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LAMINAR NATURAL CONVECTION OF BINGHAM
FLUIDS IN A SQUARE ENCLOSURE WITH VERTICAL
WALLS SUBJECTED TO CONSTANT HEAT FLUX

Osman Turan1,2, Anuj Sachdeva1, Robert J. Poole1, and
Nilanjan Chakraborty1
1School of Engineering, University of Liverpool, Brownlow Hill, Liverpool,
United Kingdom
2Department of Mechanical Engineering, Karadeniz Technical University,
Trabzon, Turkey

In this study, two-dimensional steady-state simulations of laminar natural convection in

square enclosures with vertical sidewalls subjected to constant heat flux have been carried

out, where the enclosures are considered to be completely filled with a yield-stress fluid

obeying the Bingham model. Yield stress effects on heat and momentum transport are inves-

tigated for nominal values of Rayleigh number (Ra) in the range 103–106 and a Prandtl

number (Pr) range of 0.1–100. It is found that the mean Nusselt number Nu increases with

increasing values of Rayleigh number for both Newtonian and Bingham fluids. However, Nu

values obtained for Bingham fluids are smaller than that obtained in the case of Newtonian

fluids with the same nominal value of Rayleigh number Ra due to weakening of convective

transport. The mean Nusselt number Nu in the case of Bingham fluids is found to decrease

with increasing Bingham number, and for large values of Bingham number Bn, the value

settles to unity (Nu ¼ 1:0) as heat transfer takes place principally due to thermal conduc-

tion. The Nu values for the vertical walls subjected to constant heat flux are smaller than the

corresponding values in the same configuration with constant vertical wall temperatures (for

identical values of nominal Rayleigh, Prandtl, and Bingham numbers). However, the value

of Bingham number at which Nu approaches to unity remains the same for both constant

wall temperature and constant wall heat flux configurations. It is demonstrated that for

small values of Bingham number Nu increases with increasing Prandtl number, but the

opposite behavior occurs for large values of Bingham number. New correlations are pro-

posed for the mean Nusselt number Nu for both Newtonian and Bingham fluids for square

enclosures with vertical walls subjected to constant heat flux, which are shown to satisfac-

torily capture the correct qualitative and quantitative behavior of Nu in response to changes

in Ra, Pr, and Bn.
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1. INTRODUCTION

Natural convection of Newtonian fluids in square enclosures with differen-
tially heated vertical sidewalls and adiabatic horizontal surfaces is one of the most
extensively studied problems in the convective heat transfer literature [1–4]. In con-
trast, relatively limited effort has been directed to the natural convection of
non-Newtonian fluids in square enclosures. As many synthetic fluids are
non-Newtonian in nature, the analysis of natural convection of non-Newtonian
fluids in enclosures has several important applications such as in solar collectors,

NOMENCLATURE

a, A,A1,A2 correlation parameter, [-]

b,b1 correlation parameter, [-]

Bn Bingham number, [-]

Bncrit critical Bingham number, [-]

Bnmax Bingham number at which or

above the mean Nusselt number

attains a value of unity, [-]

c correlation parameter, [-]

cp specific heat at constant pressure,

[J=kgK]

e relative error, [-]

g gravitational acceleration, [m=s2]

Gr Grashof number, [-]

h heat transfer coefficient,

[W=m2K]

k thermal conductivity, [W=mK]

L length and height of the

enclosure, [m]

m stress growth exponent, [s]

m1 correlation parameter, [-]

n1 correlation parameter, [-]

Nu Nusselt number, [-]

p theoretical order of accuracy, [-]

P pressure, [N=m2]

Pþ nondimensional pressure, [-]

Pr Prandtl number, [-]

q heat flux, [W=m2]

r grid expansion ratio, [-]

Ra Rayleigh number, [-]

T temperature, [K]

Tref reference temperature (i.e.,

temperature in the geometrical

center of the domain), [K]

ui ith velocity component, [m=s]

ui
þ nondimensional ith velocity

component, [-]

U, V Dimensionless horizontal (U¼ u1
L=a) and vertical velocity (V¼ u2
L=a), [-]

Uref reference velocity, [m=s]

W characteristic velocity, [m=s]

xi coordinate in ith direction, [m]

xi
þ nondimensional coordinate in ith

direction, [-]

a thermal diffusivity, [m2=s]

b coefficient of thermal expansion,

[1=K]
_cc strain rate, [1=s]

_ccþ nondimensional strain rate, [-]

d,dth velocity and thermal boundary

layer thickness, [m]

h dimensionless temperature, [-]

m plastic viscosity, [Ns=m2]

myield yield viscosity, [Ns=m2]

n kinematic viscosity, [m2=s]

q density, [kg=m3]

sij(s) stress tensor, [N=m2]

sij
þ (sþ) nondimensional stress tensor, [-]

sy yield stress, [N=m2]

/ general primitive variable

w stream function, [m2=s]

Subscripts

C cold wall for constant wall

temperature configuration

CWHF constant wall heat flux

CWT constant wall temperature

ext extrapolated value

eff effective value

H hot wall for constant wall

temperature configuration

max maximum value

ref reference value

wall wall value

Special characters

DT difference between hot and cold

wall temperature (¼ (TH�TC) for

constant wall temperature

configuration), [K]

DTref reference temperature difference, [K]

Dmin,cell minimum cell distance, [m]
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in heating and preservation of canned foods, in electronic equipment cooling, and
in energy storage and conservation. Natural convection of fluids with a yield stress,
i.e., materials that behave as rigid solids for shear stresses lower than a critical yield
stress but which flow for higher shear stresses, is also important from both practi-
cal and theoretical standpoints. Natural convection in square or rectangular enclo-
sures has been analyzed for a number of different non-Newtonian models including
inelastic generalized Newtonian fluids (GNF) [5–11] and viscoelastic fluids [12].

For fluids exhibiting a yield stress, the articles of Vola et al. [13] and the present
authors [14] are the only two articles that deal with natural convection of yield stress
fluids in square enclosures with isothermal vertical sidewalls at different tempera-
tures. Vola et al. [13] developed a numerical method for simulating yield stress fluid
flow obeying the Bingham model in a series of geometries. They investigated yield
stress effects on the flow patterns and temperature fields in square enclosures with
vertical sidewalls at different temperatures. Their results show that as the yield stress
is increased the strength of convection currents diminish and, as a consequence, the

mean Nusselt number (Nu) decreases. At high Bingham numbers (Bn), convective
heat transfer becomes extremely weak and the heat transfer principally takes place
by conduction. In a recent study [14] by the present authors, the results of Vola
et al. [13] were extended to determine the effects of yield stress on heat and momen-
tum transport for a large range of Rayleigh numbers (103<Ra< 106) and Prandtl
numbers (0.1<Pr< 100). This computational data was used to propose correlations

for Nu for square cavities with isothermal vertical sidewalls at different temperatures
for both Newtonian and Bingham fluids in the range 103<Ra< 106 and
0.1<Pr< 100.

The present study extends the analysis of Turan et al. [14] by modifying the
vertical sidewall boundary condition to one of constant wall heat flux (CWHF)
rather than constant wall temperature (CWT). The difference in heat transfer beha-
vior (i.e., Nusselt number) of Bingham fluids in a square enclosure due to a change
in sidewall boundary condition (between CWT and CWHF) is yet to be addressed in
the open literature. In this respect, the main objectives of the present study are as
follows.

1. To obtain a physical understanding of natural convection of Bingham fluids in
square enclosures with vertical sidewalls exposed to CWHF.

2. To identify the differences in the heat transfer behavior between the config-
urations with CWHF and CWT for the same nominal values of Ra, Pr,
and Bn.

3. To propose a correlation for Nu for predicting the heat transfer rate in the case of
natural convection of Bingham fluids in a square enclosure with sidewalls exposed
to constant wall heat fluxes.

The rest of the articles will be organized as follows. The necessary mathemat-
ical background will be discussed in the next section, which will be followed by a
brief discussion of the numerical implementation. Following these sections, results
will be presented and subsequently discussed. The main findings are summarized
and conclusions are drawn in the final section.
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2. MATHEMATICAL BACKGROUND

2.1. Constitutive Equation for Yield Stress Fluid

The most well-known yield stress fluid model is the Bingham model [15], which
can be expressed in tensorial form in the following way.

_cc ¼ 0 for s � sy s ¼ mþ sy
_cc

� �
_cc for s > sy ð1Þ

where _ccij ¼ qui=qxj þ quj=qxi are the components of the rate of strain tensor _cc and

the quantities s, sy, and m are the stress tensor, yield stress, and the plastic viscosity

of the yielded fluid, respectively. The quantities s and _cc are evaluated based on the
second invariants of the stress and the rate of strain tensors respectively (in a pure
shear flow), which can be defined as

s ¼ 1

2
s : s

� �1=2
_cc ¼ 1

2
_cc : _cc

� �1=2
ð2Þ

O’Donovan and Tanner [16] used the bi-viscosity model to mimic the
stress-shear rate characteristics for a Bingham fluid:

s ¼ myield _cc for _cc � sy
myield

s ¼ sy þ m _cc� sy
myield

" #
for _cc >

sy
myield

ð3Þ

In effect, this GNF model replaces the solid material by a fluid of high vis-
cosity. O’Donovan and Tanner [16] showed that a value of myield equal to 1000 m
mimics the true Bingham model in a satisfactory way. Although bi-viscosity model
is used for the present analysis, the effects of the choice of regularisation have been
investigated by conducting some limited simulations using the exponential model
due to Papanastasiou [17].

s ¼ syð1� e�m _ccÞ þ m _cc ð4Þ

where m is the stress growth exponent which has the dimensions of time. This model
also transforms the solid region to a viscous one of high viscosity.

2.2. Dimensionless Numbers

The Rayleigh number Ra represents the ratio of the strengths of thermal trans-
ports due to buoyancy to thermal conduction, which can be defined as follows for
the CWHF boundary condition

Ra ¼ q2cpgbqL4

mk2
¼ GrPr ð5Þ
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where Gr is the Grashof number and Pr is the Prandtl number, which are defined as

Gr ¼ q2gbqL4

m2k
ð6aÞ

Pr ¼ mcp
k

ð6bÞ

The Grashof number represents the ratio of the strengths of buoyancy and vis-
cous forces while Pr depicts the ratio of the strengths of momentum diffusion to ther-
mal diffusion. Alternatively, Pr can be taken to represent the ratio of the
hydrodynamic boundary layer to thermal boundary layer thicknesses. These defini-
tions are referred to as nominal values as they contain the constant plastic viscosity m
(i.e., are not based on a viscosity representative of the flow). Using dimensional
analysis it is possible to show that for natural convection of Bingham fluids in a
square enclosure Nu¼ f1(Ra, Pr, Bn), where the Nusselt number Nu and Bingham
number Bn are given by:

Nu ¼ hL

k
ð7aÞ

Bn ¼ sy
m

ffiffiffiffiffiffiffiffi
k

gbq

s
ð7bÞ

where Nu represents the ratio of heat transfer rate by convection to that by conduc-
tion in the fluid in question and the heat transfer coefficient h is defined as:

h ¼ �k
qT
qx

����
����
wf

� 1

ðTx¼0 � Tx¼LÞ

���� ¼ q

ðTx¼0 � Tx¼LÞ

����
���� ð8Þ

where subscript wf refers to the condition of the fluid in contact with the wall. As the
viscosity varies throughout the Bingham fluid flow, an effective viscosity is some-
times more useful in explaining the observed phenomena (the interested reader is
referred to reference [14] for a discussion of this issue). In addition, it is important
to note that in the present study the plastic viscosity m and yield stress sy are taken
to be independent of temperature (again a detailed discussion of this assumption can
be found in reference [14]).

2.3. Governing Equations

For the present study, steady-state flow of an incompressible Bingham fluid is
considered. For incompressible fluids the conservation equations for mass, momen-
tum, and energy under steady state can be written using tensor notation (i.e., x1¼ x
is the horizontal direction and x2¼ y is the vertical direction) as

Mass conservation equation

qui
qxi

¼ 0 ð9Þ

NATURAL CONVECTION OF BINGHAM FLUIDS IN AN ENCLOSURE 385
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Momentum conservation equations

quj
qui
qxj

¼ � qP
qxi

þ qgbdi2ðT � Tref Þ þ
qsij
qxj

ð10Þ

Energy conservation equation

qujcp
qT
qxj

¼ q
qxj

k
qT
qxj

� �
ð11Þ

where the temperature at the geometrical centre of the domain is taken to be the ref-
erence temperature Tref for evaluating the buoyancy term qgdi2b(T�Tref) in the
momentum conservation equations for the CWHF configuration following Lam-
saadi et al. [6, 7]. The Kronecker delta di2 ensures that the buoyancy term
qgdi2b(T�Tref) remains operational only in the momentum equation for the vertical
direction, (i.e., x2-direction). Two possible nondimensional forms of Eqs. (10) and
(11) are presented in Appendix A for the sake of completeness.

The bi-viscosity model [16] (see Eq. (3)) is used to model the viscous effects of
the Bingham fluid in this study. Buoyancy effects are accounted for by Boussinesq’s
approximation but the fluid properties are otherwise assumed to be
temperature-independent. The ratio of the yield viscosity (myield) to the plastic vis-
cosity (m) was set to 104. In order to assess the sensitivity of the myield value, the simu-
lations have been carried out for both myield¼ 103m and myield¼ 104m and quantitative
agreement between the results are found to be satisfactory for all cases (i.e.,

maximum deviation in Nu is of the order of 3%, which is still much smaller than
the experimental uncertainty in the present configuration). Given this agreement
only results corresponding to myield¼ 104m are presented here.

2.4. Scaling Analysis

A scaling analysis is performed to elucidate the anticipated effects of Ra, Pr,
and Bn on the Nusselt number for yield-stress fluids. The wall heat flux q can be
scaled as

q ¼ hDT � k
DT
dth

ð12Þ

which gives rise to the following relation.

Nu ¼ hL

k
� L

dth
or Nu � L

d
f2ðRa;Pr;BnÞ ð13Þ

where the thermal boundary layer thickness dth is related to the hydrodynamic
boundary layer thickness d as: d=dth�f2 (Ra, Pr, Bn) where f2 (Ra, Pr, Bn) is a func-
tion of Ra, Pr and Bn, which is expected to increase with increasing Pr. To estimate
the hydrodynamic boundary layer thickness d, a balance of inertial and viscous
forces in the vertical (x2) direction is considered.

q
W2

L
� s

d
ð14Þ
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where W is a characteristic velocity scale. For Bingham fluids the shear stress s can be
estimated as s� syþ mW=d, which upon substitution in Eq. (14) gives:

q
W2

L
� sy þ m

s
d

� � 1
d

ð15Þ

For natural convection, the flow is induced by the buoyancy force and thus the equi-
librium of inertial and buoyancy forces gives

W2

L
� gbDT � gb

qdth
k

ð16Þ

This balance leads to an expression for the characteristic velocity scale,

W �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbqdthL

k

r
ð17Þ

which can be used in Eq. (15) to yield

qgbqdth
k

� sy
f2ðRa;Pr;BnÞ þ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbLdth

k

r
1

f 22 ðRa;Pr;BnÞd2th
ð18Þ

The above expression can be recast asffiffiffiffiffiffiffi
Ra

Pr

r
dth
L

� �2

� Bn

f2ðRa;Pr;BnÞ þ
1

f 22 ðRa;Pr;BnÞ
L

dth

� �1=2

ð19Þ

where Ra and Bn are given by Eqs. (5) and (7b), respectively. Equation (19) can in
turn be written as

Ra

Pr

� �
dth
L

� �5

� 2
Bn

f2ðRa;Pr;BnÞ
Ra

Pr

� �1=2 dth
L

� �3

þ Bn2

f 22 ðRa;Pr;BnÞ
dth
L

� �

� B

f 42 ðRa;Pr;BnÞ
� 0

ð20Þ

where B is a parameter of the order of unity. Using Eq. (20) along with the scaling
relation given by Eq. (12), yields the following relation for the Nusselt number Nu

A5 Ra

Pr

� �
Nu�5 � 2A3 Bn

f2ðRa;Pr;BnÞ
Ra

Pr

� �1=2

Nu�3 þ A
Bn2

f 22 ðRa;Pr;BnÞ
Nu�1

� B

f 42 ðRa;Pr;BnÞ
� 0

ð21Þ

where A is a parameter of the order of unity. It is worth noting that the solution of
Eq. (21) is only valid when convection plays a significant role in thermal transport
(i.e., Nu> 1). Equation (21) can be used to estimate the Nusselt number for natural
convection of Newtonian fluids in a square enclosure with sidewalls exposed to
CWHF by setting Bn¼ 0, which yields,

Nu � ðRa=PrÞ1=5f 0:82 ðRa;PrÞ ð22Þ
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Although correlations for Nu in the case of Newtonian fluids have been proposed for
square enclosures for the CWT boundary condition in the past [14, 18], the heat
transfer behaviour for the CWHF condition in the same configuration has rarely

been analysed in the existing literature. A correlation for Nu for natural convection
of Newtonian fluids in a square enclosure with sidewalls exposed to CWHF is
developed in the present study, which will be discussed later in section 4 (see
Eq. (30a)).

3. NUMERICAL IMPLEMENTATION

3.1. Numerical Method

A finite-volume code is used to solve the coupled conservation equations of
mass, momentum, and energy. The numerical method followed in this study is simi-
lar to that adopted in a number of recent studies for both inelastic power-law [19]
and Bingham [20] fluids. In this framework, a second-order central differencing
scheme is used for the diffusive terms and a second-order up-wind scheme for the
convective terms. Coupling of the pressure and velocity is achieved using the
well-known SIMPLE (semi-implicit method for pressure-linked equations) algor-
ithm [21]. The convergence criteria were set to 10�9 for all the relative (scaled)
residuals.

3.2. Boundary Conditions

The simulation domain is shown schematically in Figure 1 where the two ver-
tical walls of a square enclosure are subjected to constant heat flux q, whereas the
other boundaries are considered to be adiabatic in nature. The velocity components
(i.e., u1¼ u and u2¼ n) are identically zero on each boundary because of the no-slip
condition and impenetrability of rigid boundaries. The heat fluxes for the hot and

Figure 1. Schematic diagram of the simulation domain.
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cold vertical walls are specified (i.e.,�kðqT=qx1Þ
����
x1¼0

¼ q and �kðqT=qx1Þ
����
x1¼L

¼ q).

The temperature boundary conditions for the horizontal insulated boundaries are
given by qT=qx2¼ 0 at x2¼ 0 and x2¼L.

3.3. Grid Independency Study

The grid independence of the results has been established based on a careful
analysis of four different nonuniform meshes M1 (20� 20), M2 (40� 40), M3
(80� 80), and M4 (160� 160), and the relevant details of these meshes are provided
in Table 1. For some representative simulations (Newtonian (Bn¼ 0) and Bn¼ 0.5
for Ra¼ 104 and Pr¼ 10), the numerical uncertainty is quantified here using a grid
convergence index (GCI) which is based on Richardson’s extrapolation theory [22].
For a general primitive variable /, the general Richardson extrapolation
grid-converged value is given by /h¼ 0¼/1þ (/2�/1)=(r

p� 1) where /1 is obtained
based on the fine grid and /2 is the solution based on the next level of coarse grid, r is
the ratio between coarse to fine grid spacings, and p is the theoretical order of accu-

racy (taken to be 2). The numerical uncertainties for Nu and the maximum nondi-
mensional vertical velocity magnitude on the horizontal mid-plane of the
enclosure (Vmax) are presented for different GCI values in Table 2. For the Newto-
nian simulations the numerical uncertainty in Vmax improved from 0.55% between

Meshes M2 and M3 to 0.256% between meshes M3 and M4. For Nu the differences
between the meshes are essentially negligible. For the Bingham fluid simulations the
uncertainty is higher: decreasing from 5.306% to 1.522% for Vmax and from 1.042%

Table 1. Non-dimensional minimum cell distance (Dmin,cell=L) and grid expansion ratio (r) values

Grid M1 20� 20 M2 40� 40 M3 80� 80 M4 160� 160

Dmin, cell=L 4.1325� 10�3 1.8534� 10�3 8.7848� 10�4 4.3001� 10�4

r 1.5137 1.2303 1.1092 1.0532

Table 2. Numerical uncertainty for mean Nusselt number and maximum nondimensional vertical velocity

component on the horizontal mid-plane at Ra¼ 104 and Pr¼ 10 for Newtonian and Bingham (Bn¼ 0.5)

fluids

Nu Vmax

M2 M3 M4 M2 M3 M4

Newtonian fluid u 1.974 1.977 1.978 10.838 10.983 11.051

uext 1.9783 11.074

eext (%) 0.219 0.067 0.017 2.128 0.819 0.205

GCI (%) 0.063 0.021 0.550 0.256

Bingham fluid (Bn¼ 0.5) u 1.208 1.239 1.246 3.707 4.248 4.409

uext 1.248 4.463

eext (%) 3.231 0.745 0.187 16.933 4.810 1.203

GCI (%) 1.042 0.234 5.306 1.522
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to 0.234% for Nu. Based on these uncertainties the simulations in the remainder of
the article were conducted using mesh M3, which provided a reasonable compromise
between high accuracy and computational efficiency.

4. RESULTS & DISCUSSION

4.1. Effects of Rayleigh Number Ra for Constant Wall Heat Flux
Configuration

The variations of nondimensional vertical velocity component V¼ u2L=a and
nondimensional temperature h¼ (T�Tref)k=qL at the horizontal mid-plane for
Newtonian fluids (i.e., Bn¼ 0) and Bingham fluids at Bn¼ 0.5 are shown in
Figure 2 for nominal values of Rayleigh number Ra¼ 103, 104, 105 and 106 and
Pr¼ 10. The horizontal velocity component is not explicitly shown because the con-
tinuity equation (Eq. (9)) indicates that the magnitude of the horizontal velocity
component must be of the same order as the vertical velocity magnitude (i.e.,
u1=L� u2=L) for square enclosures. It can be seen from Figure 2 that the magnitude
of V increases with increasing Ra for both Newtonian and Bingham fluids, but the
velocity magnitude for Bingham fluids is found to be smaller than that obtained in

Figure 2. Variations of non-dimensional temperature h and vertical velocity component V along the hori-

zontal mid-plane for the Newtonian (left column) and Bingham fluid (Bn¼ 0.5) cases (right column) for

Pr¼ 10.
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the case of Newtonian fluids for the same value of Ra. For a given value of Pr, the
effects of convection strengthen with increasing Ra, which is reflected in the increase
in V with increasing Ra for both Newtonian and Bingham fluids. The viscous force
in Bingham fluids is stronger than in Newtonian fluids at the same nominal value of
Rayleigh number and, as a result of this difference, the magnitude of V in Bingham
fluids is smaller than in Newtonian fluids.

It can be seen in Figure 2, that the temperature distribution h remains linear for
very small values of Ra but the temperature profile becomes increasingly nonlinear
with increasing Ra. The linear (nonlinear) temperature profile is indicative of con-
duction (convection) dominated thermal transport. The contours of nondimensional
stream function W¼w=a and temperature h for Bn¼ 0 and Bn¼ 0.5 cases are shown
in Figure 3 for different values of Ra and Pr¼ 10 confirm these differences. In

Figure 3. (a) Contours of nondimensional stream functions (W¼w=a) and unyielded zones (gray); (b) con-

tours of nondimensional temperature (h) for the Newtonian (left column) and Bingham fluids case (for

Bn¼ 0.5, right column) at Pr¼ 10.
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Figure 3, for the Bingham fluids the apparently unyielded regions (AUR) are shown
by gray shading (zones of fluid where jsj � sy according to the criterion used by Mit-
soulis [15]). It is worth noting that these zones are not really ‘‘unyielded’’ in the true
sense, as pointed out by Mitsoulis and Zisis [23]. In the present study, a bi-viscosity
approximation is used to model the Bingham fluid so flow will always be present
within these essentially very high viscosity regions, which can alternatively be viewed
as regions of extremely slowly moving fluid. It is important to stress that the islands
of AUR within the centre of the enclosure alter significantly with increasing values of
myield (shown in Figure 3 for myield¼ 104m), while the mean Nusselt number, the
streamfunction, and the zones of AUR at the corners of the enclosure are inde-
pendent of myield for myield� 103m. For a given value of sy, the zones with very low
shear rate, which satisfy jsj � sy are expected to shrink with an increase in myield.
Although the AUR zones are dependent on the choice of myield, the velocity and tem-
perature distributions (i.e., qualitative and quantitative distributions of streamfunc-
tion and isotherms) remain independent of the value of myield (at least for
myield� 103m). Thus, the precise shape and size of AURs do not any impart major

influence on the mean Nusselt number Nu in the present configuration. It can be seen
from Figure 3 that the isotherms remain parallel to the vertical walls for small values
of Ra (e.g., Ra¼ 103) in the Bingham fluid case, which indicates that the thermal
transport is diffusion-driven (i.e., conduction-driven). The isotherms become
increasingly curved with increases in Ra when convection plays a significant role
in thermal transport. Comparing the Bn¼ 0 and Bn¼ 0.5 cases at Ra¼ 103 reveals
that for Bingham fluids the isotherms are parallel to the vertical walls whereas the
isotherms are curved in the case of Newtonian fluid flow. This difference essentially
suggests that the Ra above which convection effects are felt is greater for Bingham
fluids than in the case of Newtonian fluids because of stronger viscous effects in the
Bingham fluid at the same nominal value of Ra.

Figure 2 shows that the temperature difference between the vertical walls
decreases with increasing Ra for both Newtonian and Bingham fluids. In order to
satisfy the CWHF boundary condition, the thermal gradient at the vertical walls
remains unaltered but strengthening of convective transport increases the size of
the region of (almost) zero horizontal temperature gradient at the centre of the
domain with increasing Ra. As a result of this the temperature difference between
the vertical walls decreases with increasing Ra. From Eq. (12) it is evident that DT
scales as DT� qdth=k and thus DT decreases with increasing Ra as the thermal
boundary layer thickness dth decreases with increasing Ra.

4.2. Effects of Bingham Number Bn in Constant Wall Heat Flux
Configuration

The variation of Nu with Bn for different values of Ra is shown in Figure 4 for
Pr¼ 10. The same qualitative behavior is observed for other values of Pr. As already
discussed, the data shown for Bingham fluids in Figure 4 is obtained using a
bi-viscosity model. The use of the exponential form of the Bingham model (due to
Papanastasiou [17]) was found to give virtually identical results (maximum differ-

ences in Nu less than 3%). These differences are on the same order as the differences
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between results in the bi-viscosity model for different values of the yield viscosity
parameter and are, for all practical purposes, unimportant for the discussion which
follows.

It is evident from Figure 4 that Nu decreases with increasing Bn for all values

of Ra, while Nu is found to increase with increasing Ra for a given value of Bn. It is
also clear from Fig. 4 that above a threshold value of Bingham number – Bnmax, the
convection becomes too weak to affect the thermal transport which is reflected in the

unity value of Nu. It is worth noting that fluid flow can still occur for Bn>Bnmax,
but this flow is not sufficient to impart any influence on thermal transport. The fluid
flow will eventually stop for a critical Bingham number Bn�Bncrit where Bncrit is
likely to be greater than Bnmax (i.e., Bn�Bnmax). A flow of diminishing strength with
increasing Bingham number will always be obtained in the context of bi-viscosity [16]
and Papanastasiou [17] regularizations of the Bingham model as complete stoppage
of flow will only be obtained for Bn�Bncrit if an ideal Bingham model (i.e., Eq. (1))
is implemented.

It can be seen from Figure 4 that Bnmax increases with increasing Ra. The
effects of buoyancy force increase in comparison to viscous force with increases in
Ra for a given value of Pr. At higher values of Ra, this stronger buoyancy force
can overcome the augmented viscous effects in Bingham fluids up to a larger value

of Bn. This effect gives rise to a value of Nu greater than unity for a larger range of
Bingham number Bn for higher values of Ra. Further insight into this behavior of

Nu can be obtained from the contours of nondimensional stream function W and
temperature h for different values of Bn, as shown in Figure 5, for nominal Rayliegh
numbers Ra¼ 104 and 106 at Pr¼ 10. It is clear from Figure 5 that the isotherms
tend to be parallel to the sidewalls and the size of the AUR increases as the value
of Bn increases. Figure 5 shows that the isotherms remain curved as a result of

Figure 4. Variation of the mean Nusselt number Nu with Bingham number Bn for different values of

Rayleigh number at Pr¼ 10.
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Figure 5. Contours of nondimensional stream functions (W¼w=a) (left column) with unyielded zones

(gray), and nondimensional temperature (h) (right column) for different values of Bn at Pr¼ 10, (a)

Ra¼ 104 and (b) Ra¼ 106.
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convection for large values of Bn at Ra¼ 106, whereas isotherms for much smaller
values of Bn at Ra¼ 104 remain parallel to the sidewalls indicating conduction–
dominated transport. This behavior can further be elucidated by the distributions
of V and h along the horizontal mid-plane, as shown in Figure 6 for different
values of Bn for Ra¼ 104 and 106 at Pr¼ 10. As can be seen from Figure 6, the mag-
nitude of V decreases with increasing value of Bn due to weakening of the buoyancy
force in comparison to the viscous forces. The strength of convection weakens as the
magnitude of V decreases and this can be substantiated from the variation of h,
which tends to approach a linear variation with increasing value of Bn. The thermal
transport becomes increasingly conduction–driven with increasing Bn and, as a
result of this, the temperature profile approaches a linear variation indicative of a
predominantly conduction-driven solution for large values of Bn. The h variations
in Figure 6 demonstrate that the temperature difference between the vertical
sidewalls increase with increasing Bn. As the size of the region with (almost) zero

Figure 6. Variations of nondimensional temperature h and vertical velocity component V along the hori-

zontal mid-plane for different values of Bingham numbers in the case of Ra¼ 104 (left column) and

Ra¼ 106 (right column) (Pr¼ 10).
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horizontal temperature gradient shrinks with the weakening of convective strength,
the thermal boundary layer thickness dth increases with increasing Bn in order to
satisfy the boundary condition that the temperature gradient adjacent to the wall
remains unaltered. This constraint in turn gives rise to an increase in the temperature
difference DT� qdth=k between the vertical sidewalls. Alternatively, the temperature
difference between the vertical sidewalls DT can be expressed as DT ¼ q=h ¼
qL=ðNu � kÞ and as Nu decreases with increasing Bn, the temperature difference
between the vertical walls DT increases with increasing Bn.

4.3. Comparison Between the Constant Wall Heat Flux and
Constant Wall Temperature Cases

The behavior of Nu in response to changes in Ra and Bn, as shown in Figure 4,

is found to be qualitatively similar to the variation of Nu obtained for the CWT con-
figuration [13, 14]. For the purpose of a quantitative comparison between the Nusselt
number for CWT and CWHF configurations, it is useful to define a nominal Ray-
leigh number RaCWT and Grashof number GrCWT, which are used in the context
of the CWT configuration [13, 14]:

RaCWT ¼ q2cpgbðTH � TcÞL3

mk
¼ GrCWTPr ð23aÞ

GrCWT ¼ q2gbðTH � TcÞL3

m2
ð23bÞ

The balance between inertial and buoyancy forces according to Eq. (16) leads to an
expression for the characteristic velocity scale for the constant wall temperature con-
figuration [14].

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðTH � TCÞL

p
ð24Þ

When substituted into Eq. (15) for the equilibrium of inertial and viscous forces this
expression yields [14],

d ¼ m=qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gb DT L

p BnCWT

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2CWT þ 4

RaCWT

Pr

� �1=2
s2

4
3
5 ð25Þ

where BnCWT is the Bingham number in the context of the CWT configuration.

BnCWT ¼ sy
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

gbðTH � TCÞ

s
ð26Þ
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This scaling gives rise to the following expression for the thermal boundary layer
thickness dth for the CWT configuration.

dth �max L;
L �Pr1=2

f3ðRaCWT ;BnCWT ;PrÞRa
1=2
CWT

BnCWT

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2CWT þ 4

RaCWT

Pr

� �1=2
s2

4
3
5

2
4

3
5

ð27Þ

where f3 (RaCWT, BnCWT, Pr)� d=dth is a function of Pr and BnCWT, which is
expected to increase with increasing Pr. Eq. (27) along with Eq. (13) provides the fol-

lowing scaling for Nu [14].

Nu�max 1:0;
Ra

1=2
CWT=Pr

1=2

BnCWT

2 þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2CWT þ 4 RaCWT

Pr

	 
1=2q� � f3ðRaCWT ;Pr;BnCWT Þ

2
664

3
775 ð28Þ

It is also important to note that the Nusselt number behavior for the CWT configur-
ation for Newtonian fluids can be obtained by setting BnCWT¼ 0 in Eq. (28). Doing

so yields Nu�Ra0:25CWTf3ðRaCWT;Pr), whereas Berkovsky and Polevikov [18] and

Turan et al. [14] proposed the correlations Nu¼ 0:18½RaCWTPr=ð0:2þPrÞ�0:29 and

Nu¼ 0:162 Ra0:293CWT ðPr=ð1þPrÞÞ0:091, respectively.
The variations of Nu with Bn (BnCWT) for different values of Ra (RaCWT) for

CWHF (CWT) configuration are shown in Figure 7. As inspection of Figure 7

reveals, Nu attains greater values for the CWT condition than in the CWHF case
for the same set of values of BnCWT(Bn), for different values of RaCWT(Ra). It is also

apparent from Figure 7 that Nu for Newtonian fluids (i.e., Bn¼ 0) for the two cases
are comparable for small values of Ra, but the difference between the Nusselt num-
ber values increase with increasing Ra. This difference can be explained in the fol-
lowing manner: for a given value of Pr, the mean Nusselt number for the CWT

case scales as Nu � Ra
1=4
CWT, whereas it scales as Nu � Ra1=5 for the CWHF case.

As the difference between Ra1=4 and Ra1=5 increases with increasing Rayleigh num-

ber, this, in turn, gives rise to an increase in the difference between the Nu values in
the two configurations with increasing Ra. The temperature difference between the
vertical sidewalls (Tx¼0�Tx¼L) in the CWHF condition at very small values of
Ra, where the thermal transport is primarily conduction-driven, remains identical
to the temperature difference (TH�TC) between the vertical sidewall under the
CWT condition for the same numerical value of RaCWT. As the value of Ra
increases, (Tx¼0�Tx¼L) decreases in the CWHF configuration whereas (Tx¼0�Tx¼L)
remains exactly equal to (TH�TC) for all values of RaCWT in the CWT configur-
ation. This explanation is further supported by inspection of Figures 8a–d, where
the distributions of h are shown for different values of Bn at Pr¼ 10 at
Ra¼RaCWT¼ 103, 104, 105 and 106, respectively. For the CWT case, the nondimen-
sional temperature h is defined as h¼ (T�Tcen)=(TH�TC) where Tcen is the tempera-
ture at the geometric center of the domain. As (Tx¼0�Tx¼L) is smaller in the CWHF
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configuration than in the CWT configuration in the convection–dominated regime of
thermal transport, the characteristic velocity scale W is smaller in magnitude in the
CWHF configuration than in the CWT configuration for the same numerical values
of Ra and RaCWT. This difference in characteristic velocity essentially suggests that
convection strength in the CWHF case is weaker than that in the CWT case for the
same values of Ra and RaCWT. This weaker convection strength is reflected in the

smaller value of Nu in the CWHF case than in the CWT configuration, as evident
from Figure 7 for all values of Bn<Bnmax. As Bn and BnCWT tends towards Bnmax,
the temperature profile becomes increasingly linear due to a weakening of convective
transport. As a result of this, the temperature profiles in both cases approach each
other when the numerical values of Bn and BnCWT approach the threshold Bingham

number Bnmax at which Nu becomes equal to unity, (i.e., Nu> 1 when Bn<Bnmax

and Nu ¼ 1 when Bn�Bnmax). As the temperature profiles for both cases are ident-

ical to each other, the numerical value of Bn at which Nu starts to attain a value
equal to unity is also the same for both configurations. It is also worth noting that

DT¼Tx¼0–Tx¼L¼ qL=k¼TH�TC when Nu¼ 1 because of the linear temperature
profile. Thus the definitions of Ra and Bn are identical to RaCWT and BnCWT,

Figure 7. The interrelation between the mean Nusselt number Nu and Bingham number Bn (BnCWT) for

different values of Rayleigh number Ra (RaCWT) and different boundary conditions: (- - -) constant wall

temperature case, and (——) constant heat flux case at Pr¼ 10.
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respectively, when Nu ¼ 1, which also suggests that Bnmax must be the same for both
configurations.

Based on the scaling relation given by Eq. (28), Turan et al. [14] proposed a

correlation for Nu for square enclosures with CWT conditions in the ranges
0.1�Pr� 100 and 103�Ra� 106 and 0�Bn�Bnmax in the form.

Nu ¼ 1þ A1 �Ra
1=2
CWT

BnCWT

2 þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2CWT þ 4 RaCWT

Pr

	 
1=2q 1� BnCWT

Bnmax

� �b

ð29aÞ

limBnCWT!Bnmax
Nu ¼ 1þ A1 �Ra

1=2
CWT

Bnmax

2 þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2max þ 4 RaCWT

Pr

	 
1=2q 1� Bnmax

Bnmax

� �b

ð29bÞ

Figure 8. Variations of nondimensional temperature h along the horizontal mid-plane for both (- - -) con-

stant wall temperature and (——) constant heat flux configurations at different values of Bn for the same

values of Ra and RaCWT: Ra¼RaCWT (a) 103, (b) 104, (c) 105, and (d) 106 at Pr¼ 10.
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The expressions for A1 and b are given by

A1 ¼ 0:162 Ra0:043CWT

Pr�0:159

ð1þ PrÞ0:091
� 1

Ra0:25CWTPr
0:25

; b ¼ 0:42 Ra0:13CWTPr
0:12 ð29cÞ

The value of Bnmax is expressed by Turan et al. [14] as

Bnmax ¼ 0:019 Ra0:56CWT Pr�0:46 ð29dÞ

According to the analysis of Turan et al. [14], the function f3 (RaCWT, BnCWT, Pr) is
given by

f3ðRaCWT ;BnCWT ;PrÞ ¼
Ra0:043CWTPr

0:341

ð1þ PrÞ0:091
1� BnCWT

0:019 Ra0:56CWTPr
�0:46

" #b
ð29eÞ

4.4. Effects of Prandtl Number Pr on Nu

The variations of Nu with Pr for both the CWHF and CWT configurations in

Newtonian fluids are shown in Figure 9 which indicates that Nu increases with
increasing Pr for both boundary conditions. It can be seen from Figure 9 that the
results for Newtonian fluids for the CWT condition are consistent with earlier
numerical results [24], whereas the simulation results deviate somewhat from the pre-
diction of the heat transfer correlation proposed by Berkovsky and Polevikov [18]

(Nu ¼ 0:18 ½RaPr=ð0:2þ PrÞ�0:29). Turan et al. [14] proposed a new correlation

Figure 9. Variation of mean Nusselt number Nu with Rayleigh Ra and Prandtl Pr numbers for Newtonian

fluids for both constant heat flux and constant wall temperature configurations (color figure available

online).
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(Nu ¼ 0:162 Ra0:293½Pr=ð1þ PrÞ�0:091) for CWT conditions, which satisfactorily cap-

tures the variation of Nu with Pr for CWT conditions. It is clear from Figure 9 that

Nu for the CHWF configuration attains smaller values than those obtained in the

CWT condition for the reasons discussed earlier. The value of Nu increases with

increasing Pr for small values of Pr, but Nu remains relatively insensitive for large
values of Pr for both CWT and CWHF conditions. In both configurations, the rela-
tive strengths of inertial, viscous, and buoyancy forces determine the nature of ther-
mal transport. For small values of Pr, the thermal boundary layer dth thickness
remains much greater than the hydrodynamic boundary layer thickness d. As a result
of this difference, the transport behaviour in the majority of the domain is governed
by the inertial and buoyancy forces. In contrast, for large values of Pr the hydrody-
namic boundary layer thickness d remains much greater than the thermal boundary
later thickness dth, thus the transport characteristics are primarily driven by buoy-
ancy and viscous forces (see the scaling analysis by Bejan [25], for example). For
Pr<< 1, an increase in Pr decreases the thermal boundary layer thickness in com-
parison to the hydrodynamic boundary layer thickness. This change essentially acts
to increase the Nusselt number according to Eq. (13). In the case of Pr>> 1, a
change in Pr principally modifies the relative balance between viscous and buoyancy
forces so the heat transport in the thermal boundary layer only gets marginally affec-

ted. This modification is reflected in the weak Pr dependence of Nu for large values
of Pr (i.e., Pr>> 1) in Figure 9.

In the case of Newtonian fluids, Nu for the CWHF configuration can be
expressed in terms of an algebraic function of Ra and Pr.:

Nu ¼ aRam1
Pr

1þ Pr

� �n1

ð30aÞ

The values of coefficients a, m, and n were determined using an iterative minimiza-
tion function of a commercial software package (giving a¼ 0.209, m1¼ 0.249, and
n1¼ 0.037). Including more free parameters resulted in only marginal improvements

to the fit. Figure 9 shows the correlation given by Eq. (30a) which predicts Nu
obtained from the simulation data satisfactorily for different values of Ra and Pr.

According to scaling arguments Nu scales as Nu � ðRa1=5=Pr1=5Þf0:82 (Ra, Pr),

whereas the correlation given by Eq. (30) suggests Nu/Ra0.249. Given the simplicity
of the scaling analysis it is not surprising that a small quantitative difference in the
value of exponent is observed (0.2 cf 0.249). A comparison between Eqs. (22) and
(30a) indicates that the function f2 (Ra, Pr) is given by

f2ðRa;PrÞ ¼ Ra0:06125Pr0:296

ð1þ PrÞ0:046
ð30bÞ

In order to demonstrate the effects of Pr on Nu for Bingham fluids, the varia-

tions of Nu with different values of Pr and Bn at nominal Rayleigh numbers of
Ra¼ 104, 105, and 106 are shown in Figure 10 for the CWHF configuration. It is evi-

dent from Figure 10 that Nu decreases with increasing Pr for large values of Bn

NATURAL CONVECTION OF BINGHAM FLUIDS IN AN ENCLOSURE 401

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 U
po

n 
T

yn
e]

, [
N

ila
nj

an
 C

ha
kr

ab
or

ty
] 

at
 0

9:
25

 0
9 

Se
pt

em
be

r 
20

11
 



unlike the situation for Newtonian fluids. In contrast, Nu increases with increasing
Pr for very small values of Bn, which is consistent with the behavior obtained for
Newtonian fluids (see Figure 9). Moreover, the value of Bingham number Bnmax

for which Nu approaches to unity decreases with increasing Pr. This variation clearly
demonstrates that the Bingham number at which the fully-conduction regime starts
depends on Pr for a given value of Ra. The same qualitative behaviour has been
observed for the CWT case [14]. From the foregoing it can be concluded that the
effects of Pr on natural convection at a given value of Ra are not fully independent
of Bn. This inference is an artifact of how the nominal Ra is defined in the present
analysis (see Eq. 5). In the case of natural convection in Bingham fluids, the use of an
effective viscosity meff instead of the constant plastic viscosity m in the definition of
the Rayleigh number would have been more appropriate. One way of estimating
an effective viscosity is meff ¼ sy=cþ m, which can be scaled as

meff � syd=Wþ m ð31aÞ

Figure 10. Variations of mean Nusselt number Nu with Prandtl number Pr for Bingham fluids in constant

heat flux configuration at (a) Ra¼ 104, (b) Ra¼ 105 and (c) Ra¼ 106.
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Based on Eq. (31a), an effective Grashof number Greff can be defined as

Greff ¼
q2gbqL4

m2eff k
¼ Gr Bn � f2ðRa;Pr;BnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffi
dth=L

p
þ 1

h i�2

¼ Ra

Pr
Bn � f2ðRa;Pr;BnÞ �

ffiffiffiffiffiffiffiffiffiffiffiffi
dth=L

p
þ 1

h i�2
ð31bÞ

Equation (31b) suggests that the effective Grashof number Greff decreases with
increasing Pr for a given value of Ra, and this drop becomes increasingly rapid with
increasing values of Bn. As dth=L increases with increasing Bn (see Figure 6) and
f2(Ra, Bn, Pr) increases with increasing Pr, the effects of the buoyancy force becomes
increasingly weak in comparison to the viscous effects with increasing Pr for large
values of Bn when Ra is held constant. This reduced buoyancy force relative to
the viscous force gives rise to a weakening of convective transport which acts to

decrease Nu with increasing Pr. This effect is relatively weak for small values of
Bn where an increase in Pr acts to reduce the thermal boundary layer thickness,
which in turn acts to increase the heat transfer rate as discussed earlier in the context
of Newtonian fluids. In contrast, for large values of Bn the effects of thinning of the
thermal boundary layer thickness with increasing Pr is superseded by the reduction
of convective transport strength due to a smaller value of Greff. This reduction gives

rise to a decrease in Nu with increasing values of Pr (for a given value of Ra) when
Bn attains large values. Eventually, this gives rise to the beginning of the conduc-
tion–dominated regime for smaller values of Bnmax for higher Pr values as shown
in Figure 10 (for constant Ra). As a consequence of this, Bnmax depends on both
Ra and Pr, and Bnmax increases with increasing Ra, whereas it decreases with
increasing Pr. The values of Bnmax are listed in Table 3 for different nominal values
of Ra and Pr. It can be seen from Table 3 that for a given value of Pr, the value of
Bnmax increases with increasing Ra, as the convection strength increases with increas-
ing Rayleigh number, as has already been discussed.

4.5. Correlations for Mean Nusselt Number Nu

Although Eq. (21) is derived based on scaling arguments, one needs to estimate
f2(Ra, Pr, Bn), A, and B in order to solve this equation which makes it difficult to use

for estimating Nu. It has been shown earlier in Figure 9 that the Nu value for New-
tonian fluids in the CWHF case is smaller than the CWT case for the same numerical
values of Ra and RaCWT. Moreover, it has been discussed in the context of Figure 7
that the numerical value of Bnmax remains the same for both configurations. This

Table 3. Values of Bnmax at different values of Ra and Pr

Pr Ra¼ 104 Ra¼ 105 Ra¼ 106

0.1 10 35 125

1 3 10 45

10 1 4 15

100 0.3 1 5

NATURAL CONVECTION OF BINGHAM FLUIDS IN AN ENCLOSURE 403

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
ca

st
le

 U
po

n 
T

yn
e]

, [
N

ila
nj

an
 C

ha
kr

ab
or

ty
] 

at
 0

9:
25

 0
9 

Se
pt

em
be

r 
20

11
 



indicates that the decay of the value of Nu=NuBn¼0 from 1.0 to the asymptotic value

of 1.0=NuBn¼0 is more rapid in the CWT case than in the CWHF case, which can be

seen in the variations of Nu= NuBn¼0 with Bn for both CWT and CWHF configura-

tions (see Figure 11). The Ra¼ 103 case is not shown here because Nu remains close
to unity for all values of Bn and Pr, and the value of Bnmax remains close to zero (see
Figure 4). Turan et al. [14] proposed the correlation given by Eqs. (29a)–(29d) for the

Figure 11. Variations of Nu=NuBn¼0 with Bn for both constant wall temperature (o) and constant heat

flux (D) configurations for different values of Pr and Ra along with the predictions of Eq. (29a) (- - -)

and (32a) (——).
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CWT case based on scaling arguments which predict the variation of Nu=NuBn¼0 for
all values of Pr and Bn satisfactorily as shown in Figure 11. As the decay of the value

of Nu=NuBn¼0 from 1.0 to the asymptotic value of 1.0=NuBn¼0 is less rapid in the
CWHF configuration, the correlation for CWT given by Eq. (29a) is modified here
to propose a correlation for the CWHF case

Nu ¼ 1þ A2 �Ra1=2

Bn
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bn2 þ 4 Ra

Pr

	 
1=2q 1� Bn

Bnmax

� �c� �b1

ð32aÞ

where A2, b1, and c are given by

A2 ¼ 0:205 Ra�0:001 Pr�0:213

ð1þPrÞ0:037
� 1

Ra0:25Pr0:25
; b1 ¼ 0:143 Ra0:226Pr0:062; c¼ 0:643

ð32bÞ

where Bnmax is given by Eq. (29c) (i.e., Bnmax¼ 0.019Ra0.56Pr�0.46) because Bnmax

remains the same for both CWT and CWHF configurations. Figure 11 shows that

the correlation given by Eq. (32a) predicts Nu=NuBn¼0 satisfactorily for the CWHF
cases in the range of Rayleigh and Prandtl numbers (i.e., 103�Ra� 106 and

0.1�Pr� 100) considered here when the quantity NuBn¼0 is evaluated using Eq.
(30a).

5. CONCLUSION

Laminar natural convection of Bingham fluids in a square enclosure with ver-
tical side walls subjected to constant heat flux has been numerically studied for nom-
inal Rayleigh numbers in the range 103–106 and nominal Prandtl numbers ranging

from 0.1–100. It has been found that the mean Nusselt number Nu increases with
increasing values of the Rayleigh number for both Newtonian and Bingham fluids
due to the strengthening of thermal transport due to convection. However, the Nus-
selt numbers obtained for Bingham fluids are smaller than those obtained in the case
of Newtonian fluids with the same values of nominal Rayleigh number because of
weaker convection in Bingham fluids as a result of augmented viscous effects. The
Nusselt number was found to decrease with increasing Bingham number, and for
large values of the Bingham number, the value of the mean Nusselt number settled

to unity (i.e., Nu¼1) as the heat transfer took place principally by conduction. The
conduction–dominated regime occurs at higher values of Bn for increasing values of

Ra. The simulation results show that Nu increases with increasing Pr for Newtonian
fluids and low Bingham number flows for a given value of the Rayleigh number. In
contrast, the opposite behavior was observed for Bingham fluids for large values of
the Bingham number. The relative strengths of buoyancy and viscous forces and the
effects of Prandtl number on thermal boundary layer thickness are shown to be

responsible for this non-monotonic Prandtl number dependence of Nu in Bingham
fluids.
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It has been shown that Nu for the CWHF configuration is smaller than the

value of Nu obtained for the CWT configuration for the same set of numerical values

of Ra, Pr, and Bn. However, the value of the Bingham number at which Nu
approaches to unity (i.e., Bnmax) is found to be the same for both configurations.
An existing correlation for natural convection of Bingham fluids in square enclosures

with CWT has been modified to propose a correlation for Nu for CWHF configur-

ation, which is shown to predict Nu obtained from numerical simulations for the
range of Ra, Pr and Bn considered in this study.
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APPENDIX A: NON-DIMENSIONAL MASS, MOMENTUM AND ENERGY
CONSERVATION EQUATIONS

It is possible to nondimensionalise the spatial co-ordinates, velocity compo-
nents, pressure, and temperature in the following manner.

xþi ¼ xi=L; uþi ¼ ui=Uref ; Pþ ¼ P=qU2
ref ; and h ¼ ðT � Tref Þ=DTref ðA1Þ

where Uref is the reference velocity scale and DTref is a reference temperature differ-
ence. For the CWT configuration, DTref can be taken to be DT¼ (TH�TC) whereas
DTref can be taken to be equal to qL=k, (i.e., DTref¼ qL=k) for the CWHF configur-

ation. If Uref is taken to be equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTref L

p
, (i.e., Uref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTref L

p
) based on

the equilibrium of inertial and buoyancy forces (see Eqs. (16) and (24)), one obtains
the following nondimensional forms of steady-state mass, momentum, and energy
conservation equations (i.e., Eqs. (9)–(11)).
Nondimensional mass conservation equation

quþi
qxþi

¼ 0 ðA2Þ

Nondimensional momentum conservation equations

uþj
quþi
qxþj

¼ � qPþ

qxþi
þ di2hþ

1

Gr1=2
qsþij
qxþj

ðA3Þ
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Nondimensional energy conservation equation

uþj
qh
qxþj

¼ 1

PrGr1=2
q2h

qxþj qx
þ
j

ðA4Þ

In Eq. (A3), sþij is the nondimensional stress tensor which is given by

sþij ¼
sijL

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTref L

p ðA5Þ

For Uref ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTref L

p
one obtains

_ccþ ¼ 0 for sþ � Bn ðA6aÞ

sþ ¼ 1þ Bn

cþ
:

 !
_ccþ for sþ > Bn ðA6bÞ

where _ccþ ¼ _ccL=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTref L

p
is the nondimensional strain rate tensor. It is worth not-

ing that it is equally valid to use a=L, or any other suitable combination, as the ref-
erence velocity Uref (i.e., Uref¼ a=L). Using Uref¼ a=L in Eqs. (10) and (11), yield the
following alternative forms of nondimensional mass, momentum, and energy conser-
vation equations.
Nondimensional mass conservation equation

quþi
qxþi

¼ 0 ðA7Þ

Nondimensional momentum conservation equations

uþj
quþi
qxþj

¼ � qPþ

qxþi
þ di2RaPrhþ Pr

qsþij
qxþj

ðA8Þ

Nondimensional energy conservation equation

uþj
qh
qxþj

¼ q2h
qxþj qx

þ
j

ðA9Þ

In Eq. (A8), sþij is the nondimensional stress tensor which is given by

sþij ¼
sijL

mða=LÞ ðA10Þ

For Uref¼ a=L one obtains

_ccþ ¼ 0 for sþ � Bn
ffiffiffiffiffiffiffiffiffiffiffi
RaPr

p
; ðA11aÞ
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sþ ¼ 1þ Bn
ffiffiffiffiffiffiffiffiffiffiffi
RaPr

p

cþ
:

 !
_ccþ for sþ > Bn

ffiffiffiffiffiffiffiffiffiffiffi
RaPr

p
ðA11bÞ

where _ccþ ¼ _ccL2=a is the nondimensional strain rate tensor. It is important to note

that the numerical simulations of Eqs. (A2)–(A6) yield identical results as that of
the solution of Eqs. (A7)–(A11), irrespective of the choice of Uref.
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