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a b s t r a c t

Two-dimensional steady-state simulations of laminar natural convection in square enclosures with dif-
ferentially heated sidewalls subjected to constant wall temperatures have been carried out where the
enclosures are considered to be completely filled with non-Newtonian fluids obeying the power-law
model. The effects of power-law index n in the range 0.6 6 n 6 1.8 on heat and momentum transport
are investigated for nominal values of Rayleigh number (Ra) in the range 103–106 and a Prandtl number
(Pr) range of 10–105. It is found that the mean Nusselt number Nu increases with increasing values of
Rayleigh number for both Newtonian and power-law fluids. However, Nu values obtained for power-
law fluids with n < 1 ðn > 1Þ are greater (smaller) than that obtained in the case of Newtonian fluids with
the same nominal value of Rayleigh number Ra due to strengthening (weakening) of convective trans-
port. With increasing shear-thickening (i.e. n > 1) the mean Nusselt number Nu settles to unity
(Nu ¼ 1:0) as heat transfer takes place principally due to thermal conduction. The effects of Prandtl num-
ber have also been investigated in detail and physical explanations are provided for the observed behav-
iour. New correlations are proposed for the mean Nusselt number Nu for both Newtonian and power-law
fluids which are shown to satisfactorily capture the correct qualitative and quantitative behaviour of Nu
in response to changes in Ra, Pr and n.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Natural convection in rectangular enclosures with differentially
heated vertical sidewalls and adiabatic horizontal walls is one of
the most extensively studied configurations for Newtonian flows
[1–3]. The extensive review of Ostrach [4] neatly captures the
available data up to that date. In addition to the obvious funda-
mental interest, this configuration has engineering relevance in so-
lar collectors, food preservation, compact heat exchangers and
electronic cooling systems. In comparison to the vast body of liter-
ature regarding the natural convection of Newtonian fluids, a com-
paratively limited effort has been directed towards understanding
of natural convection of non-Newtonian fluids in rectangular
enclosures. The Rayleigh–Bénard configuration [5], which classi-
cally involves a rectangular enclosure with adiabatic vertical walls
and differentially heated horizontal walls with the bottom wall at
higher temperature, has been investigated for a range of different
non-Newtonian models including inelastic Generalised Newtonian

Fluids (GNF) [6–9], fluids with a yield stress [10–12] and viscoelas-
tic fluids [13].

Kim et al. [14] studied transient natural convection of non-
Newtonian power-law fluids (power-law index n 6 1) in a square
enclosure with differentially heated vertical side walls subjected
to constant wall temperatures. They studied a range of nominal
Rayleigh numbers from RaK ¼ 105—107 and Prandtl numbers from
PrK ¼ 102—104 and demonstrated that the mean Nusselt number
Nu increases with decreasing power-law index n for a given set
of values of RaK and PrK .1 This result is consistent with the numer-
ical findings of Ohta et al. [8] where the Sutterby model was used for
analysing transient natural convection of shear-thinning fluids in the
Rayleigh–Bénard configuration. The augmentation of the strength of
natural convection in rectangular enclosures for shear-thinning flu-
ids was also confirmed by both experimental and numerical studies
on micro-emulsion slurries by Inaba et al. [9] in the Rayleigh–Bénard
configuration. Lamsaadi et al. [15,16] have studied the effects of the
powerlaw index on natural convection in the high Prandtl number
limit for both tall [15] and shallow enclosures [16] where the side-
wall boundary conditions are subjected to constant heat fluxes
(rather than isothermal as in the cases discussed above). Lamsaadi
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et al. [15,16] show that the convective heat transfer rate becomes
dependent only on nominal Rayleigh number Ra and the power-
law index n for large values of aspect ratio and the nominal Prandtl
number Pr.1 Barth and Carey [17] utilised GNF models which incor-
porate limiting viscosities at low and high shear rates to study a
three-dimensional version of the problem (the adiabatic boundary
conditions are replaced by a linear variation in temperature to match
the experimental conditions of [18]). Recently Vola et al. [19] and the
present authors [20,21] numerically studied steady two-dimensional
natural convection of yield stress fluids obeying the Bingham model
in rectangular enclosures with differentially heated vertical side
walls and proposed correlations for the mean Nusselt number Nu.

In the present study steady natural convection of Ostwald–De
Waele (i.e. power-law) fluids in a square enclosure with differen-
tially heated side walls subjected to constant wall temperatures
has been studied numerically. A parametric study has been con-
ducted with the power-law index n ranging from 0.6 to 1.8 for a
range of nominal values of Rayleigh and Prandtl numbers (defini-
tions are provided in Section 2) given by Ra ¼ 103—106 and
Pr ¼ 10—105. The simulation data in turn has been used to develop
a correlation for the mean Nusselt number Nu based on a detailed
scaling analysis for the broad range of n, Ra and Pr considered in
this study. In this respect the main objectives of the present paper
are as follows:

(1) To demonstrate the effects of n, Ra and Pr on the mean Nus-
selt number Nu in the case of natural convection of power-
law fluids in a square enclosure with differentially heated
vertical side walls subjected to constant wall temperatures.

(2) To elucidate the above effects with the aid of a detailed scal-
ing analysis.

(3) To develop a correlation for the mean Nusselt number for
natural convection of power-law fluids in a square differen-
tially heated vertical side walls subjected to constant wall
temperatures.

The rest of the paper will be organised as follows. The necessary
mathematical background and numerical details will be presented
in the next section, which will be followed by the scaling analysis.
Following this analysis, the results will be presented and subse-
quently discussed. The main findings will be summarised and con-
clusions will be drawn in the final section of this paper.

2. Mathematical background and numerical implementation

2.1. Non-dimensional numbers

For the Ostwald–De Waele (i.e. power law) model the viscous
stress tensor sij is given by:

sij ¼ laeij ¼ Kðeklekl=2Þðn�1Þ=2eij; ð1Þ

where eij ¼ ð@ui=@xj þ @uj=@xiÞ is the rate of strain tensor, K is the
consistency, n is the power-law index and la is the apparent viscos-
ity which is given by:

la ¼ Kðeklekl=2Þðn�1Þ=2
: ð2Þ

For n < 1 (n > 1) the apparent viscosity decreases (increases)
with increasing shear rate and thus the fluids with n < 1 (n > 1)
are referred to as shear-thinning (shear-thickening) fluids. In the
present study, natural convection of power-law fluids in a square
enclosure (of dimension L) with differentially heated constant tem-
perature side walls filled with power-law fluids is compared with
the heat transfer rate obtained for different values of n with the
same nominal values of Rayleigh number and Prandtl number.
The nominal Rayleigh number Ranom represents the ratio of the
strengths of thermal transport due to the buoyancy force to that
due to thermal diffusion, which is defined here as:

Ranom ¼
q2cpgbDTL3

lnomk
¼ GrnomPrnom; ð3Þ

Nomenclature

cp specific heat at constant pressure (J/kg K)
e relative error (–)
eij rate of strain tensor (s�1)
Fs factor of safety (–)
g gravitational acceleration (m/s2)
Gr Grashof number (–)
h heat transfer coefficient (W/m2 K)
K consistency (N sn/m2)
k thermal conductivity (W/m K)
L length and height of the enclosure (m)
n power-law index (–)
Pr Prandtl number
q heat flux (W/m2)
r ratio between the coarse to fine grid spacings (–)
re grid expansion ratio (–)
Ra Rayleigh number (–)
T temperature (K)
t time (s)
ui ith velocity component (m/s)
U,V dimensionless horizontal (U = u1L/a) and vertical veloc-

ity (V = u2L/a) (–)
# characteristic velocity (m/s)
xi coordinate in ith direction (m)
a thermal diffusivity (m2/s)
b coefficient of thermal expansion (1/K)
d,dth velocity and thermal boundary-layer thickness (m)

h dimensionless temperature (h = (T � TC)/(TH � TC)) (–)
l dynamic viscosity (N s/m2)
m kinematic viscosity (m2/s)
q density (kg/m3)
sij (s) stress tensor (stress) (Pa)
/ general primitive variable (–)
w dimensionless stream function (–)
Subscripts
a apparent
C cold wall
char characteristic value
eff effective value
ext extrapolated value
H hot wall
K based on definitions given in [14]
max maximum value
nom nominal value
ref reference value
wall wall value
Special characters
DT difference between hot and cold wall temperature (=

(TH-TC)) (K)
Dmin;cell minimum cell distance (m)
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where Grnom is the nominal Grashof number and Prnom is the nomi-
nal Prandtl number, which are defined as:

Grnom ¼
q2gbDTL3

l2
nom

and Prnom ¼
lnomcp

k
: ð4Þ

The Grashof number represents the ratio of the strengths of the
buoyancy and viscous forces while the Prandtl number depicts the
ratio of the strengths of momentum diffusion to thermal diffusion.
Alternatively, the Prandtl number can be taken to represent the ra-
tio of the viscous boundary-layer to thermal boundary-layer
thicknesses.

For power-law fluids – because the viscosity varies with the
flow – in Eqs. (3) and (4) lnom represents the value of ‘‘nominal’’
viscosity. An important consideration in heat and fluid flow prob-
lems for power-law fluids lies in the most appropriate choice of
this nominal viscosity. The nominal viscosity lnom can be defined
based on a characteristic shear rate _c which can itself be scaled
as: _c � uchar=L where uchar is a characteristic velocity scale. Using
a characteristic velocity scale given by uchar � a=L as in Refs.
[15,16,22], one can obtain the following expression for lnom:

lnom � K _cn�1 � K
a
L2

� �n�1

: ð5Þ

Eq. (5) gives rise to the following definitions of Rayleigh, Gras-
hof and Prandtl numbers:

Ra ¼ gbDTL2nþ1

anðK=qÞ ; Gr ¼ gbDTL4n�1

ðK=qÞ2a2n�2
and Pr

¼ K
q

� �
an�2L2�2n: ð6Þ

These definitions – which will be used for the remainder of this
paper -are the same as those used by Ng and Hartnett [22] and
Lamsaadi et al. [15,16]. However, a different definition of apparent
dynamic viscosity was used earlier for analysing natural convec-
tion above a flat plate [23,24] and in a porous enclosure [25], which
is given by:

lK ¼ q
K
q

� � 1
2�n

L
2ð1�nÞ

2�n : ð7Þ

Using Eq. (7) in Eqs. (3) and (4) yields the following definitions of
Rayleigh and Prandtl numbers:

RaK ¼
gbDTL3

aðK=qÞ1=ð2�nÞH2ð1�nÞ=ð2�nÞ ; PrK ¼
KL2�2n

qa2�n : ð8Þ

Kim et al. [14] (hence the subscript ‘‘K’’) used the definitions gi-
ven in Eq. (8) for their analysis of the current problem but the def-
initions given in Eq. (6) will be adopted in the current study
following previous studies by Ng and Hartnett [22] and Lamsaadi
et al. [15,16]. The Rayleigh (Prandtl) numbers Ra and RaK (Pr and
PrK ) are related in the following manner:

Ra ¼ RaK Pr
n�1
2�n and Pr ¼ Pr2�n

K : ð9Þ

Both Ra and RaK (Pr and PrK ) are valid definitions for nominal
Rayleigh (Prandtl) numbers because the apparent viscosity la is
a local property which varies throughout the flowfield and cannot
be adequately characterised by a single representative value. The
relative merits of the definitions given by Eqs. (6) and (8) for the
current configuration will be addressed later in Section 4.3.

Using dimensional analysis it is possible to show that for natu-
ral convection of power-law fluids in square enclosures:
Nu ¼ f1ðRa; Pr;nÞ where the Nusselt number Nu is given by:

Nu ¼ hL
k
; ð10Þ

where Nu represents the ratio of heat transfer rate by convection to
that by conduction in the fluid in question and the heat transfer
coefficient h is defined as:

h ¼ k
jTwall � Tref j

@T
@x

����
����
wf

; ð11Þ

where subscript ‘wf’ refers to the condition of the fluid in contact
with the wall, Twall is the wall temperature and Tref is the appropri-
ate reference temperature, which can be taken to be TC (TH) for the
hot (cold) wall respectively.

2.2. Numerical implementation

The commercial package FLUENT is used to solve the coupled
conservation equations of mass, momentum and energy. This com-
mercial package has been used successfully in a number of recent
studies to simulate both inelastic power-law fluids [26] and Bing-
ham fluids [20,21]. In this framework, a second-order central differ-
encing is used for the diffusive terms and a second-order up-wind
scheme for the convective terms. Coupling of the pressure and veloc-
ity is achieved using the well-known SIMPLE (Semi-Implicit Method
for Pressure-Linked Equations) algorithm [27]. The convergence cri-
teria in FLUENT were set to 10�9 for all the relative (scaled) residuals.

2.3. Governing equations

For the present study steady-state flow of an incompressible
power-law fluid is considered. For incompressible fluids the con-
servation equations for mass, momentum and energy under stea-
dy-state take the following form:

Mass conservation equation

@ui

@xi
¼ 0; ð12Þ

Momentum conservation equation

quj
@ui

@xj
¼ � @p

@xi
þ qgdi2bðT � TCÞ þ

@sij

@xj
; ð13Þ

Energy conservation equation

qujcp
@T
@xj
¼ @

@xj
k
@T
@xj

� �
; ð14Þ

where the cold wall temperature TC is taken to be the reference
temperature for evaluating the buoyancy term qgdi2bðT � TCÞ in
the momentum conservation equations following several previous
studies [14,19–21]. The Kronecker’s delta di2 in the source term
qgdi2bðT � TCÞ ensures that this term remains operational only for
the momentum transport in the vertical direction (i.e. x2-direction).
The stress tensor is evaluated using Eq. (1).

2.4. Boundary conditions

The simulation domain is shown schematically in Fig. 1 where
the two vertical walls of a square enclosure are kept at different
temperatures (TH > TC), whereas the other boundaries are consid-
ered to be adiabatic in nature. Both velocity components (i.e. u1

and u2) are identically zero on each boundary because of the no-
slip condition and impenetrability of rigid boundaries. The temper-
atures for hot and cold vertical walls are specified (i.e.
Tðx1 ¼ 0Þ ¼ TC and Tðx1 ¼ LÞ ¼ TH . The temperature boundary con-
ditions for the horizontal insulated boundaries are given by:
@T=@x2 ¼ 0 at x2 ¼ 0 and x2 ¼ L. Here 4 governing equations (1 con-
tinuity + 2 momentum + 1 energy) for 4 quantities (u, v, p, T) are
solved and thus no further boundary conditions are needed for
pressure.
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2.5. Grid independency study

The grid independence of the results has been established based
on a careful analysis of three different non-uniform meshes M1
(50 � 50), M2 (100 � 100) and M3 (200 � 200) and the relevant
details, such as normalised minimum grid spacing Dmin;cell=L and
grid expansion ratio re, are presented in Table 1. The numerical
uncertainty is quantified in Table 2 using Richardson’s extrapola-
tion theory [28] for representative simulations of Newtonian (i.e.
n = 1), shear thinning (i.e. n = 0.6) and shear thickening (i.e.
n = 1.8) fluids at Ra = 106 and Pr = 100). The n = 0.6 and n = 1.8 data
represent ‘‘extreme’’ scenarios for the power-law simulations
shown here: the uncertainties quoted thus demonstrate the range
for the data shown in the paper. For a general primitive variable /
the general Richardson extrapolation grid-converged value is given
by: /h¼0 ¼ /1 þ ð/2 � /1Þ=ðrp � 1Þ where /1 is obtained based on
the finest grid and /2 is the solution based on the next level of
coarse grid, r is the ratio between the coarse to fine grid spacings
and p is the theoretical order of accuracy. In this analysis the
apparent order was taken to be 2. The numerical uncertainties
for the mean Nusselt number (Nu) and the maximum non-dimen-
sional vertical velocity magnitude on the horizontal mid-plane of
the enclosure (Vmax) are presented in Table 2. It can be seen from
Table 2 that the numerical uncertainty levels remain smaller than
1% for all meshes for the simulations involving Newtonian (i.e.
n = 1) and shear-thickening (i.e. n = 1.8) fluids. While the uncer-
tainties for Nu in the n = 0.6 case remains comparable to that ob-
tained for n = 1.0 and 1.8 cases, the uncertainty levels of Vmax for
the n = 0.6 case are considerably higher in comparison to the
n = 1.0 and 1.8 cases. For the n = 0.6 case the uncertainty levels
for Vmax are 12%, 4% and 1% for meshes M1, M2 and M3 respec-
tively. Based on the aforementioned uncertainty levels, the simula-
tions were conducted using mesh M2 which provided a reasonable
compromise between high accuracy and computational efficiency.

2.6. Benchmark comparison

In addition to the aforementioned grid-dependency study, the
simulation results for Newtonian fluids (i.e. n = 1.0) have also been

compared against the well-known benchmark data of de Vahl Da-
vis [1] for Rayleigh numbers Ra ranging from 103 to 106 and Pra-
ndtl number equal to Pr = 0.71. The comparisons between the
present simulation results for Newtonian fluids with the corre-
sponding benchmark values were found to be excellent and en-
tirely consistent with aforementioned grid-dependency analysis.

As an additional benchmark comparison, simulations for
power-law fluids in the current configuration have been carried
out for RaK ¼ 105—107 and PrK ¼ 102—104 and a comparison of
Nu=Nun¼1 values obtained from the present simulation results
and the values reported in Kim et al. [14] is shown in Fig. 2. The
agreement between the present results and the data reported in
Kim et al. [14] is excellent across the entire Rayleigh and Prandtl
number range for all values of n (note: Ref. [14] only report data
for Newtonian and shear-thinning fluids, i.e. n 6 1).

3. Scaling analysis

A scaling analysis is performed to elucidate the anticipated ef-
fects of Rayleigh number, Prandtl number and power-law index
on the Nusselt number for power-law fluids. The wall heat flux q
can be scaled as:

q � k
DT
dth
� hDT; ð15Þ

which gives rise to the following relation:

Nu � h � L
k
� L

dth
or Nu � L

d
f2ðRa; Pr;nÞ; ð16Þ

where the thermal boundary-layer thickness dth is related to the
hydrodynamic boundary-layer thickness d in the following way:
d=dth � f2ðRa; Pr;nÞ where f2ðRa; Pr;nÞ is a function of Rayleigh num-
ber, Prandtl number and power-law index, which is expected to in-
crease with increasing Prandtl number. In order to estimate the
hydrodynamic boundary-layer thickness d, a balance of inertial
and viscous forces in the vertical direction (i.e. x2-direction) is
considered:

q
#2

L
� s

d
; ð17Þ

where # is a characteristic velocity scale. For power-law fluids the
shear stress s can be estimated as: s � Kð#=dÞn, which upon substi-
tution into Eq. (17) gives:

⁄ = 0

u1 = 0, u2= 0

u1 = 0, u2= 0
⁄ = 0

TC

u1 = 0
u2 = 0

u1= 0
u2 = 0

TH
g

L

x2

x1

Fig. 1. Schematic diagram of the simulation domain.

Table 1
Non-dimensional minimum cell distance (Dmin;cell=L) and grid expansion ratio (re)
values for different meshes.

Grid M1 (50 � 50) M2 (100 � 100) M3 (200 � 200)

Dmin;cell=L 7.3921 � 10�3 3.6960 � 10�3 1.8480 � 10�3

re 1.0747 1.0361 1.0177

Table 2
Numerical uncertainty for mean Nusselt number Nu and maximum non-dimensional
vertical velocity component Vmax at the horizontal mid-plane (i.e. y/H = 0.5) for
Ra = 106 and Pr = 100 for representative shear-thinning (n = 0.6), Newtonian (n = 1)
and shear-thickening (n = 1.8) cases.

Nu Vmax

M1 M2 M3 M1 M2 M3

n = 0.6
u 34.0492 33.6849 33.6359 2237.26 2450.00 2527.77
uext 33.6196 2553.69
eext (%) 1.28 0.194 0.0486 12.4 4.06 1.02

n = 1
u 9.1476 9.1751 9.1989 234.4305 235.4176 235.9544
uext 9.2068 236.1333
eext (%) 0.643 0.345 0.0862 0.721 0.303 0.0758

n = 1.8
u 2.5266 2.5431 2.5480 26.8884 26.9980 27.0944
uext 2.5496 27.1265
eext (%) 0.903 0.256 0.0641 0.878 0.474 0.119
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q
#2

L
� K

#n

dnþ1 : ð18Þ

Using Eq. (18) the hydrodynamic boundary-layer thickness can
be estimated as:

d � KL#n�2

q

 ! 1
nþ1

: ð19Þ

For natural convection the flow is induced by the buoyancy
force and thus an equilibrium of inertial and buoyancy forces
gives:

#2

L
� gbDT: ð20Þ

This balance leads to an expression for the characteristic veloc-
ity scale:

# �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbDTL

p
; ð21Þ

which can be used in Eq. (19) to yield:

d � KLðgbDTLÞn=2�1

q

" # 1
nþ1

� L

ðRa2�nPr�nÞ
1

2ðnþ1Þ
; ð22Þ

where Ra and Pr are given by Eq. (6). This scaling gives rise to the
following expression for the thermal boundary-layer thickness dth:

dth � min L;
1

f2ðRa; Pr;nÞ
KLðgbDTLÞn=2�1

q

 ! 1
nþ1

2
4

3
5

� min L;
1

f2ðRa; Pr;nÞ
L

ðRa2�nPr�nÞ
1

2ðnþ1Þ

" #
: ð23Þ

The above expression accounts for the fact the thermal bound-
ary-layer thickness becomes of the order of the enclosure size L un-
der very high values of n when conduction becomes the principal
mode of heat transfer. Moreover, for a given set of values of Ra
and Pr the thermal boundary-layer and hydrodynamic boundary-
layer thicknesses (i.e. dth and d) decrease with decreasing n. Eq.
(23) suggests that dth decreases with increasing Ra for n < 2, which
acts to increase the wall heat flux. Substitution of Eq. (23) into Eq.
(15) yields:

Nu � ðRa2�nPr�nÞ
1

2ðnþ1Þ f 2ðRa; Pr;nÞ when Nu > 1: ð24Þ

The mean Nusselt number Nu attains a value equal to unity (i.e.
Nu ¼ 1:0) when dth approaches to the enclosure size L. The scaling
predictions provide useful insight into the anticipated behaviour of
Nu in response to variations of Ra, Pr and n. Eq. (24) suggests that
Nu is expected to decrease with increasing n for a given value of Ra
when n < 2 whereas Nu increases with increasing Ra for a given va-
lue of n. It is also important to note that the mean Nusselt number
Nu behaviour for Newtonian fluids can be obtained by setting n = 1
in Eq. (24). Doing so gives Nu � Ra0:25f2ðRa; Pr;1Þ=Pr0:25 for Newto-
nian fluids whereas Berkovsky and Polevikov [29] proposed the
correlation Nu ¼

R L
0 Nu � dy=L ¼ 0:18½RaPr=ð0:2þ PrÞ�0:29. Recently,

Turan et al. [20] proposed a correlation for Nu ¼ 0:162Ra0:293

½Pr=ð1þ PrÞ�0:091 which is also consistent with the scaling estimate
shown in Eq. (24).

An apparent effective viscosity leff can be estimated in the fol-
lowing way:

leff � Kð#=dÞn�1
: ð25Þ

Using Eqs. (21) and (22) in Eq. (25) yields:

leff � q
K
q

� � 2
nþ1 ðgbDTLÞ3ðn�1Þ=2ðnþ1Þ

Lðn�1Þ=ðnþ1Þ : ð26Þ

Eq. (26) can be used to estimate effective Grashof and Rayleigh
numbers (i.e. Greff and Raeff ):

Greff ¼
q2gbDTL3

l2
eff

� Gr
4�2n
nþ1 Pr

4ð1�nÞ
nþ1 � Ra

4�2n
nþ1 Pr

�2n
nþ1; ð27Þ

Raeff ¼
q2gbDTL3

l2
eff

leff cp

k
� Ra

5�n
2nþ2Pr

1�n
2nþ2: ð28Þ

The relations given by Eqs. (27) and (28) indicate that the effec-
tive values of Grashof and Rayleigh number become increasingly lar-
ger than their nominal values for decreasing values of n (especially

RaK = 105

n
0.5 0.6 0.7 0.8 0.9 1.0 1.1

N
u 

/ N
u 

n 
=

1

0.6

0.8

1.0

1.2

1.4

1.6

RaK = 106

n
0.5 0.6 0.7 0.8 0.9 1.0 1.1

N
u 

/ N
u 

n 
=

1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

RaK = 107

n
0.5 0.6 0.7 0.8 0.9 1.0 1.1

N
u 

/ N
u 

n 
=

1

0.8

1.2

1.6

2.0

2.4

2.8

Fig. 2. Comparison of Nu=Nun¼1 variation obtained from present simulation with
the results obtained by Kim et al. [14] (white) for: (j) PrK = 102, (d) PrK = 103 and
(N) PrK = 104.
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for n < 1). This suggests that for small values of n the magnitudes of
Greff and Raeff may attain such values that a steady two-dimensional
laminar solution may not exist whereas a steady two-dimensional
laminar solution can be obtained for the same set of nominal values
of Ra and Pr for a higher value of n. Thus a critical value Racrit can be
expected for the effective Rayleigh number Raeff such that a steady
two-dimensional solutions cannot exist when Raeff > Racrit . A num-
ber of simulations have been carried out for different values of Ra,
Pr and n and it has been found that converged two-dimensional stea-
dy solution cannot be obtained when Raeff > 107Pr and the critical
effective Rayleigh number above which a steady solution can no
longer be obtained is:

Racrit � Ra
5�n

2nþ2Pr
1�n

2nþ2 ¼ 107Pr; ð29Þ

which essentially suggests that steady two-dimensional solutions
do not exist for the following condition:

Ra > 107Pr
3nþ1
2nþ2

h i2nþ2
5�n
: ð30Þ

Moreover, a lower limit for Ra can be obtained using Eq. (24)
above which convective transport plays a key role in heat transfer.
For convective heat transfer to play an important role in the ther-
mal transport, the mean Nusselt number Nu needs to exceed 1.0
(i.e. Nu > 1) and thus the limiting condition for which convective
heat transfer becomes important can be estimated as:

Nu � ðRa2�nPr � nÞ
1

2ðnþ1Þf2ðRa; Pr;nÞ � 1:0: ð31Þ

Pr

R
a

(a)

(b)

Fig. 3. (a) Different regimes of convection for n = 0.6, (b) Temporal evolution of Nu with dimensionless time at=L2 at Pr = 50, n = 0.6 for: (A) conduction regime Ra = 5; (B)
laminar steady convection regime Ra = 1 � 106; and (C) unsteady convection regime Ra = 5 � 106.
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Considering f2ðRa; Pr;nÞ � 1:0 one obtains the following limiting
condition:

Ra � Pr
n

2�n: ð32Þ
The conditions given by Eqs. (30) and (32) are shown in a regime

diagram in Fig. 3a. When Ra < Pr
n

2�n the heat transfer takes place
principally due to thermal conduction and this regime is therefore
called the ‘conduction dominated regime’ in Fig. 3a. The region given

by 107Pr
3nþ1
2nþ2

h i2nþ2
5�n

> Ra > Pr
n

2�n in Fig. 3a is termed as the ‘steady lam-

inar convection regime’. As steady two-dimensional laminar solu-

tions do not exist for Ra > 107Pr
3nþ1
2nþ2

h i2nþ2
5�n

the corresponding regime

is referred to as the ‘unsteady convection regime’. The validity of
the above regime diagram can be substantiated from a series of

unsteady calculations labelled as cases A, B and C on the regime dia-
gram. For case A and B the mean Nusselt number Nu attains steady
values (i.e. case A: Nu ¼ 1:0) as predicted by the regime diagram.
The transient simulation for case C yielded a complex oscillation of
Nu as observed from Fig. 3b. It is worth noting that non-convergence
of steady state simulations does not necessarily indicate inexistence
of a steady state (i.e. the non-convergence may be numerical in nat-
ure). Here the criteria given by Eqs. (29) and (30) for the critical con-
dition above which a steady solution does not exist is confirmed by
carrying out unsteady simulations for the parameters where a con-
verged steady solution was not available (e.g. see case C in Fig. 3a
and b).

It is important to note that the boundaries which distinguish
one regime from another on the regime diagram shown in Fig. 3a
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Fig. 4. Variations of non-dimensional temperature h for Pr = 100 (left column), Pr = 1000 (middle column) and Pr = 10,000 (right column).
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are based on scaling arguments. As such these boundaries should
not be treated rigidly but need to be considered only in an order
of magnitude sense.

4. Results and discussion

4.1. Effects of power-law index n

It is useful to inspect the distributions of dimensionless temper-
ature h ¼ ðT � TCÞ=ðTH � TCÞ and the velocity components (=uiL=a)
in order to understand the influences of n on the heat transfer rate
during natural convection of power-law fluids in the square enclo-
sure. The distributions of h and V ¼ u2L=a along the horizontal
mid-plane (i.e. x2=L ¼ 0:5) for Ra ¼ 104; 105 and 106 and
Pr ¼ 102—105 are shown in Figs. 4 and 5 respectively for different
values of n ranging from 0.6 to 1.8. The distributions of U ¼ u1L=a

are not shown explicitly since, as a consequence of continuity, U
and V remain of the same order of magnitude in a square enclosure
(i.e. U=L � V=L). It is evident from Fig. 4 that the distributions of h
become increasing non-linear for decreasing values of n for a given
set of values of Ra and Pr, which suggests that the effects of convec-
tion becomes increasingly strong for decreasing values of n when
Ra and Pr are held constant. This statement is further supported
by the data plotted in Fig. 5 which demonstrates that the magni-
tude of the velocity component increases significantly with
decreasing power-law index when both Ra and Pr are kept unal-
tered. As Eq. (27) shows, for a given value of nominal Grashof num-
ber Gr, the effective Grashof number Greff increases significantly
with decreasing power-law index, which indicates that the
strength of the buoyancy force becomes increasingly strong in
comparison to viscous flow resistance for decreasing values of n
and this effect is particularly prevalent for fluids with n < 1
because of shear thinning. On the other hand, the effects of

Fig. 5. Variations of non-dimensional vertical velocity component V for Pr = 100 (left column), Pr = 1000 (middle column) and Pr = 10,000 (right column).
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convection become increasingly weak in comparison to viscous
forces with increasing n for shear-thickening fluids (n > 1). These
effects of shear thickening can be seen in the small values of V
and more linear distribution of h for n > 1 fluids in Figs. 5 and 4
respectively. Especially for Ra ¼ 104, conduction remains the prin-
cipal mode of heat transport for n ¼ 1:8 which can be seen from
the almost linear distribution of h and negligible magnitude of V
(see Figs. 4 and 5). This finding is consistent with the scaling esti-
mates given by Eq. (23) which indicates that dth may become of the
order of L for large values of n and under this condition heat trans-
fer becomes primarily conduction-driven, which is the case for
n ¼ 1:8 at Ra ¼ 104. It can further be inferred from Eqs. (22) and
(23) that both d and dth become progressively thin with decreasing
n when both Ra and Pr are kept constant: as can also be observed
from the distributions of h and V shown in Figs. 4 and 5. Moreover,
the thinning of both hydrodynamic and thermal boundary layers
with decreasing n can further be seen from the contours of

dimensionless stream function W ¼ w=a and the isotherms shown
in Figs. 6 and 7 respectively for n ¼ 0:6, 1.0 and 1.8 at Ra ¼ 104, 105

and 106, and Pr ¼ 103. It can be observed from Fig. 6 that the mag-
nitude of W decreases (increases) with increasing (decreasing) n
because of weakening (strengthening) of convective transport in
comparison to viscous flow resistance. The isotherms also become
progressively more curved with decreasing power-law index as a
result of the strengthening of convective transport.

A decrease in the thermal boundary-layer thickness dth gives
rise to an increase in the magnitude of heat flux at the vertical wall
(see Eq. (15)), which acts to enhance the mean Nusselt number Nu
as can be seen in Fig. 8 where the variations of mean Nusselt num-
ber Nu with Ra are shown for different values of n at Pr ¼ 102; 103

and 104. The results shown in Fig. 8 are consistent with the scaling
estimate given by Eq. (24) which suggests that Nu increases with
decreasing n for a given set of values of Ra and Pr. This behaviour
is also qualitatively consistent with the findings of Lamsaadi et al.

Fig. 6. Contours of non-dimensional stream functions (W = w/a) for n = 0.6, 1.0 and 1.8 for Ra = 104 (first row), Ra = 105 (second row) and Ra = 106 (third row) at Pr = 1000.
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[15,16] for the same configuration with vertical walls subjected to
constant heat flux instead of constant temperature.

4.2. Effects of nominal Rayleigh number Ra

For a given set of values of n and Pr an increase in Ra gives
rise to strengthening of buoyancy forces in comparison to vis-
cous forces which can be seen from Fig. 5 where the magnitude
of V increases with increasing Ra. This enhancement of fluid
velocity magnitude is consistent with the fact that the effective
Grashof and Rayleigh numbers (i.e. Greff and Raeff ) increase with
increasing Ra for a given set of values of n and Pr. As the convec-
tive transport strengthens with increasing Ra the distribution of
h becomes significantly more non-linear with increasing Ra (see
the profiles in Fig. 4). For example, at Ra ¼ 104 the thermal
transport takes place principally due to conduction for n ¼ 1:8
and this is reflected in the almost linear distribution of h and
negligible magnitude of V (see Figs. 4 and 5). However, the

distribution of h becomes non-linear and the magnitude of V
rises with increasing Ra as evident from Figs. 4 and 5. Figs. 6
and 7 also show that the effects of convection strengthen with
increasing Ra which is reflected in the augmentation in the mag-
nitude of W and progressively curved isotherms for higher values
of Rayleigh number. It is clear from Figs. 4–7 that both d and dth

decrease with increasing Ra (for a given set of values of n and
Pr) which is consistent with the scaling estimates given by
Eqs. (22) and (23). The thinning of dth for larger values of Ra acts
to enhance the magnitude of wall heat flux for the vertical walls
(as Eqs. (15) and (16) show), which gives rise to an increase in
Nu. The increase in Nu with increasing Ra when n and Pr are
kept unaltered for the range of values considered here is demon-
strated in Fig. 8 which is also consistent with the scaling esti-
mate given by Eq. (24). The Rayleigh number dependence of
Nu for different values of n is found to be qualitatively consistent
with the earlier results by Lamsaadi et al. [15,16] for the con-
stant wall heat flux configuration.

Fig. 7. Contours of non-dimensional temperature h for n = 0.6, 1.0 and 1.8 for Ra = 104 (first row), Ra = 105 (second row) and Ra = 106 (third row) at Pr = 1000.
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4.3. Effects of nominal Prandtl number Pr

The effects of nominal Prandtl number Pr, in the range
Pr ¼ 10—105, have been explored in the present analysis for
Ra ¼ 103—106 and n ¼ 0:6—1:8 as shown in Fig. 9. The value of
Nu for Pr ¼ 10 Ra ¼ 106 and n ¼ 0:6 is not shown in Fig. 9 because
no steady-state converged solution could be obtained for these

conditions. It is evident from Figs. 4 and 5 that the changes in Pr
do not affect the distributions of h and V and thus Pr does not have
a major influence on the value of Nu in the range of Prandtl number
considered here. This is consistent with earlier findings in the con-
text of Newtonian fluids (i.e. n ¼ 1) which demonstrated weak Pr
dependence of Nu for Pr � 1 [4,5]. For Pr � 1 the hydrodynamic
boundary-layer thickness remains much greater than the thermal
boundary-layer thickness and as a result a change in Prandtl num-
ber principally modifies the relative balance between viscous and
buoyancy forces so the heat transport in the thermal boundary-
layer gets only marginally affected. This marginal modification of
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Fig. 8. The variation of the mean Nusselt number and Rayleigh number for different
values of power law index n for: (a) Pr = 100, (b) Pr = 1000 and (c) Pr = 10,000.
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thermal boundary-layer thickness is reflected in the weak Prandtl
number dependence of Nu for large values of Pr in Fig. 9. Both
the hydrodynamic and thermal boundary-layer thicknesses remain
the thinnest for Ra ¼ 106 and n ¼ 0:6 amongst the cases studied
here and thus a change in Pr alters the thermal boundary-layer
thickness relatively significantly for these conditions. Conse-
quently an increase in Nu is observed because an increase in Pr acts
to decrease the thermal boundary-layer thickness.

The value of mean Nusselt number Nu is enhanced with in-
creased shear thinning (i.e. decreasing n) for all values of nomi-
nal Rayleigh Ra and Prandtl Pr numbers considered in this study
(see Figs. 8 and 9), which is consistent with the results of
Lamsaadi et al. [15,16] for the constant heat flux configuration.
In contrast, Kim et al. [14] reported non-monotonic variations
with a growth in Nu with increasing n for PrK ¼ 104 at
RaK ¼ 105 and 106 but with decreasing n for RaK = 107 (see
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Fig. 10. Variations of Nu with power law index, n 6 1 (s) for different values of Pr and Ra along with the predictions of Eq. (33) (—) and the correlation proposed by Kim et al.
[14], Eq. (33v) (- - -).
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Fig. 2 where these data are faithfully reproduced using the pres-
ent numerical approach). As can be seen from Eq. (9),
Ra ¼ RaK Prn�1

K and Gr ¼ Ra=Pr ¼ RaK Pr2n�3
K which indicates that

both Ra and Gr decrease with decreasing values of n for a given
set of values of RaK and PrK , and this tendency is particularly
prevalent for the combination of small values of n and RaK and
large value of PrK . This rapid reduction in Ra and Gr with
decreasing n for a combination of small RaK and large PrK

suggests weakening of buoyancy forces with respect to viscous
forces, which ultimately leads to a reduction of Nu due to dimin-
ishing convection strength.

4.4. Correlation for mean Nusselt number Nu

According to Eq. (24) the mean Nusselt number can be taken to
scale with Nu � ðRa2�nPr�nÞ

1
2ðnþ1Þf2ðRa; Pr;nÞ and recently Turan et al.
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Fig. 11. Variations of Nu with power law index, n > 1 (s) for different values of Pr and Ra along with the predictions of Eq. (33) (—) and the correlation proposed by Kim et al.
[14], Eq. (33v) (- - -).
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[20] demonstrated that Nu ¼ 0:162Ra0:293½Pr=ð1þ PrÞ�0:091 satisfac-
torily captures the Ra and Pr dependences of Nu for Newtonian flu-
ids and thus the correlation for Nu for power-law fluids should be
proposed in such a manner that limn!1Nu ¼ 0:162Ra0:293

½Pr=ð1þ PrÞ�0:091. It has been shown earlier in Fig. 8 that Nu in
power-law fluids with n < 1 (n > 1) attains greater (smaller)
values than the value of mean Nusselt number obtained for
Newtonian fluids (i.e. n ¼ 1) for the same nominal values of Ra
and Pr. Based on the aforementioned observations and limiting
conditions a correlation for Nu is proposed here in the following
manner:

Nu ¼ 0:162Ra0:043 Pr0:341

ð1þ PrÞ0:091

Ra2�n

Prn

 ! 1
2ðnþ1Þ

ebðn�1Þ; ð33iÞ

where b is a correlation parameter which can be expressed based on
simulation results as:

b ¼ c1Rac2 Prc3 ; ð33iiÞ

where c1; c2 and c3 are given by:

c1 ¼ 1:343; c2 ¼ 0:065 and c3 ¼ 0:036 for n 6 1; ð33iiiÞ
c1 ¼ 0:858; c2 ¼ 0:071 and c3 ¼ 0:034 for n > 1: ð33ivÞ

According to Eqs. (33)i–iv the expression of Nu becomes exactly
equal to an existing correlation for Newtonian fluids (i.e.
Nu ¼ 0:162Ra0:293½Pr=ð1þ PrÞ�0:091 in Ref. [20]) when n is taken to
be unity (i.e. n ¼ 1). Kim et al. [14] also proposed a correlation
for Nu in the current configuration based on computational simu-
lations of power-law fluids for 106

6 RaK 6 107, 102
6 PrK 6 104

and 0:6 6 n 6 1:0:

Nu ¼ 0:3n0:4 RaK Prn�1
K

� � 1
3nþ1 ¼ 0:3n0:4ðRaÞ

1
3nþ1: ð33vÞ

The quality of the correlations given by Eqs. (33) and (33v) for
fluids with n 6 1 for Ra ¼ 104—106 and Pr ¼ 102—104 are shown
in Fig. 10. The performance of these correlations for the aforemen-
tioned range of Rayleigh and Prandtl numbers are shown in Fig. 11
for n > 1 fluids. It can be seen from Figs. 10 and 11 that Eq. (33) sat-
isfactorily predicts the qualitative and quantitative behaviour of Nu
across all power-law indices considered here. Figs. 10 and 11 dem-
onstrate that although the correlation proposed by Kim et al. [14]
(Eq. (33v)) satisfactorily captures the qualitative variation of Nu,
this correlation overpredicts the value of Nu for all the cases con-
sidered here. The extent of this overprediction is particularly pre-
valent for small values of Ra and the accuracy of its prediction
improves with increasing Ra. For large values of Ra (e.g.
Ra ¼ 106) the predictions of Eqs. (33) and (33v) remain comparable
for shear-thinning fluids. It is worth noting that the correlation gi-
ven by Eq. (33v) was originally proposed for 106

6 RaK 6 107;

102
6 PrK 6 104 and 0:6 6 n 6 1:0 and thus the overprediction of

Nu for a broader range of Ra, Pr (i.e. RaK , PrK ) and n is perhaps
not unexpected. Based on the observations from Figs. 10 and 11
the correlation given by Eq. (33) is recommended here for
104
6 Ra 6 106, 10 6 Pr 6 105 and 0:6 6 n 6 1:8.

5. Conclusions

In this study, the heat transfer characteristics of two-dimen-
sional steady laminar natural convection of power-law fluids in a
square enclosure with differentially heated side walls subjected
to constant wall temperatures have been numerically studied.
The effects of Rayleigh number Ra, Prandtl number Pr and
power-law index n on heat and momentum transport have been
systematically investigated. The results show that the mean
Nusselt number Nu rises with increasing values of the Rayleigh

number for both Newtonian and power-law fluids. The Nusselt
number was found to decrease with increasing power-law index
n, and, for large values of n, the value of mean Nusselt number set-
tled to unity (i.e. Nu ¼ 1) as the heat transfer took place principally
by conduction.

The simulation results show that the mean Nusselt number Nu
is marginally affected by the increase in Pr for Newtonian and
power-law fluids for a given set of values of the Rayleigh number
Ra and power law index n. Finally, guided by a scaling analysis,
the simulation results are used to propose a new correlation for
Nu for power-law fluids with n ranging from 0.6 to 1.8. This corre-
lation is shown to satisfactorily capture the variation of Nu with Ra,
Pr and n for all the cases considered in this study. Moreover, this
correlation reduces to an existing correlation for Nu for Newtonian
fluids when n ¼ 1.

It is important to note that in the present study the temperature
dependences of thermo-physical properties such as consistency
and thermal conductivity have been neglected as a first step to
aid the fundamental understanding of natural convection in
power-law fluids in square enclosures with differentially heated
side walls subjected to constant wall temperatures. Although the
inclusion of temperature-dependent thermo-physical properties
are not expected to change the qualitative behaviour observed in
the present study, the inclusion of temperature dependence of
consistency K , power-law index n and thermal conductivity k is
probably necessary for quantitative predictions. Thus future inves-
tigation on the same configuration with temperature-dependent
thermo-physical properties of power law fluids will be necessary
for deeper understanding and more accurate quantitative
predictions.
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