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a b s t r a c t

In this study, two-dimensional steady-state simulations of laminar natural convection in rectangular
enclosures with differentially heated side walls have been conducted for a range of different aspect
ratios AR (=H/L where H is the enclosure height and L is the enclosure width). The rectangular enclosures
are considered to be completely filled with a yield-stress fluid obeying the Bingham model. Yield stress
effects on heat and momentum transport are investigated for nominal values of Rayleigh number (Ra) in
the range 104–106 and the aspect ratio range 1/8 to 8 for a single Prandtl number (Pr = 7). It is found that
the mean Nusselt number Nu increases with increasing values of Rayleigh number for both Newtonian
and Bingham fluids. However, Nu values obtained for Bingham fluids are smaller than that obtained in
the case of Newtonian fluids with the same nominal value of Rayleigh number Ra due to weakening of
convective transport. The mean Nusselt numberNu in the case of Bingham fluids is found to decrease with
increasing Bingham number, and, for large values of Bingham number Bn, the value of Nu settles to unity
(i.e.Nu = 1.0) as heat transfer takes place principally due to thermal conduction. The effects of aspect ratio
AR have also been investigated in detail and it has been found the effects of thermal convection (diffusion)
strengthens (weakens) with increasing aspect ratio and vice versa, for a given set of nominal values of
Rayleigh number Ra and Prandtl number Pr. It is found that the aspect ratio ARmax at which the maximum
mean Nusselt number Nu occurs is found to decrease with increasing Rayleigh number. However, the
value of ARmax is shown to increase with increasing Bingham number Bn for a given set of values of Ra
and Pr. Detailed physical explanations are provided for the observed phenomena. New correlations are
proposed for the mean Nusselt number Nu for Bingham fluids, which are shown to satisfactorily capture
the correct qualitative and quantitative behaviour of Nu in response to changes in Ra, AR and Bn.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Natural convection in rectangular enclosures is one of the most
well-known problems of convective heat transfer and has several
engineering applications such as in solar collectors, in heating and
preservation of canned foods, in electronic equipment cooling and
in energy storage and conservation. A lot of theoretical (e.g. Batch-
elor [1]), numerical (e.g. de Vahl Davis [2]) and experimental (e.g.
Emery and Lee [3]) studies have been carried out for natural con-
vection in rectangular enclosures filled with Newtonian fluids. An
overview of the fundamental studies on this subject can be found
in the review paper by Ostrach [4]. Although various different con-
figurations of the enclosure problem are possible, one of the most
studied cases involves two-dimensional enclosures where the hor-
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izontal walls are adiabatic and the temperature difference driving
the convection comes from the side walls as in the classic bench-
mark paper of de Vahl Davies [2] for Newtonian fluids. To avoid
unnecessary repetition, unless otherwise stated, all papers referred
to in the remainder of the paper are concerned with this configura-
tion. It has been found that the aspect ratio of the enclosure, defined
as AR = H/L, in which H is the enclosure height and L is the enclosure
width, has a major influence on the thermal transport in rectangular
enclosures with differentially heated side walls [5–12].

The effects of aspect ratio on the natural convection in rectan-
gular enclosures are often investigated separately for tall (AR � 1)
and shallow enclosures (AR � 1). Elder [5] carried out a comprehen-
sive experimental study on the natural convection in rectangular
enclosures in the range of Ra < 108, 1 ≤ AR ≤ 60 and Pr = 1000 (all
dimensionless parameters are defined and discussed in Section
2.2). Elder [5] distinguished three regions; a region in the vicinity
of vertical side walls where the temperature gradients are nearly
horizontal and largest, an interior region where the vertical tem-
perature gradients appear and an end region strongly influenced

0377-0257/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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Nomenclature

a correlation parameter
AR aspect ratio (AR = H/L)
b correlation parameter
Bn Bingham number
Bn* modified Bingham number for boundary-layer

regime
Bn** modified Bingham number for parallel-flow regime
cp specific heat at constant pressure [J/kg K]
c1,c2,c3 correlation parameter
C correlation parameter
CB correlation parameter
e relative error
f1,f2,f3,f4 functions relating thermal and hydrodynamic

boundary layers
F fraction determining the ratio of the hydrodynamic

boundary layer thickness on horizontal surface to
the height of the enclosure

g gravitational acceleration [m/s2]
Gr Grashof number
h heat transfer coefficient [W/m2 K]
H height of the enclosure [m]
k thermal conductivity [W/m K]
K thermal gradient in horizontal direction [K/m]
L width of the enclosure [m]
m stress growth exponent [s]
n,n1,n2 correlation parameter
nB exponent of aspect ratio for self similar variation of

mean Nusselt number in the boundary-layer regime
Nu Nusselt number
Nu1 convective contribution to Nusselt number
Nu2 conduction contribution to Nusselt number
NuBn=0 Nusselt number for Newtonian fluids
Pr Prandtl number
q general quantity
qe correlation parameter
qf heat flux [W/m2]
Ra Rayleigh number based on L
RaH Rayleigh number based on H.
T temperature [K]
ui,uj ith and jth velocity components [m/s]
U,V dimensionless horizontal (U = u1L/˛) and vertical

velocity (V = u2L/˛)
ϑ characteristic velocity in vertical direction [m/s]
xi,xj coordinate in ith and jth directions [m]

Greek letters
˛ thermal diffusivity [m2/s]
ˇ coefficient of thermal expansion [K−1]
�̇ shear rate [s−1]
ı,ıth hydrodynamic and thermal boundary layer thick-

ness [m]
� dimensionless temperature, (� = (T − TC)/(TH − TC))
� plastic viscosity [N s/m2]
�yield yield viscosity [N s/m2]
� kinematic viscosity [m2/s]
� density [kg/m3]
�y yield stres [N/m2]
	 general primitive variable
 stream function [m2/s]

Subscripts
C cold wall
ext extrapolated value
eff effective value
H hot wall
max maximum value
ref reference value
wall wall value

Special characters

T difference between hot and cold wall temperature

(=(TH − TC)) [K]

T1 the temperature difference between the horizontal

walls [K]
Nu mean Nusselt number

min,cell minimum cell distance [m]
rx,ry grid expansion ratio in x1 and x2 directions

by the boundary conditions. For Ra < 103, a weak, steady circulation
in the flow is observed in the enclosure and the isotherms remain
parallel to the vertical boundaries [5] and under this condition heat
transfer takes place primarily due to conduction. For 103< Ra <105,
large temperature gradients appear near the walls and an almost
uniform vertical temperature gradient establishes in the interior
region. For large values of Ra, secondary and tertiary flows appear
in the interior region of the flow. Bejan [9] proposed expressions for
mean values of Nusselt number for tall enclosures which are in good
agreement with experimental data [5]. Tall enclosures continue to
be studied both experimentally and numerically [8,10,11–19] and
interested readers are referred to Ganguli et al. [19] and references
therein for an extensive review.

Shallow rectangular enclosures (i.e. AR � 1) were investigated
analytically by Cormack et al. [20]. They considered the asymp-
totic problem in which AR → 0 with constant Ra. It was highlighted
that the flow structure consists of two distinct regimes which
are namely the “parallel-flow” regime and the “boundary-layer”
regime. In the parallel-flow regime two horizontal counter-
currents are observed in the central core and the horizontal
temperature gradient remains uniform throughout the central core
with the isotherms parallel to the vertical walls. In contrast, in the
boundary-layer regime the regions of high thermal gradients are
confined to thin thermal boundary layers adjacent to the vertical
walls and convection currents within the enclosure play a key role
in thermal transport. Cormack et al. [20] obtained an expression
for the mean Nusselt number based on an asymptotic analysis.
An approximate criterion for the parallel-flow regime was given
by Ra2 AR9 ≤ 105 based on their analysis (for AR ∼ 0.1). In part II
of their investigation Cormack et al. [21] numerically investigated
the transition between parallel-flow and boundary-layer regimes
for enclosures with aspect ratios AR ranging from 0.05 to 1 and
the simulation results were compared with the asymptotic theory
of Cormack et al. [20]. Cormack et al. [21] demonstrated that the
parallel-flow regime appears with decreasing AR for a given value of
Ra and the thermal boundary-layer structure transforms to a linear
variation of temperature within the enclosure. The same situation
occurred when Ra decreases for a given value of aspect ratio AR
[21]. However, for high values of Ra2AR9, the asymptotic theory [20]
underestimates the Nusselt number obtained from the numerical
simulations [21]. Bejan and Tien [22] proposed an alternative ana-
lytical method for predicting heat transfer in shallow enclosures.
They developed a complete set of analytical results for Nusselt
number corresponding to the three different regimes (parallel-
flow regime, intermediate flow regime and boundary-layer regime,
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which are discussed in Section 3 in detail) of convection in rect-
angular enclosures and it was demonstrated that their analysis
satisfactorily predicts the mean Nusselt number obtained from
numerical [21] and experimental [23] studies. Bejan et al. [25]
established a limiting condition (i.e. Ra > AR−7) for which con-
vection begins to play an important role in thermal transport in
enclosures with differentially heated side walls based on an exper-
imental investigation involving a Newtonian fluid (i.e. water).

From the foregoing it is clear that rectangular enclosures with
differentially heated side walls have been studied extensively for
Newtonian fluids. In comparison limited effort has been devoted to
the analysis of natural convection of non-Newtonian fluids in rect-
angular enclosures. As many synthetic fluids are non-Newtonian in
character there are many practical applications where such effects
will be important such as heating and preservation of canned foods
(which are typically shear-thinning and often exhibit a yield stress).

For fluids exhibiting a yield stress, i.e. materials that behave as
rigid solids for shear stresses lower than a critical yield stress but
which flow for higher shear stresses, the paper of Vola et al. [26]
and the recent paper of the present authors (Turan et al. [27]) are
the only two papers that deal with natural convection of Bingham
fluids in square enclosures with differentially heated vertical side
walls. Vola et al. [26] developed a numerical method for simulat-
ing yield stress fluid flow obeying the Bingham model in a series of
geometries. Their results show that as the yield stress is increased
the strength of convection currents diminish and, as a consequence,
the mean Nusselt number decreases. At high Bingham numbers
convection is essentially absent from the flow and the heat trans-
fer takes place solely by conduction. It was shown by Turan et al.
[27] that the mean Nusselt number Nu increases with increasing
Pr for Newtonian fluids and low Bingham number flows for a given
value of the Rayleigh number. In contrast the opposite behaviour
was observed for Bingham fluids for large values of the Bingham
number. Moreover, in Turan et al. [27] computational data was
used to propose correlations for the mean Nusselt number Nu for
square cavities with heated side walls filled with both Newtonian
and Bingham fluid in the range 103< Ra < 106 and 0.1 < Pr < 100.

The effects of aspect ratio on the natural convection of yield
stress fluids in rectangular enclosures with differentially heated
side walls are yet to be analysed and the purpose of the current
study is to address this void in the existing literature. In this respect
the main objectives in the current work are as follows:

(1) To investigate yield stress effects on heat and momentum
transport for nominal values of Rayleigh number in the range
104–106 and the aspect ratio range 1/8 to 8 for a single Prandtl
number (i.e. Pr = 7.0). The primary focus of the current analysis is
directed to the situation when flow within the enclosure is suf-
ficient to alter the Nusselt number by a non-negligible amount.
The situation where yielding first occurs – but the resulting flow
velocities are too small to produce significant influence on thermal
transport by convective heat transfer – is of only minor interest
from the point of view of this study and this issue will not be
significantly dwelt upon in this article.

(2) To produce an accurate correlation for the mean Nusselt
number which captures the variations of mean Nusselt number
in response to the changes in aspect ratio, Rayleigh, Prandtl and
Bingham numbers.

2. Yield stress model, dimensionless paramaters and
numerical method

2.1. Constitutive equation for yield stress fluid

Instead of entering into the ongoing debate about the very
existence of a “true” yield stress, it is readily acknowledged that

the notion of an apparent yield stress is an useful and practical
engineering empiricism for a wide range of materials [28,29] and
henceforth this concept will be adopted for the rest of the paper.
A number of empirical models have been proposed for describing
the shear rate dependence of shear stress in yield-stress fluids. The
most well-known model is the Bingham model [28], which can be
expressed in tensorial form in the following manner:
.
� = 0 for � ≤ �y, (1)

� =
(
�+ �y

.
�

)
.
� for � > �y, (2)

where
.
�ij = ∂ui/∂xj + ∂uj/∂xi are the components of the rate of

strain tensor
.
� , � the stress tensor, �y the yield stress, � the so-

called plastic viscosity of the yielded fluid, � and
.
� are evaluated

based on the second invariants of the stress and the rate of strain
tensors respectively (in a pure shear flow), which can be defined
as:

� =
[

1
2
� : �

]1/2
, (3)

.
� =

[
1
2

.
� :

.
�
]1/2

. (4)

O’Donovan and Tanner [30] used the bi-viscosity model to
mimic the stress-shear rate characteristics for a Bingham fluid in
the following manner:

� = �yield
.
� for

.
� ≤ �y

�yield
, (5a)

� = �y +�
[
.
� − �y

�yield

]
for

.
� >

�y
�yield

, (5b)

where�yield is the yield viscosity. In effect this GNF model replaces
the solid material by a fluid of high viscosity. O’Donovan and Tanner
[30] showed that a value of �yield equal to 1000� mimics the true
Bingham model in a satisfactory way. To investigate the effect of the
current choice of regularisation some limited simulations have also
been conducted using the exponential model due to Papanastasiou
[31]

� = �y(1 − e−m�̇ ) + ��̇, (6)

where m is the stress growth exponent which has the dimensions
of time. Again this model transforms the “solid” region to a viscous
one of high viscosity.

2.2. Dimensionless numbers

The Rayleigh number Ra represents the ratio of the strengths of
thermal transports due to buoyancy to thermal conduction, which
is defined in the present study as:

Ra = �2cpgˇ
TL3

�k
= GrPr, (7)

where Gr is the Grashof number and Pr is the Prandtl number, which
are defined as:

Gr = �2gˇ
TL3

�2
and Pr = �cp

k
. (8)

The Grashof number represents the ratio of the strengths of
buoyancy and viscous forces while the Prandtl number depicts the
ratio of momentum diffusion to thermal diffusion. Alternatively,
the Prandtl number can be taken to represent the ratio of the hydro-
dynamic boundary layer to thermal boundary layer thicknesses.
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These definitions are referred to as “nominal” values as they con-
tain the constant plastic viscosity� (i.e. are not based on a viscosity
representative of the flow). Using dimensional analysis it is possi-
ble to show that for Bingham fluids: Nu = f1(Ra, Pr, Bn, AR) where
the Nusselt number Nu and Bingham number Bn are given by:

Nu = hL

k
and Bn = �y

�

√
L

gˇ
T
, (9)

where Nu represents the ratio of heat transfer rate by convection
to that by conduction in the fluid in question and the heat transfer
coefficient h is defined as:

h =
∣∣∣∣∣−k ∂T∂x1

∣∣∣∣
wf

× 1
(Twall − Tref )

∣∣∣∣∣ , (10)

where subscript ‘wf’ refers to the condition of the fluid in contact
with the wall, Twall is the wall temperature and Tref is the appro-
priate reference temperature, which can be taken to be TC (TH) for
the hot (cold) wall respectively. As the viscosity varies through-
out the Bingham fluid flow, an effective viscosity expressed as
�eff = �y/

.
� +�might be more representative of the viscous stress

within the flow than the constant plastic viscosity � [27]. There-
fore the Rayleigh, Prandtl and Bingham numbers could have been
defined more appropriately if �eff was used instead of �. However
.
� is expected to show local variations in the flow domain so using
a single characteristic value in the definitions of the dimensionless
numbers may not yield any additional benefit in comparison to the
definitions given by Eqs. (7)–(9), although the concept is useful in
explaining some observed phenomena as discussed in Turan et al.
[27]. Here the results will be confined to a single Prandtl number,
Pr = 7, which is representative of an incompressible fluid such as
water. Although many fluids may have larger values of Pr than this
value, previous results [cf. Fig. 8 in Ref. [27]] by the present authors
indicate that above this value any effects of Pr are rather small for
Newtonian fluids: for a square enclosure at Ra = 103 and Ra = 104

the Nusselt number for Pr = 100 is the same as Pr = 7 to 3 d.p, at
Ra = 105 and Ra = 106 the difference is less than 0.1%.

It is important to note that in the present study the plastic viscos-
ity�and yield stress �y are taken to be independent of temperature.
The rationale behind this choice is discussed in detail in a previous
paper (Ref. [27]) by the present authors.

2.3. Numerical method

A commercial finite-volume code (FLUENT) is used to solve
the coupled conservation equations of mass, momentum and
energy. The numerical method followed in this study is similar
to that adopted in a number of recent studies for both inelastic
power-law [32] and Bingham [33,34] fluids. In this framework,
a second-order central differencing scheme is used for the diffu-
sive terms and a second-order up-wind scheme for the convective
terms. Coupling of the pressure and velocity is achieved using the
well-known SIMPLE (Semi-Implicit Method for Pressure-Linked
Equations) algorithm [35]. The convergence criteria were set to
10−9 for all the relative (scaled) residuals.

2.3.1. Governing equations
For the present study steady-state flow of an incompressible

Bingham fluid is considered. For incompressible fluids the conser-
vation equations for mass, momentum and energy under steady
state can be written in the following manner using tensor notation:

Mass conservation equation

∂ui
∂xi

= 0, (11)

Fig. 1. Schematic diagram of the simulation domain.

Momentum conservation equations

�uj
∂ui
∂xj

= − ∂p
∂xi

+ �gˇıi2(T − TC ) + ∂�ij
∂xj
, (12)

Energy conservation equation

�ujcp
∂T

∂xj
= ∂

∂xj

(
k
∂T

∂xj

)
, (13)

where x1 and x2 co-ordinates (i.e. x1 = x and x2 = y) are taken
along the horizontal and vertical directions respectively, the cold
wall temperature TC is taken to be the reference temperature for
evaluating the buoyancy term�gıi2ˇ(T − TC) (where ıi2 is the com-
ponent of Kronecker’s delta ıij so that the term �gıi2ˇ(T − TC)
remains operational only in the x2 direction) are in the momen-
tum conservation equations following several previous studies
[2,11–21,26,27].

The bi-viscosity model [30] (see Eqs. (5a) and (5b)) is used to
model the viscous effects of the Bingham fluid in this study. Buoy-
ancy effects are accounted for by Boussinesq’s approximation but
the fluid properties are otherwise assumed to be temperature-
independent. The ratio of the yield viscosity (�yield) to the plastic
viscosity (�) was set to 104. In order to assess the sensitivity
of the �yield value, the simulations have been carried out for
both �yield = 103� and �yield = 104� and quantitative agreement
between the results are found to be satisfactory (i.e. maximum
deviation in Nu is of the order of 3%, which is still much smaller
than the experimental uncertainty in the present configuration)
for all the cases. Given this agreement only results corresponding
to �yield = 104� are presented in this paper.

2.3.2. Boundary conditions
The simulation domain is shown schematically in Fig. 1 where

the two vertical walls of a rectangular enclosure are kept at dif-
ferent temperatures (TH > TC), whereas the other boundaries are
considered to be adiabatic in nature. The velocity components (i.e.
u1 = u and u2 = v) are identically zero on each boundary because
of the no-slip condition and impenetrability of rigid boundaries.
The temperatures for cold and hot vertical walls are specified
(i.e. T(x1 = 0) = TH and T(x2 = L) = TC). The temperature boundary
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Table 1
Minimum cell distances (
xmin,cell/L,
ymin,cell/H) and grid expansion ratios (rx , ry) values.

Grid M1 40 × 40 M2 80 × 80 M3 160 × 160

AR = 0.125


xmin,cell/L – 8.7848 × 10−4 –
rx – 1.1092 –

y min,cell/H – 7.0278 × 10−4 –
ry – 1.0274 –

AR = 0.25


xmin,cell/L – 8.7848 × 10−4 –
rx – 1.1092 –

ymin,cell/H – 3.5139 × 10−3 –
ry – 1.0566 –

AR = 0.5


xmin,cell/L 1.8534 × 10−3 8.7848 × 10−4 4.3001 × 10−4

rx 1.2303 1.1092 1.0532

ymin,cell/H 3.6608 × 10−3 1.7570 × 10−3 8.6086 × 10−4

ry 1.1741 1.0836 1.0409

AR = 1


xmin,cell/L – 8.7848 × 10−4 –
rx – 1.1092 –

ymin,cell/H – 8.7848 × 10−4 –
ry – 1.1092 –

Grid M2 80 × 80 M4 80 × 160 M5 80 × 320

AR = 2


xmin,cell/L – 8.7848 × 10−4 –
rx – 1.1092 –

ymin,cell/H – 4.3924 × 10−4 –
ry – 1.0532 –

AR = 4


xmin,cell/L 8.7848 × 10−4 8.7848 × 10−4 8.7848 × 10−4

rx 1.1092 1.1092 1.1092

ymin,cell/H 8.7848 × 10−4 4.2750 × 10−4 2.1962 × 10−4

ry 1.1092 1.0532 1.0262

AR = 8


xmin,cell/L – 8.7848 × 10−4 –
rx – 1.1092 –

ymin,cell/H – 5.4905 × 10−5 –
ry – 1.0371 –

conditions for the horizontal insulated boundaries are given by:
∂T/∂ x2 = 0 at x2 = 0 and x2 = H.

2.3.3. Grid independency study
The grid independence of the results has been established based

on a careful analysis of five different non-uniform meshes M1
(40 × 40), M2 (80 × 80), M3 (160 × 160), M4 (80 × 160) and M5
(80 × 320) and the details of these grids are included in Table 1. For
AR ≤ 1 (M1–M2–M3) and for AR > 1 (M2–M4–M5) different meshes
were used to assess the numerical uncertainty. For some represen-
tative simulations (Newtonian (Bn = 0) and Bn = 1 for Ra = 106 and
Pr = 7 for AR = 0.5 and 4) the numerical uncertainty is quantified
here using Richardson’s extrapolation theory [36]. For a primi-
tive variable 	 the Richardson’s extrapolation value is given by:
	h=0 =	1 + (	2 −	1)/(rp − 1) where	1 is obtained based on fine grid
and	2 is the solution based on next level of coarse grid, r is the ratio
between coarse to fine grid spacings and p is the theoretical order
of accuracy. In this analysis the apparent order p was taken to be 2.
The numerical uncertainties for the mean Nusselt number Nu and
the maximum vertical velocity (Vmax) magnitude on the horizon-
tal mid-plane of the enclosure are presented in Table 2. As seen
in Table 2, the numerical uncertainty levels between meshes are
less than 1% for mean Nu and Vmax in both aspect ratio cases. Based
on these uncertainties, mesh M2 was used for AR ≤ 1, mesh M4
used for AR = 2 and mesh M5 was used for AR = 4 and 8. In addition
to this grid-dependency study, the simulation results for square
enclosures filled with Newtonian and Bingham fluids were com-
pared with the benchmark data of de Vahl Davis [2] and Vola et al.
[26] respectively and the agreement between the results was found
to be very good and entirely consistent with the aforementioned
grid-dependency studies. Interested readers are referred to Turan

et al. [27] for further details on benchmarking of present simulation
results.

3. Convection regimes and existing correlations

Bejan and Tien [22] identified three different laminar
convection regimes in Newtonian fluids for rectangular enclo-
sures with differentially heated sidewalls. Under the condition
when RaH =�gˇ(TH − TC)H3/�˛= Ra AR3 approaches to zero (i.e.
RaAR3 → 0) the vertical velocity component at the core of the
enclosure disappears and flow in the box consists mainly of two
horizontal counter currents and the temperature gradient in the
horizontal direction remains constant throughout the core of
the enclosure. This regime will henceforth be referred to as the
‘parallel-flow regime’. Cormack et al. [20] carried out asymptotic
analysis for the RaAR3 → 0 limit and obtained the following expres-
sion for the mean Nusselt number (i.e. Nu =

∫ H
0
Nudx2/H):

Nu = 1 + Ra2AR8

362880
. (14)

The temperature difference between the horizontal walls 
T1
in the RaAR3 → 0 limit is given by [20]:


T1 = RaAR5 (TH − TC )
720

. (15)

Bejan and Tien [22] argued that 
T1 ≤ (TH − TC)/10 in the
parallel-flow regime (i.e. RaAR3 → 0) which yields the following
criterion for this regime:

Ra < 72(AR)−5. (16)

The other extreme convection condition is referred to as the
‘boundary-layer regime’ by Bejan and Tien [22] where Ra assumes
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Table 2
Numerical uncertainty for mean Nusselt number Nu and maximum vertical velocity component V on the horizontal mid-plane (i.e. y/H = 0.5) at Ra = 106 and Pr = 7 for
Newtonian and Bingham (Bn = 1) fluids for AR = 0.5 and 4.

AR = 0.5 Nu Vmax

M1 M2 M3 M1 M2 M3

Newtonian fluid
	 9.192 9.223 9.238 168.812 170.928 171.449
	ext 9.243 171.620
eext (%) 0.548 0.211 0.053 1.638 0.405 0.101

Bingham fluid (Bn = 1)
	 6.194 6.228 6.242 78.991 79.210 79.469
	ext 6.247 79.555
eext (%) 0.843 0.299 0.074 0.709 0.434 0.109

AR = 4 Nu Vmax

M2 M4 M5 M2 M4 M5

Newtonian fluid
	 7.203 7.212 7.217 465.024 466.251 466.520
	ext 7.222 466.790
eext (%) 0.263 0.138 0.069 0.378 0.115 0.058

Bingham fluid (Bn = 1)
	 6.464 6.471 6.475 350.920 352.994 353.091
	ext 6.479 353.190
eext (%) 0.231 0.123 0.061 0.642 0.055 0.027

large values and 
T1 remains comparable to 
T = (TH − TC) (i.e.

T1 ∼
T). Under this condition, high values of temperature gradi-
ent are confined to two thin boundary layers adjacent to the vertical
walls. Bejan and Tien [22] obtained the following correlation for the
boundary-layer regime:

Nu = 0.623Ra1/5AR−2/5. (17)

In this regime the horizontal temperature gradient is given by:

K = ∂T

∂x1
∼60.93Ra3/5AR9/5
T

H
. (18)

Bejan and Tien [22] argued that the inception of the boundary-
layer regime can be indicated by K < 0.1(
T/L) which gives rise to
the following criterion:

Ra > 4.4 × 104AR−14/3. (19)

Some of the characteristics of both the boundary layer and
RaAR3 → 0 regimes are observed if the Rayleigh number Ra falls
in the range:

72(AR)−5 < Ra < 4.4 × 104AR−14/3. (20)

Bejan and Tien [22] termed this as the ‘intermediate regime’.
Bejan and Tien [22] combined Eqs. (14) and (17) to come up with
the following correlation which can be applied for all the three
aforementioned regimes:

Nu = 1 +
[(

Ra2AR8

362880

)n

+ (0.623Ra1/5AR−2/5)
n
]1/n

,

wheren = −0.386 (21)

Berkovsky and Polevikov [37] proposed the following correla-
tion for square enclosures including Prandtl number effects:

Nu = 0.18
(

RaPr

0.2 + Pr
)0.29

. (22)

Recently the present authors proposed a new correlation [27]
which was shown to provide better agreement with the predictions
of numerical simulations [27,38] than the correlation proposed by
Berkovsky and Polevikov [27]:

Nu = 0.162Ra0.293
(

Pr

1 + Pr
)0.091

. (23)

For tall enclosures (i.e. AR � 1 but in practice usually 20 > AR > 2)
the mean Nusselt number is often expressed as: Nu = c1Rac2ARc3
and Bejan’s analysis [9] demonstrated that the constants c1, c2 and
c3 are functions of Ra and AR. Bejan [9] also showed that the ana-
lytical results of Gill [6] leads to the following expression of Nu for
extremely large values of aspect ratio (i.e. Ra1/7AR → ∞):

Nu = 0.364[Ra/(PrAR)]1/4. (24)

According to Bejan [9] Nu for tall enclosures is given by:

Nu = CB
[
Ra

PrAR

]1/4
qe∫

−qe

(1 − q)6(1 + q)2(7 − q2)

(1 + q2)(1 + 3q2)14/3
dq, (25)

where CB and qe are functions of Ra1/7AR and CB (qe) is found to
decrease (increase) from 1.0 to 0.912 (0.1 to 1.0) with an increase
in Ra1/7AR from 0 to 1000 [9]. Bejan [9] found that Nu for tall
enclosures deviate from the asymptotic value when Ra1/7AR < 100
and the prediction of Eq. (25) approaches to that of Eq. (24) for
(Ra/AR)1/4 ≥ 10.

Different mean Nusselt number correlations have been pro-
posed for tall enclosures based on experimental [8,10,12] and
computational [11,13–19] studies and interested readers are
referred to Ganguli et al. [19] for an extensive review and the
assumptions behind the respective correlations. One of the most
used correlations for tall enclosures with AR > 5 was proposed by
Elsherbiny et al. [10]:

Nu =Max(Nu1c, Nu2c, N3c), (26a)

where Nu1c, Nu2c and Nu3c are given by:

Nu1c = 0.0605Ra1/3; Nu2c =
[

1 +
[

0.104Ra0.293

1 + (6310/Ra)1.36

]3
]1/3

and Nu3c = 0.242
(
Ra

AR

)0.272
.(26b)

Natural convection of Bingham fluids in rectangular enclosures
with differentially heated vertical side walls have been rarely stud-
ied hitherto but recently the present authors (Turan et al. [27])
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Table 3
Variations of mean Nusselt number (Nu) with aspect ratio (AR) in the case of Newtonian fluids for Ra = 104 – 106 and Pr = 7.

Ra AR

0.125 0.25 0.50 1 2 4 8

104 1.0000a 1.0000a 1.2942b 2.2742b 2.3894c 2.1781c 1.8437c

105 1.0014a 1.2429b 3.8490b 4.7217c 4.4895c 3.9799c 3.4426c

106 1.1345a 5.6085b 9.2232b 9.2218c 8.3235c 7.2224c 6.1594c

a Parallel-flow regime (RaAR3 → 0).
b Intermediate regime.
c Boundary-layer regime.

proposed the following expression of Nu for square enclosures:

Nu = 1 + ARa1/2[
Bn/2 + 1/2

√
Bn2 + 4(Ra/Pr)1/2

][
1 − Bn

Bnmax

]b
, (27a)

where A, b and Bnmax are given by:

A = 0.162Ra0.043 Pr−0.159

(1 + Pr)0.091
− 1

Ra0.25Pr0.25
;

b = 0.42Ra0.13Pr0.12;Bnmax = 0.019Ra0.56Pr−0.46. (27b)

The prediction of Eq. (27) was shown to be in good agreement with
numerical simulation results for Ra = 103–106 and Pr = 0.1–100 in
Turan et al. [27]. The correlation given by Eq. (27) will be extended
to incorporate aspect ratio effects in the next section of this paper.

4. Results and discussion

4.1. Rayleigh number effects

Variations of mean Nusselt number Nu with AR for Newtonian
fluids at Rayleigh numbers Ra = 104, 105 and 106 are provided in
Table 3. The convection regimes according to Eqs. (16), (19) and
(20) for the cases considered here are also indicated in Table 3.
It can be seen from Table 3 that most AR ≥ 1 cases for Rayleigh
number Ra = 104, 105 and 106 belong to the boundary-layer regime
except for the AR = 1.0 case at Ra = 104, which belongs to the inter-
mediate flow regime. Table 3 further indicates that all the AR < 1
cases considered here represent either the parallel-flow regime or
the intermediate flow regime. The distributions of temperature �
and vertical velocity component V with the normalised distance
(i.e. x/L) along the horizontal mid-plane (i.e. y/H = 0.5) for Newto-
nian fluids are shown in Fig. 2a–c for Rayleigh number Ra = 104, 105

and 106 respectively at different values of aspect ratio AR ranging
from 0.125 to 8.0. In Fig. 2a-c the distribution of � remains linear
for small values of aspect ratio (e.g. AR = 0.125) for Ra = 104, 105

and 106 where the flow in these cases corresponds to the parallel-
flow regime. This linear temperature profile essentially indicates
conduction-driven thermal transport, which is consistent with the
expected behaviour in the parallel-flow regime [20–22]. Under
pure conduction the temperature distribution along the x direc-
tion can be determined analytically and follows d2T/dx2 = 0 which,
along with the given temperature boundary conditions, results in a
linear temperature variation along the x direction. The conduction-
dominated thermal transport is reflected by theNu values reported
in Table 3, which shows that Nu assumes values close to unity for
the cases belonging to the parallel-flow regime. In the Ra = 106 case
the distribution of � at AR = 0.25 exhibits a linear variation for the
major part of the enclosure except close to the vertical wall where
the temperature distribution shows a change in slope characteris-
tic of a thermal boundary layer, whereas a linear variation of � is
observed for AR = 0.25 for Ra = 104 and 105. For Ra = 104 and 105 the
flow within the enclosure for AR = 0.25 represents the parallel-flow
regime whereas the flow for Ra = 106 in the enclosure with AR = 0.25

belongs to the intermediate flow regime. As a result of this, the
distribution of � at AR = 0.25 for Ra = 106 shows some attributes of
both the parallel-flow and boundary-layer regimes. It can be seen
from Fig. 2a–c that the temperature � distribution becomes non-
linear for higher values of AR for all the values of Ra considered
here and this distribution essentially indicates thermal boundary
layers adjacent to the hot and cold walls and an almost isothermal
core at the centre of the enclosure. The steepness of the temper-
ature profile close to the vertical walls essentially determines the
heat transfer rate and the maximum value of Nu is obtained for the
aspect ratio at which the temperature gradient is the steepest in this
near-wall region. However, the steepness of the temperature dis-
tribution close to the vertical walls does not exhibit any monotonic
trend with aspect ratio. The steepness of the temperature profile
close to the vertical wall increases with increasing aspect ratio until
a value of aspect ratio ARmax is reached for which the maximum
value of Nu is obtained. The steepness of the temperature distri-
bution near the vertical walls and the mean Nusselt number Nu
decrease with increasing aspect ratio when the aspect ratio exceeds
ARmax (i.e. AR > ARmax). A comparison between Fig. 2a–c reveals that
the value of ARmax decreases with increasing Rayleigh number Ra,
which is consistent with previous studies [18,19,24].

It is instructive to examine the distributions of vertical velocity
component in order to understand and explain the observations
made from temperature � distributions. Fig. 2a–c indicate that the
magnitude of V increases monotonically with increasing Ra for a
given value of AR. Moreover, the magnitude of V increases with
AR when Ra is held constant. Comparison of � and V distributions
in Fig. 2a-c reveals that V values for the cases where the parallel-
flow regime occurs are essentially negligible (see Table 3), which
is again consistent with the assumptions made for the analysis of
the flows belonging to the parallel-flow regime by several previous
studies [20–22]. These trends essentially indicate that the effects
of convection in the enclosure strengthen with increasing aspect
ratio AR. The value of Rayleigh number for which convection starts
to play an important role is given by Ra >AR−7 according to the
criterion proposed by Bejan et al. [25] and this criterion suggests
that the Rayleigh number above which convection effects become
important in the thermal transport for AR = 0.125, 0.25 and 0.5 cases
are of the order of 106, 104 and 102 respectively. This criterion, in
conjunction with the data shown in Table 3 and Fig. 2a–c, suggests
that convective effects and boundary layer transport have impor-
tant influences on thermal transport for the aspect ratio values close
to ARmax for the cases considered here. The non-monotonic aspect
ratio dependence of mean Nusselt number can be explained based
on a scaling analysis of the boundary-layer regime flow where the
zones of high temperature gradient are confined close to the verti-
cal walls (i.e. as in Fig. 2a–c). Under this situation the equilibrium
of inertial and buoyancy forces in the boundary layer adjacent to
the vertical walls yields:

�
ϑ2

H
∼�gˇ
T or ϑ∼

√
gˇ
TH. (28)
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Fig. 2. Variations of temperature � and vertical velocity component V along the horizontal mid-plane (i.e. y/H = 0.5) for Newtonian fluid case at Pr = 7: (a) Ra = 104, (b) Ra = 105

and (c) Ra = 106 (asterisk (*) highlights the AR in which the maximum mean Nusselt number Nu occurs).

Eq. (28) indicates that the vertical velocity component V scales as:

V∼ϑL
˛

∼
√
RaPrAR (29)

In the present study ˛/L is held constant for all the cases and
thus Eq. (29) suggests that the effects of fluid flow strengthen with
increasing AR (Ra) when Ra(AR) is held constant i.e. entirely con-
sistent with the observations made from Fig. 2a–c. For the purpose
of understanding the non-monotonic behaviour of Nu with AR it
is useful to consider the equilibrium of viscous and inertial forces,

which yields:

�
ϑ2

H
∼� ϑ

ı2
or ı∼

√
�H

�ϑ
. (30a)

Using Eq. (28) in Eq. (30a) yields:

ı∼L(AR)0.25
(
Pr

Ra

)0.25
(30b)

Based on the definition of Prandtl number one obtains
ı/ıth = f1(Pr) where f1(Pr) is a function which increases with increas-
ing Pr. Using Eqs. (28)–(30) the advection terms �cpuj ∂ T/∂ xj and
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Fig. 3. Contours of temperature � for convection in Newtonian fluids at Pr = 7 for Ra = 104 (1st row) and Ra = 106 (2nd row).

the thermal diffusion (i.e. conduction) terms ∇ . (k ∇ T) in the energy
transport equation (see Eq. (13)) can be scaled as:

�cpuj
∂T

∂xj
∼�cpϑ
T

H
∼k
T
L2

×
√
RaPrAR, (31a)

∂

∂xj

(
k
∂T

∂xj

)
∼k
T
ı2
th

∼k
T
L2

Ra1/2f 2
1 (Pr)

Pr1/2AR1/2
. (31b)

Eqs. (31a) and (31b) essentially suggest that the strength of con-
vective transport (Eq. (31a)) increases while the strength of thermal
diffusion (Eq. (31b) i.e. conduction) weakens for increasing values
of AR when the width of the enclosure L and the temperature dif-
ference between the walls 
T are held constant for a given fluid
(i.e. for unaltered values of k
T/L2, Ra and Pr). This trend is consis-
tent with the observation that the thermal transport is primarily
conduction-driven for very small values of AR and under this con-

dition convective transport remains very weak (see small aspect
ratio cases in Fig. 2a–c). This behaviour can further be substan-
tiated from the distributions of isotherms and stream functions
within the enclosure, which are presented in Figs. 3 and 4 for dif-
ferent values of AR at Ra = 104 and Ra = 106. For very small values
of AR the isotherms remain parallel to the vertical wall indicating
conduction-dominated transport whereas the isotherms become
curved for higher values of AR as a result of the presence of convec-
tion currents. It is also clear from Figs. 3 and 4 that the effects of
convection are more pronounced for higher values of AR. Compar-
ison of Figs. 3 and 4 reveals that the effects of convective transport
are stronger for higher value of Rayleigh number Ra for a given
value of aspect ratio AR because of the higher magnitude of veloc-
ity components (see Fig. 2a–c and Eq. (29)). As a result of this
strengthening of convective transport, the effects of convection
are felt for very small values of aspect ratio AR for higher values
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Fig. 4. Contours of stream functions ( /˛) for convection in Newtonian fluids at Pr = 7 for Ra = 104 (1st row) and Ra = 106 (2nd row).

of Ra where the thermal transport is primarily conduction-driven
for that particular AR for smaller values of Ra (see the AR = 0.125
and 0.25 cases in Figs. 3 and 4). The convective energy transfer in
the vertical direction within the boundary layer can be scaled as:∫ ı

0
�Cpu2(∂T/∂x2) dx1∼(k
T)Ra1/4(AR)3/4(Pr)5/4 whereas the ver-

tical thermal transport due to conduction per unit width scales
as

∫ L
0

−k(∂T/∂x2) dx1∼k
T(AR)−1, which essentially suggests that
for Prandtl numbers of the order of unity the convective trans-
port takes precedence over the conduction heat transfer when
Ra1/4AR3/4 > AR−1 or Ra > AR−7, which is consistent with the crite-
rion proposed by Bejan et al. [25].

As an increase in aspect ratio AR induces a competition between
an increase in advection and a decrease in diffusion strengths, the
maximum amount of heat transfer takes place for an optimum
value of aspect ratio ARmax. It can be inferred from Eqs. (31a) and
(31b) that the value of ARmax is dependent on Ra for a given value of

Pr. Fig. 2a–c and Table 3 indicate that the value of ARmax decreases
with increasing value of Ra and this behaviour can be seen clearly
from the variations of the mean Nusselt number Nu with AR for
Rayleigh numbers Ra = 104, 105 and 106 shown in Fig. 5. It can
be seen from Fig. 5 that the correlation for mean Nusselt number
Nu (see Eq. (21)) proposed by Bejan and Tien [22] satisfactorily
captures the variation of Nu with AR for AR < 1 and the agree-
ment between the prediction of Eq. (21) and the numerical results
improves with decreasing value of AR. However, this expression
underpredicts the value of Nu for the aspect ratios of the order of
unity (i.e. AR ∼ 1). The extent of this underprediction increases with
increasing value of Rayleigh number Ra. In addition the expression
(Eq. (25)) proposed by Bejan [9] satisfactorily predicts the mean
Nusselt number Nu with AR for large values of aspect ratio. How-
ever, the expression by Bejan [9] overpredicts Nu for aspect ratio
equal to unity and the extent of this overprediction increases with
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Fig. 5. Variations of mean Nusselt number Nu with aspect ratio AR at Ra = 104,
Ra = 105 and Ra = 106 for Newtonian fluids (Pr = 7).

increasing Ra. The correlation (Eq. (26)) by Elsherbiny et al. [10],
although only proposed for AR > 5, exhibits satisfactory quantitative
agreement with the present simulation data for tall enclosures with
AR ≥ 2. However, the correlation by Elsherbiny et al. [10] (Eq. (26))
also overpredicts the value of Nu for square enclosures for all the
values of Rayleigh number considered in this study. The arithmetic
mean of the predictions of Eqs. (21) and (25) yield a satisfactory
agreement with numerical prediction of Nu for AR = 1.0. The pre-
dictions of the correlations proposed by Berkovsky and Polevikov
[37] (Eq. (22)) and Turan et al. [27] (Eq. (23)) for square enclosures
are also shown in Fig. 5, which indicates that both Eqs. (22) and (23)
satisfactorily predict Nu for square enclosures.

4.2. Bingham number effects

In order to demonstrate the effects of Bingham number Bn in
natural convection of Bingham fluids the distributions of tempera-
ture � and vertical velocity component V with the distance x/L along
the horizontal mid-plane (i.e. y/H = 0.5) are shown in Fig. 6a–c for
different values of Bn and AR at a nominal Rayleigh number Ra = 106

and Pr = 7. The same qualitative behaviour is observed for other
values of Ra and are therefore not shown here for the sake of con-
ciseness. The use of the exponential form of the Bingham model
(due to Papanastasiou [31]) was found to give virtually identical
results. The variation in Nusselt number between the regularisa-
tions for nominally identical conditions was typical less than 0.1%
and only at very large Bingham numbers, when the Nusselt number
approaches unity, were small differences apparent (still less than
3% in Nu). These differences are on the same order as the differ-
ences between results in the bi-viscosity model for different values
of the yield viscosity parameter and are, for all practical purposes,
unimportant for the discussion which follows.

Comparing the results in Fig. 6a–c it is evident that the value of
the aspect ratio ARmax at which the maximum Nu value is obtained
increases with increasing Bn and the temperature gradient in the
vicinity of the vertical walls decreases with increasing value of Bn
for a given value of AR. Moreover, the non-linearity of the tempera-
ture � variation decreases with increasing value of Bn for a given set
of values of nominal Rayleigh number Ra and aspect ratio AR. This
decrease essentially suggests that the effects of convection weaken
with increasing value of Bingham number Bn. Further evidence of
this effect can be seen in the variations of the vertical velocity V
with normalised distance x/L along the horizontal mid-plane (r.h.s.
of Fig. 6), which confirm that the strength of convection weakens
with increasing value of Bingham number Bn. The relative strength

of viscous forces in comparison to buoyancy force increases with
increasing Bn for a given value of nominal Rayleigh number Ra. As
a result of this strengthening of viscous forces, the fluid flow in
the enclosure eventually becomes too weak to influence the ther-
mal transport due to convective heat transfer for Bn > Bnmax and
under this condition heat transfer takes place predominantly due
to thermal conduction, which is reflected by a unity value of mean
Nusselt number (i.e. Nu = 1). For a given value of Ra the effects of
convection remain important for Bn < Bnmax and thermal diffusion
(conduction) remains the predominant mode of heat transfer for
Bn ≥ Bnmax. It is worth noting that a flow of diminishing strength
with increasing Bingham number will always be obtained in the
context of bi-viscosity [30] and Papanastasiou [31] regularisations
of the Bingham model and complete stoppage of fluid flow will only
be obtained if a ideal Bingham model (i.e. Eqs. (1) and (2)) is imple-
mented. However, identifying the point accurately at which the
fluid flow ceases to exist is not of major significance in the context
of the present study as this article primarily deals with heat trans-
fer rate behaviour in Bingham fluids and the fluid flow becomes
weak enough to influence the thermal transport even before the
flow ceases to exist in Bingham fluids. Thus Bn ≥ Bnmax is a suffi-
cient condition for Nu = 1 but it is not necessary condition for the
fluid flow to cease and it is possible to have fluid flow for Bn ≥ Bnmax

but this flow will be too weak to impart any perceptible influence
on thermal transport.

The aforementioned behaviour can be seen from the contours
of temperature and stream function for different values of AR and
Bn for Ra = 106 in Figs. 7 and 8 respectively, which show that the
weakening of convection with increasing Bn is more readily felt
for enclosures with small aspect ratio. For large values of Bingham
number (i.e. Bn ≥ Bnmax) the isotherms become parallel to the verti-
cal walls indicating pure conduction heat transfer. The “unyielded”
zones (zones of fluid where |�| ≤ �y according to the criterion used
by Mitsoulis [29]) are also shown in Fig. 8. It is worth noting that
these zones are not really “unyielded” in the true sense as pointed
out by Mitsoulis and Zisis [39]. In the present study a bi-viscosity
approximation is used to model the Bingham fluid flow so flow
will always be present within these essentially very high viscosity
regions, which can alternatively be viewed as regions of extremely
slowly moving fluid and these regions were termed “apparently
unyielded regions (AUR)” in Ref. [39]. It is important to stress that
these small islands of AUR are dependent on the choice of �yield
(shown in Fig. 8 for �yield = 104�) while the mean Nusselt num-
ber, the stream function and the zones of AUR at the corners of
the enclosure remain independent of �yield for �yield ≥ 104�. For
a given value of �y the zones with very low shear rate, which sat-
isfy |�| ≤ �y shrink with an increase in �yield. As the AUR zones are
dependent on the choice of �yield, in-depth discussion of their sig-
nificance is not considered appropriate for the objectives of this
paper.

The heat and fluid flow characteristics observed in Figs. 6–8 can
be explained using the scaling arguments for the aspect ratios for
which convective transport plays a non-negligible role. The balance
of inertial and viscous forces in the momentum transport equation
in the boundary layer adjacent to the vertical side walls yields:

�
ϑ2

H
∼

(
�y +�ϑ

ı

)
1
ı
. (32)

Based on Eq. (32) one obtains a scaling estimate of the hydrody-
namic boundary layer thickness ı:

ı∼1
2
�yH

�ϑ2
+ 1

2
H

�ϑ2

√
�y2 + 4�

ϑ3

H
�. (33)

Using Eq. (28) and the definitions of Bn and Ra one obtains the
following estimate of the hydrodynamic boundary layer thickness
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Fig. 6. Variations of temperature � and vertical velocity component V along the horizontal mid-plane (i.e. y/H = 0.5) for Bingham fluids case at Ra = 106 and Pr = 7: (a) Bn = 0,
(b) Bn = 3 and (c) Bn = 10 (asterisk (*) highlights AR in which the maximum mean Nusselt number Nu occurs).

ı, when ϑ is non-negligible.

ı∼ L√
Ra/Pr

[
Bn

2
+ 1

2

√
Bn2 + 4AR1/2

(
Ra

Pr

)1/2
]
. (34)

This scaling gives rise to the following expression for the thermal
boundary layer thickness ıth:

ıth∼ min

[
L,

L.Pr1/2

f2(Bn, Pr)Ra1/2

[
Bn

2
+ 1

2

√
Bn2 + 4

√
AR

(
Ra

Pr

)1/2

]]
. (35a)

where f2(Bn, Pr) is a positive-definite function (i.e. f2(Bn, Pr) > 0)
such that it increases with increasing value of Pr and also may have
some Bingham number Bn dependence. Using the scaling given in
Eq. (35a) it is possible to estimate the Bingham number Bnmax below
which convection starts to play an important role (i.e. Nu > 1). In
this regard it is worth noting that Nu = 1 does not indicate that the
whole flow field is unyielded (some weak flow, albeit insufficient to
affect the thermal transport, may still be occurring). For Nu = 1 the
thermal boundary layer thickness ıth becomes of the same order
as the enclosure width L. (i.e. ıth ∼ L), which gives rise to following
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Fig. 7. Contours of temperature � for convection in Bingham fluids at Pr = 7 for Ra = 106.

estimate for Bnmax using Eq. (35a):

Bnmax∼
√
Ra

Pr
f (Bnmax, Pr) −

√
AR

f2(Bnmax, Pr)
. (35b)

The critical Bingham number Bncrit where the buoyancy force
is just sufficient to overcome the yield stress leads to unyielded

fluid throughout the domain yet Nu remains equal to unity. The
equilibrium of buoyancy and yield stress effects gives rise to the
following condition:

�gˇ
T∼�y
ı

∼ �y
Lf2(Bncrit, Pr)

. (35c)
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Fig. 8. Contours of stream functions ( /˛) and unyielded zones (shown in grey) for convection in Bingham fluids at Pr = 7 for Ra = 106.
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The above relation can further be rewritten as:

Bncrit∼
√
Ra

Pr
f2(Bncrit, Pr) (35d)

Eq. (35d) is consistent with the recent analytical results of
Vikhanisky [40] for the onset of natural convection in rectangular
enclosures. According to Vikhanisky [40] Bncrit is given by:

Bncrit = 0.25
√
Ra/Pr

1 + 0.96/AR+ 4/AR2
. (35e)

However, it is worth reiterating that Bn ≥ Bncrit ensures that Nu
remains equal to unity but it does not imply that Nu > 1 when Bn
is smaller than Bncrit. The mean Nusselt number Nu only attains a
value greater than unity when Bn is smaller than Bnmax. Comparing
Eqs. (35c) and (35d) it is clear that Bnmax is smaller than Bncrit and
the difference between Bncrit and Bnmax is likely to increase with
increasing aspect ratio AR.

Eq. (35a) can be used to estimate the thermal diffusion terms in
the energy transport equation:

∂

∂xj

(
k
∂T

∂xj

)
∼k�T
ı2
th

∼k�T
L2

Max

⎡⎣1,
(Ra/Pr)1/2[f2(Bn, Pr)]2

√
AR[0.5BnPr1/4/(Ra1/4AR1/4) + 0.5

√
[BnPr1/4/(Ra1/4AR1/4)]

2 + 4]2

⎤⎦ . (36)

Comparing Eq. (36) with (31b) reveals that the effects of thermal
diffusion weaken with increasing Bingham number Bn when Ra, Pr
and AR are held constant: essentially indicating that the thermal
diffusion strength for given values of nominal Rayleigh number and
Prandtl number weakens with increasing values of Bn*, which is
defined as:

Bn∗ = Bn

(RaAR/Pr)1/4
. (37)

Eq. (37) suggests that for a given set of values of Ra and Pr, a decrease
in AR reduces the strength of thermal diffusion in comparison to the
corresponding Newtonian situation.

The relative strengths of buoyancy forces to viscous forces can
be characterised by the Grashof number Gr (=Ra/Pr) but in Bingham
fluids it can be more appropriate to use an effective viscosity �eff
(see detailed discussion in Turan et al. [27]):

�eff = �+ �y
�̇
. (38)

The strain rate can be scaled as �̇∼ϑ/ı, which yields the following
estimation of �eff:

�eff∼�
[

1 + Bn∗
[
Bn∗

2
+ 1

2

√
Bn∗2 + 4

]]
. (39)

Based on Eq. (39) an effective Grashof number Greff can be defined
as:

Greff = �2gˇ
TL3

�2
eff

∼Gr
[

1 + Bn∗
[
Bn∗

2
+ 1

2

√
Bn∗2 + 4

]]−2
. (40)

Table 4
Variations of Bnmaxwith aspect ratio (AR) in the case of Bingham fluids for Ra = 104

– 106 and Pr = 7.

AR Ra = 104 Ra = 105 Ra = 106

0.125 – – 0.19
0.25 – 0.26 1.10
0.5 0.28 1.18 3.99
1.0 1.05 3.53 11.6
2 1.49 4.99 16.5
4 1.90 6.00 19.9
8 1.92 6.97 21.8

Thus a decrease (an increase) in AR gives rise to an increase
(decrease) in Bn* for a given set of values of Ra, Pr and Bn, which
in turn acts to reduce (increase) the effective Grashof number Greff
in comparison to the Grashof number (i.e. Gr = Ra/Pr) for the New-
tonian case. The strength of viscous effects relative to buoyancy
forces increase (decrease) with decreasing (increasing) aspect ratio
AR, which is consistent with the decreasing magnitudes of vertical
velocity component V and stream function /˛with decreasing AR
in Figs. 6a–c and 8 respectively (when the Ra, Pr and Bn are held
constant). Moreover, for a given set of values of Ra, Pr and AR, an
increase in Bn leads to an increase in Bn*, which in turn reduces
the effective Grashof number Greff in comparison to the Grashof
number (i.e. Gr = Ra/Pr) for the Newtonian case. The decreasing
magnitudes of V and  /˛ with increasing Bn in Figs. 6a–c and 8
respectively (again when Ra, Pr and AR are held constant) indicates
that the effects of buoyancy-driven flow weaken with increasing
value of Bingham number Bn in agreement with this argument.

Eq. (35a) can be used to estimate the mean Nusselt numberNu in
the boundary-layer regime [22] for natural convection of Bingham
fluids in rectangular enclosures in the following way:

qf∼h
T∼k
T
ıth

or Nu∼hL
k

∼ L

ıth
. (41)

Using Eqs. (35a) and (41) one obtains the following scaling esti-
mate of Nu:

Nu∼Max

⎡⎢⎢⎣1.0,
Ra1/2/Pr1/2[

Bn/2 + 1/2

√
Bn2 + 4

√
AR

(
Ra/Pr

)1/2

] f2(Pr, Bn)

⎤⎥⎥⎦ , (42a)

which can alternatively be written as:

Nu∼Max

⎡⎣1.0,
NuBn=0[

Bn∗/2 + 1/2
√
Bn∗2 + 4

] f3(Pr, Bn)

⎤⎦ , (42b)

where f3(Pr, Bn) = f2(Pr, Bn)/f1(Pr) and NuBn=0 is the mean Nusselt
number for Newtonian fluids for the same nominal values of Ra
and Pr, which can be obtained by setting Bn = 0 in Eq. (42a). Doing
so yields Nu∼Ra0.25f2(Pr,0)/Pr0.25 for Newtonian fluids in square
enclosures and is in good agreement with the correlations given
by Eqs. (22) and (23), which suggest that the mean Nusselt num-
ber Nu is directly proportional to Ra0.29. Given the simplicity of the
scaling analysis, it is not unexpected that a small quantitative dif-
ference between the value of exponent of Ra between the scaling
prediction and the correlation function exists (0.25 cf. 0.29). How-
ever, the qualitative trends are accurately captured by the scaling
relations. Moreover, it has been proposed by Gill [6] thatNu asymp-
totically approaches to Nu = 0.364[Ra/(PrAR)]1/4 for large values
of AR, which is in remarkable agreement with the present scaling
estimate: in this limit Eq. (42a) reduces to Nu∼[Ra/(PrAR)]1/4 for
Newtonian fluids.

In the parallel-flow regime (i.e. Ra AR3 → 0) the vertical veloc-
ity component at the core of the enclosure disappears and the
fluid flow in the enclosure consists of two counter-flowing hor-
izontal streams and the temperature gradient in the horizontal
direction K = ∂ T/∂ x1 ∼
T/L remains constant. It is worth noting
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Fig. 9. Variations of mean Nusselt number Nu with Bingham number Bn for different values of aspect ratio at Pr = 7: (a) Ra = 104, (b) Ra = 105 and (c) Ra = 106. (d) Variations

of Bnmax/
√
Ra/Pr with AR for Ra = 104, 105 and 106 at Pr = 7. The variations of Bncrit/

√
Ra/Pr with AR for Ra = 104, 105 and 106 at Pr = 7 according to Eq. (35e).

that RaAR3 → 0 does not imply the effects of convection are likely
to be weak because one may obtain the parallel-flow regime even
in the presence of non-negligible values of Rayleigh number Ra for
very small values of aspect ratio. This issue has been discussed in
detail by Bejan and Tien [22]. In the parallel-flow regime the equi-
librium of vorticity generation/destruction by buoyancy and the

molecular diffusion of vorticity at the middle of the domain yields:

�gˇK∼ − ∂2�12

∂x2
2

or �gˇ

T

L
∼ ∂

∂x2
2

[
�
∂u1

∂x2
+ �y

]
or �gˇ


T

L
∼ �uc
F3H3

+ �y

(FH)2
, (43a)
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which leads to the following scaling for the horizontal velocity
component at the core:

uc∼F3

(
�gˇKH3

�

)
− F

(
�yH

�

)
or uc∼F3RaAR3

(
˛

L

)
×

[
1 − F−2Bn

(
Pr

Ra

)1/2
/AR2

]
, (43b)

where the hydrodynamic boundary layer thickness on horizontal
surfaces is scaled as: ı∼ F H with F being an appropriate fraction
(i.e. 0 < F < 1). Using the balance of convective and diffusive terms
of the energy transport equation gives:

�cpu1
∂T

∂x1
∼k∂

2T

∂x2
2

or �cpuc

T

L
∼k 
T1

F2H2
f4(Pr, Bn)2, (44a)

which yields:

ucK∼ k

L2

TF3RaAR3[1 − F−2Bn∗∗]∼kf4(Pr, Bn)2

F2H2

T1or


T1∼RaF
5AR5
T[1 − F−2Bn∗∗]

f4(Pr, Bn)2
, (44b)

where 
T1 is the characteristic temperature difference between
the horizontal adiabatic walls and the thermal boundary
layer thickness adjacent to the horizontal walls is scaled as:
ıth ∼ FH/f4(Bn, Pr). In Eq. (44b) the quantity Bn** is defined as:

Bn∗∗ = Bn

(Ra/Pr)1/2AR2
. (44c)

For Newtonian fluids (i.e. Bn = 0) 
T1 scales as

T1 ∼ RaF5AR5
T/f4(Pr), which is consistent with the analyti-
cal results of Cormack et al. [20] (i.e. 
T1 = Ra AR5(TH − TC)/720).
Using Eqs. (43b) and (44b) the mean Nusselt number Nu can be
estimated by the following integral at the middle of the domain:

Nu = Nu1 + Nu2, (45a)

where

Nu1 = L

Hk
T

H∫
0

�cpu1T dx2 and Nu2 = − L

Hk
T

H∫
0

k
∂T

∂x1
dx2. (45b)

Using Eqs. (43b) and (44b) Nu1 can be scaled as:

Nu1 = L

Hk
T

H∫
0

�cpu1T dx2∼ L�cpuc
T1H

Hk
T
∼ Ra

2F8AR8[1 − F−2Bn∗∗]2

f4(Bn, Pr)2
, (46a)

whereas Nu2 can be scaled as:

Nu2 = − L

Hk
T

H∫
0

k
∂T

∂x1
dx2 = H
TLk

H
TLk
= 1. (46b)

Thus in the parallel-flow regime (i.e. RaAR3 → 0) the mean Nus-
selt number Nu can be given as:

Nu = 1 + aRa2F8AR8(1 − F−2Bn∗∗)
2

f4(Bn, Pr)2
, (47a)

where a is an appropriate constant. Setting Bn = 0 suggests that
Nu = 1 + aF8Ra2AR8/f 2

4 for Newtonian fluids in the RaAR3 → 0 limit
which is indeed found to be in good agreement with the asymptotic
result of Cormack et al. [20] (i.e.Nu = 1 + Ra2AR8/362880): indicat-
ing F ∼ 1/5 for a = 1 and f4 ≈ 1.0. Using the Nu scaling of Newtonian
fluids, Eq. (47a) can be rewritten in the following manner:

Nu− 1

(Nu)Bn=0 − 1
∼(1 − F−2Bn∗∗)

2 f4(Pr)2

f4(Bn, Pr)2
when (Nu)Bn=0 > 1, (47b)

Fig. 10. Variations of Nu/NuBn=0 with Bingham number Bn for different values of
aspect ratio at Pr = 7: (a) Ra = 104, (b) Ra = 105 and (c) Ra = 106.

Nu = 1 when (Nu)Bn=0 = 1 (47c)

The scaling relations given by Eqs. (42) and (47) provide use-
ful insight into the anticipated behaviour of Nu in response to
variations of Ra, Pr and Bn. The above analysis suggests that Nu
is expected to decrease with increasing Bn for a given value of
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Fig. 11. Variations of Nu/NuBn=0 with Bn/AR1/4 for AR ≥ 1 cases at Pr = 7: (a) Ra = 104, (b) Ra = 105 and (c) Ra = 106. Variation of Nu/NuBn=0 with Bn/AR2/5 for AR ≥ 1 cases at
Pr = 7: (d) Ra = 104, (e) Ra = 105 and (f) Ra = 106.
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Fig. 12. Variations of (Nu− 1)/(NuBn=0 − 1) with Bn/AR2 for AR < 1 cases at Pr = 7: (a) Ra = 105 and (b) Ra = 106.

Ra whereas Nu increases with increasing Ra for a given value
of Bn.

The variations ofNuwith Bn for Ra = 104, 105 and 106 are shown
in Fig. 9a–c respectively for Pr = 7.0, which demonstrate that Nu
decreases with increasing value of Bn for all the values of aspect
ratio AR studied. It has been discussed earlier in the context of Eq.
(40) that viscous effects become increasingly strong in comparison
to buoyancy effects for increasing Bn. As a result of this augmented
viscous effect, fluid flow eventually ceases to influence the heat
transfer within the enclosure once Bn attains a threshold value
Bnmax. The effects of convection are important for Bn < Bnmax and for
Bn ≥ Bnmax the heat transfer takes place predominantly due to con-
duction. That heat transfer is predominantly due to conduction is
reflected in the unity value ofNu for Bn ≥ Bnmax. Moreover, compar-
ing Fig. 9a–c it can be seen that Nu increases with increasing Ra for
a given set of values of Pr, Bn and AR. The variation ofNu in response
to Ra and Bn for different aspect ratios are found to be consistent
with previous studies in square enclosures by Vola et al. [26] and
Turan et al. [27]. As convection strengthens with increasing Ra for a
given set of values of Pr and AR, the effects of buoyancy-driven flow
can counter viscous effects up to a larger value of Bingham num-
ber, which is reflected in the increase in Bnmax with increasing Ra.
The values of Bnmax are estimated here by carrying out simulations
and identifying the Bingham number at whichNu obtains a value of
1.01 and the values of Bnmax for the values of Ra and AR are listed in
Table 4. Although this definition of Bnmax appears to be somewhat
arbitrary, in this configuration convection is always present and so
Nu = 1 is an asymptotic limit. In addition uncertainties due to the
level of mesh refinement and the choice of the regularisation (and,
indeed, the exact value of �yield) are largest close to this situation
and preclude a more stringent criterion. Nevertheless identifying
Bnmax with Nu = 1.005 alters the values by less than 5%. The varia-
tion of Bnmax/

√
Ra/Pr with AR is shown in Fig. 9d for Ra = 104, 105

and 106, which demonstrates that the value of Bnmax increases with
increasing AR for all values of Ra considered here. Moreover, it can
be seen from Fig. 9d that the variations of Bnmax/

√
Ra/Pr with AR

for different values of Ra remain close but do not collapse. It is worth
noting that Eq. (35b) provides just a scaling estimate for Bnmax

but it is not sufficient to predict the variation of Bnmax/
√
Ra/Pr

with AR. However, a lack of collapse of Bnmax/
√
Ra/Pr is expected

according to Eq. (35b) due to the involvement of the term
f2(Bnmax, Pr). The variation of Bncrit/

√
Ra/Pr with AR according to

Eq. (35e) is also shown on Fig. 9d, which shows that Bncrit remains

greater than Bnmax for all values of Ra and this difference increases
with increasing AR which is also consistent with the expectations
from the scaling estimates given by Eqs. (35c) and (35d).

It can be noticed from Fig. 9a–c that the variation of Nuwith Bn
does not exhibit monotonic behaviour in terms of aspect ratio AR.
This behaviour originates due to non-monotonic AR dependence
of Nu in Newtonian fluids (i.e. Nu at Bn = 0). This effect is demon-
strated in Fig. 10a–c where the variations ofNu/NuBn=0 with Bn are
shown. Fis 10a–c demonstrate that Nu/NuBn=0 reaches an asymp-
totic value (i.e. 1/NuBn=0) corresponding to pure conduction heat
transfer (i.e. Nu = 1.0) for a value of Bingham number Bnmax and
Bnmax is found to increase with increasing AR. Eq. (42b) suggests
that Nu/NuBn=0 in the boundary-layer regime [22] is expected to
show a self-similar behaviour with Bn* provided the effects of f3(Pr,
Bn) are not sufficiently strong to disturb this self-similar behaviour.
On the other hand, in the parallel-flow regime (i.e. in the limit of
RaAR3 → 0) (Nu− 1)/(NuBn=0 − 1) is expected to show self-similar
behaviour with Bn** provided the effects of f4(Pr, Bn) are not sig-
nificant. The variations of Nu/NuBn=0 with Bn/AR1/4 for the AR ≥ 1
cases for Ra = 104, 105 and 106are shown in Fig. 11a–c as bound-
ary layer transport plays non-negligible role in AR ≥ 1 cases for all
the values of Rayleigh number considered in the present study.
It can be seen from Fig. 10a–c that variations of Nu/NuBn=0 with
Bn/AR1/4 collapse reasonably well for the AR > 1 cases. However,
it can be seen from Fig. 11a–c that the variation of Nu/NuBn=0
with Bn/AR1/4 for AR = 1.0 does not collapse with the corresponding
variations obtained for the AR > 1 cases. Nevertheless, as shown in
Fig. 11d–f, the variations of Nu/NuBn=0 with Bn/AR2/5 exhibit sat-
isfactory collapse for all the AR ≥ 1 cases considered here. As the
scaling estimate given by Eq. (42b) provides only a rough guid-
ance, the difference in the exponent nB of aspect ratio AR (0.25
cf. 0.4) for the self-similar behaviour of Nu/NuBn=0 with Bn/ARnB

is perhaps not entirely unexpected. Moreover, the criterion for
the onset of the boundary-layer regime (Ra > 4.4 × 104AR−14/3, see
Eq. (19)) does not provide a hard boundary between the inter-
mediate flow and boundary-layer regimes [22] and it is possible
that some of the attributes of intermediate flow regime exists for
the AR = 1 cases at the Rayleigh numbers considered here. This
effect may also give rise to lack of collapse of the variation of
Nu/NuBn=0 with Bn/AR1/4 for AR = 1.0 cases with the corresponding
variations obtained for AR > 1 cases because the threshold Rayleigh
number (Ra > 4.4 × 104AR−14/3, see Eq. (19)) for the boundary-
layer regime to exist in AR > 1 cases is much smaller than that in
AR = 1.0 cases.
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Fig. 13. Comparison of the predictions of the correlations given by Eq. (48) (—), Eq. (50) (- - -) and Eq. (51) (· · ·) with simulation results (©) for AR ≥ 1 cases at Pr = 7: (a)
Ra = 104, (b) Ra = 105 and (c) Ra = 106.

The variations of (Nu− 1)/(NuBn=0 − 1) with Bn/AR2 for the
AR < 1 cases are shown in Fig. 12 a and b for nominal Rayleigh
numbers 105 and 106 respectively. The corresponding variation of
(Nu− 1)/(NuBn=0 − 1) at Ra = 104 is not shown here as Nu remains
equal to unity for AR = 0.125 and 0.25 and attains the asymptotic
valueNu = 1.0 at a very small value of Bingham number for AR = 0.5
(see Fig. 10a). It can be seen from Fig. 12a and b that the variations of
(Nu− 1)/(NuBn=0 − 1) with Bn/AR2 for different values of AR remain
reasonably close to each other at a given value of nominal Rayleigh
number Ra. The lack of complete collapse of (Nu− 1)/(NuBn=0 − 1)
with Bn/AR2 is not unsurprising because Eq. (47b) was obtained
based on the assumptions which are strictly valid only in the

parallel-flow regime but many of the AR < 1 cases exhibit attributes
of the intermediate flow regime (see Table 3) where the thermal
boundary layers adjacent to the vertical walls start to influence the
thermal transport.

Turan et al. [27] proposed a correlation for Nu for Bingham
fluids based on numerical simulations of natural convection in a
square enclosure with differentially heated side walls and, based on
that analysis, (Nu− 1)/(NuBn=0 − 1) can be written in the following
manner for the boundary-layer regime:

Nu− 1

NuBn=0 − 1
= 2(1 − Bn∗/Bn∗

max)b

Bn∗ +
√
Bn∗2 + 4

whenNuBn=0 > 1, (48a)
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Fig. 14. Comparison of the predictions of the correlations given by Eq. (49) (—), Eq. (50) (- - -) and Eq. (51) (· · ·) with simulation results (©) for AR < 1 cases at Pr = 7: (a) Ra = 105

and (b) Ra = 106.

and

Nu = 1 whenNuBn=0 = 1 (48b)

where b is a model parameter and Bn∗
max = Bnmax(RaAR/Pr)−1/4

which can be expressed as:

b = 0.42Ra0.13Pr0.12, (48c)

Bn∗
max = CRa0.31Pr−0.21AR−0.25, (48d)

where the parameter C is given by:

C = 0.019 + 0.010erf (2AR− 2). (48e)

According to Eq. (48d) the quantity Bnmax is directly propor-
tional to Ra0.56/Pr0.46 which is sufficiently close to the

√
Ra/Pr

dependence of Bnmax as predicted by the scaling relation given
by Eq. (35b). It can be seen from Fig. 13 that Eq. (48a) pre-
dicts (Nu− 1)/(NuBn=0 − 1) satisfactorily (when b, Bn∗

max and C are
expressed according to Eqs. (48c)–(48e) respectively) for the aspect
ratio AR ≥ 1 for nominal Rayleigh numbers Ra = 104, 105 and 106.

Based on Eq. (47b) a correlation for (Nu− 1)/(NuBn=0 − 1) is
proposed here for small values of aspect ratio (i.e. AR � 1) in the
parallel-flow regime (i.e. RaAR3 → 0):

Nu− 1

NuBn=0 − 1
=

[
1 −

(
1

4.55

)−2
Bn∗∗

]2

whenNuBn=0 > 1 and

Nu = 1whenNuBn=0 = 1. (49)

It can be seen from Fig. 14 that the correlation given by Eq. (49)
satisfactorily predicts (Nu− 1)/(NuBn=0 − 1) for the AR < 1 cases
representing the parallel flow and intermediate flow regimes of
thermal transport.

The correlations given by Eqs. (48) and (49) can be combined
to yield a single correlation for all the regimes of convection in
rectangular enclosures with differentially heated side walls in the
following manner:

Nu− 1

NuBn=0 − 1
=

[
1 −

(
1

4.55

)−2
Bn∗∗

]2

exp(−mARn1 )

+2(1 − Bn∗/Bn∗
max)b

Bn∗ +
√
Bn∗2 + 4

(1 − exp(−mARn1 )) whenNuBn=0 > 1

(50a)

and

Nu = 1 whenNuBn=0 = 1, (50b)

where m and n1 are given by

m = 4; n1 = 8. (50c)

Figs. 13 and 14 show that the combined correlation given by Eq.
(50a) with model parameters given by Eq. (50c) captures the varia-
tions of (Nu− 1)/(NuBn=0 − 1) satisfactorily for both the AR ≥ 1 and
AR < 1 cases considered here. This suggests that the expressions of
Nu for Newtonian fluids (i.e. NuBn=0) as given by Eqs. (21), (23) and
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(21) for AR < 1, AR = 1 and AR > 1 respectively can be used to predict
the mean Nusselt number Nu for natural convection in Bingham
fluids at the same nominal values of Ra and Pr using Eq. (50a) in the
present configuration.

The correlation given by Eq. (50a) has two free parameters (i.e.
m and n1) and the number of free parameters can be reduced (to a
single free parameter n2) when an alternative combined correlation
is constructed from Eqs. (48) and (49):

Nu− 1

NuBn=0 − 1
=

[[
1 −

(
1

4.55

)−2
Bn∗∗

]2/n2

+
[

2(1 − Bn∗/Bn∗
max)b

Bn∗ +
√
Bn∗2 + 4

]1/n2
]n2

whenNuBn=0 > 1, (51a)

and

Nu = 1 whenNuBn=0 = 1. (51b)

It has been found that for n2 = −0.02 the correlation given by Eq.
(51) predicts the behaviour of (Nu− 1)/(NuBn=0 − 1) satisfactorily
for both AR ≥ 1 and AR < 1 and it can be seen from Figs. 13 and 14
that the prediction of Eq. (51) is comparable to that of Eq. (50) (in
fact the predictions of Eqs. (50) and (51) cannot be distinguished
from each other in Figs. 13 and 14). From the foregoing it can be con-
cluded that the mean Nusselt numberNu for rectangular enclosures
with differentially heated side walls filled with Bingham fluids can
be predicted using the correlations given by Eqs. (50) and (51)
provided appropriate correlations are used for the corresponding
Newtonian case at the same nominal values of Rayleigh and Prandtl
numbers.

5. Conclusions

In this study, the effects of aspect ratio (=H/L where H is the
enclosure height and L is the enclosure width) on the heat transfer
characteristics of steady laminar natural convection of yield-stress
fluids obeying the Bingham model in a rectangular enclosure with
differentially heated side walls have been numerically studied. It is
found that the mean Nusselt number Nu follows a non-monotonic
trend with aspect ratio AR for a given set of values of the Rayleigh
number and Prandtl number for both Newtonian and Bingham
fluids. The effects of convection strengthen with increasing value
of AR, whereas the strength of thermal conduction weakens with
increasing AR. These competing effects of thermal convective and
diffusive transports ultimately result in a non-monotonic varia-
tion of Nu with aspect ratio AR for both Newtonian and Bingham
fluids. For very small values of aspect ratio the thermal trans-
port remains predominantly conduction-dominated whereas the
effects of convective transport remains predominantly responsi-
ble for heat transfer for large values of aspect ratio AR. The effects
of weaker convective transport in Bingham fluids than in Newto-
nian fluids are reflected in the smaller values of the mean Nusselt
numbers for Bingham fluids than those obtained in the case of
Newtonian fluids with the same values of nominal Rayleigh num-
ber. The Nusselt number was found to decrease with increasing
Bingham number, and, for large values of Bingham number (i.e.
Bn ≥ Bnmax), the value of mean Nusselt number settled to unity (i.e.
Nu = 1) as the fluid flow effectively stops due to strong viscous
stresses and heat transfer takes place principally due to conduction.
The conduction-dominated regime occurs at higher values of Bn for
increasing values of Ra (AR) for a given value of AR(Ra). The aspect
ratio ARmax at which the maximum value ofNu is attained decreases
with increasing value of Rayleigh number Ra in both Newtonian
and Bingham fluids. The value of ARmax is found to increase with
increasing value of Bingham number Bn for a given value of nominal
Rayleigh number.

Finally, guided by a scaling analysis, the present simulation
results are used to propose new correlations ofNuby accounting for
aspect ratio AR effects in the case of convection in Bingham fluids.

These correlations are shown to satisfactorily capture the variation
of Nuwith Ra, AR and Bn for all the cases considered in this study.
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