pr = 0.71, (b) Pr = 7. Variation of mean Nusselt number Nu with aspect ratio AR (�
AR < 1 (Eq. (38iii)) (–) at: (c) Pr = 0.71, (d) Pr = 7.
where cA is a correlation parameter. It is worth noting that the
expression given by Eq. (37ii) compares well with the qualitative
trend predicted by the scaling estimate given by Eq. (20iii)
although the exponent of RaCWHF in Eq. (37ii) is slightly different
from Eq. (20iii) and the function (cAlnAR + 1) is empirically
proposed to capture the mean Nusselt number Nu variation
with AR. Fig. 7a and b show that Eq. (37ii) satisfactorily
predicts Nu obtained from simulation data in the Rayleigh num-
ber range 104

6 RaCWHF 6 106 when cA is taken to be
cA ¼ 0:737Ra�0:189

CWHF .
3.3.6.2. Correlation for AR < 1. For the parallel-flow regime, conduc-
tion remains the principal mode of heat transfer and the temper-
ature distribution within the enclosure for both the CWT and
CWHF boundary condition becomes identical in nature. Thus it
can be expected that Eq. (24) is likely to work also in the CWHF
configuration when RaCWT is replaced by RaCWHF in this limiting
condition. Based on this limiting condition the mean Nusselt
number Nu for the aspect ratio range 1/8 6 AR 6 1 is proposed
here in the following manner for the Rayleigh number range
104
6 RaCWHF 6 106:
Nu ¼ NuA when RaCWHFAR3
< 103 and

Nu ¼ NuB when RaCWHFAR3 P 103 ð38iÞ
AR

1 2 3 4 5 6 7 8

N
u

1

2

3

4

5

6

7

8

(b)

AR

N
u

1

2

3

4

5

6

7

8

Ra = 106

Ra = 105

Ra = 104

(d)

Pr = 7 

Pr = 7 

0.4 0.5 0.6 0.7 0.8 0.9 1.0

dary condition along with the prediction of the correlation for AR > 1 (Eq. (37ii)) (–)
) for the CWHF boundary condition along with the prediction of the correlation for
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where

NuA ¼ 1þ Ra2
CWHFAR8

=362880 and

NuB ¼ 0:209Ra0:249
CWHF

Pr
1þ Pr

� �0:031

ðcBð1� ARÞcc þ 1Þ ð38iiÞ

where cB and cC are given by:

cB ¼ �1:168 and cC ¼ 0:683Ra0:089
CWHF ð38iiiÞ

Fig. 7c and d shows that the correlation given by Eq. (38iii) satisfac-
torily predicts the variation of Nu for all the AR 6 1 cases considered
here.

4. Conclusions

The effects of constant wall temperature and constant wall heat
flux boundary conditions at the vertical side walls on laminar stea-
dy-state natural convection of Newtonian fluids in rectangular
enclosures with aspect ratios (height:width) ranging from 1/8 to 8
have been numerically studied. The simulations cover a wide range
of Rayleigh number ranging from 104 to 106 for two Prandtl num-
bers Pr = 0.71 and 7.0. The mean Nusselt number Nu is found to in-
crease with increasing values of Rayleigh number for both the CWT
and CWHF boundary conditions. It has been shown that for the CWT
boundary condition the mean Nusselt number Nu increases with
increasing aspect ratio AR up to an aspect ratio ARmax where Nu at-
tains its maximum value and for AR > ARmax the mean Nusselt num-
ber Nu decreases with increasing AR, which is entirely consistent
with several previous studies. In contrast, the mean Nusselt number
Nu increases monotonically with increasing AR in the case of CWHF
boundary condition for all of the aspect ratios considered here.
However, at large values of AR the mean Nusselt number Nu reaches
an asymptotic value for the CWHF boundary condition. Using scal-
ing arguments it is shown that the convective thermal transport
strengthens whereas the diffusive transport weakens with increas-
ing AR for both boundary conditions. However, the strengthening of
convective transport relative to the weakening of diffusive thermal
transport is more prevalent in the CWHF condition than in the CWT
configuration for the same numerical values of Rayleigh number,
which leads to a monotonic increase in Nu with increasing AR in
the CWHF configuration. It has been demonstrated that Nu values
obtained from the two boundary conditions are sufficiently differ-
ent that the correlations developed for the CWT boundary condition
cannot be used to accurately predict Nu in the CWHF configuration
for the same numerical values of Rayleigh number. The appropriate
correlations for the CWT configuration have been identified based
on the comparison with simulation data and new correlations have
been developed for the CWHF boundary condition which are shown
to capture the mean Nusselt number Nu variation with AR for aspect
ratio and Rayleigh number ranges given by 1/8 6 AR 6 8 and
104
6 RaCWHF 6 106.

Appendix A. Non-dimensional governing equations and
boundary conditions

It is possible to non-dimensionalise the spatial co-ordinates,
velocity components, pressure and temperature in the following
manner:

xþi ¼ xi=L; uþi ¼ ui=Uref ; Pþ ¼ P=qU2
ref and

h ¼ ðT � Tref Þ=DTref ðA1Þ

where Uref is the reference velocity scale and DTref is a reference
temperature difference. For the CWT configuration DTref can be ta-
ken to be DT = (TH � TC) whereas DTref can be taken to be equal to
qL/k (i.e. D Tref = qL/k) for the CWHF configuration. Using Uref = a/L
in Eqs. (6)–(8) yield the following forms of non-dimensional mass,
momentum and energy conservation equations:

A.1. Non-dimensional mass conservation equation
@uþi
@xþi
¼ 0 ðA2Þ
A.2. Non-dimensional momentum conservation equations
uþj
@uþi
@xþj
¼ � @Pþ

@xþi
þ di2RaPrhþ Pr

@uþi
@xþj @xþj

ðA3Þ
A.3. Non-dimensional energy conservation equation
uþj
@h
@xþj
¼ @2h
@xþj @xþj

ðA4Þ

The above equations are solved in conjunction with following
boundary conditions:

A.4. Velocity boundary conditions

uþ1 ¼ 0 at xþ2 ¼ 0 and xþ2 ¼ AR due to no-slip condition on hori-
zontal walls.
uþ2 ¼ 0 at xþ2 ¼ 0 and xþ2 ¼ AR due to impenetrability of horizon-
tal walls.
uþ1 ¼ 0 at xþ1 ¼ 0 and xþ1 ¼ 1:0 due to impenetrability of vertical
walls.
uþ2 ¼ 0 at xþ1 ¼ 0 and xþ1 ¼ 1:0 due to no-slip condition on verti-
cal walls.

A.5. Temperature boundary conditions

@h=@xþ2 ¼ 0 at xþ2 ¼ 0 and xþ2 ¼ AR due to adiabatic condition on
horizontal walls.
h = 1 at xþ1 ¼ 0 at the hot vertical wall for CWT. boundary
condition.
�@h=@xþ1 ¼ 1 at xþ1 ¼ 0 at the hot vertical wall for CWHF bound-
ary condition.
h = 0 at xþ1 ¼ 1 at the cold vertical wall for CWT boundary
condition.
�@h=@xþ1 ¼ 1 at xþ1 ¼ 1 at the cold vertical wall for CWHF
boundary condition.
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