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n this technical brief we report the results of a systematic numeri-
al investigation of developing laminar flow in axisymmetric con-
entric annuli over a wide range of radius ratio �0.01�Ri /Ro

0.8� and Reynolds number �0.001�Re�1000�. When the an-
ular gap is used as the characteristic length scale we find that
or radius ratios greater than 0.5 the development length col-
apses to the channel-flow correlation. For lower values of radius
atio the wall curvature plays an increasingly important role and
he development length remains a function of both radius ratio
nd Reynolds number. Finally we show that the use of an empiri-
al modified length scale to normalize both the development
ength and the characteristic length scale in the Reynolds number
ollapses all of the data onto the channel-flow correlation regard-
ess of the radius ratio. �DOI: 10.1115/1.4001694�

Introduction
Knowledge of the length of duct required for so-called “fully

eveloped” conditions to occur is important from both a funda-
ental and a practical standpoint. Unsurprisingly, determining

his length for a range of ducts, e.g., pipe, channel, and annuli, has
een the subject of a great deal of attention over the past 100
ears or so �1�. Perhaps more surprisingly is that only relatively
ecently have accurate correlations been proposed that cover the
asic pipe and channel geometries for a wide range of Reynolds
umbers. A detailed discussion of the inconsistencies and confu-
ion in literature is provided by Durst et al. �1�, who conducted a
etailed numerical study and proposed the following nonlinear
orrelations for pipes:

XD/D = ��0.619�1.6 + �0.0567 Re�1.6�1/1.6 �1�
nd two-dimensional channels

XD/h = ��0.631�1.6 + �0.0442 Re�1.6�1/1.6 �2�

here XD is the so-called development length, D is the pipe di-
meter, and h is the channel height. Equations �1� and �2� are valid
n the range 0�Re�ReCR. �As is well known, with great care,
ransition in pipe flow can be delayed to very high Reynolds num-
ers �2� but for channel flows only up to ReCR�1000 based on
hannel half height �3,4�.� Thus the situation for pipe and channel
ows is now well understood and an accurate correlation is avail-
ble. For annular flows, however—arguably of more practical im-
ortance than two-dimensional channel flows, which are rarely
bserved in engineering practice—no such accurate correlation
xists and the purpose of this short technical brief is to fill this
ap. The paper of Nouar et al. �5� neatly reviews literature up until
hat date for this problem. However, the results of Ref. �5� are
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limited in both Reynolds number range �10�Re�500�, and de-
tailed results are confined to a single radius ratio.

Of course, in the limit of the annular spacing tending to zero,
the annular flow configuration approaches a two-dimensional
channel and so the correlation given in Eq. �2� becomes appli-
cable. However, with decreasing radius ratio �N=inner-cylinder
radius/outer-cylinder radius=Ri /Ro�, wall curvature effects will
become increasingly important and deviation from the correlation
must be expected. In the current study we will show that Eq. �2� is
valid for N�0.5 but that, below this value of N, significant de-
partures in the development length are observed from the channel-
flow correlation.

2 Numerical Method
To compute the developing flow field within a range of concen-

tric annuli we make use of the fact that the flow is laminar, in-
compressible, steady, and axisymmetric �i.e., two-dimensional�.
The governing equations are then those expressing conservation
of mass �Eq. �3�� and momentum �Eq. �4��
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where u is the axial velocity, v is the radial velocity, � is the
density, � is the dynamic viscosity, and p is the pressure.

We utilize the commercial package FLUENT to solve the govern-
ing equations of conservation of mass and momentum. This code
uses a finite-volume formulation �see, e.g., Ref. �6� for details�.
The differencing schemes used are both formally second-order in
accuracy: Central differencing is used for the diffusive terms and
a second-order up-winding scheme for the convective terms. Cou-
pling of the pressure and velocity was achieved using the well-
known semi-implicit method for pressure-linked equations
�SIMPLE� implementation of Patankar �7�. This well-established
code has been used extensively in the calculation of complex
flows �see Ref. �8� for recent examples� and is adequate to model
the laminar flows under consideration here.

A schematic representation of the coordinate system and com-
putational domain is provided in Fig. 1. The concentric circular
annular geometry is characterized by the ratio of the inner radius
Ri to the outer radius Ro, which here we denote by the symbol N.
As previously discussed in the Introduction an important length
scale is also the annular spacing h. Based on initial computational
results we confine our detailed simulations to four different radius
ratios, which cover the various regimes, corresponding to the van-
ishing inner-cylinder case �N=0.01�, a “low” �N=0.1�, medium
�N=0.5�, and a “high” radius ratio case �N=0.8�. As our results
show that at N=0.8 the two-dimensional channel correlation is
already met it was not felt necessary to go to a higher value. These
different radius ratios are shown schematically in the right hand
side of Fig. 1: The solid line corresponds to N=0.5 while the other
radius ratios are indicated by dashed lines. At the inlet �x=0� we
apply a uniform velocity UB and we define the development
length XD as the axial distance required for the maximum velocity
to reach 99% of its fully developed value. We use the well-known
no-slip boundary condition at the wall and impose zero axial gra-
dients at the outlet. The length of the domain is dependent on the
Reynolds number and radius ratio of the flow in question �L
= f�Re,N��: In general the domain was at least five times as long
as the calculated development length. Calculations with extended
domain lengths confirmed that this criterion was sufficient to al-

low XD to be independent of this length.
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For each radius ratio a preliminary series of calculations was
arried out at a low Reynolds number �Re=0.1� to determine a
uitable mesh density and to investigate the accuracy of our simu-
ations. In addition to the variation in XD, to allow us to estimate
his accuracy, we define a relative error

E = 
um − Um,FD

Um,FD

 �5�

here um is the calculated maximum velocity at the outlet plane
nd Um,FD is the corresponding fully developed analytical value.
he complete analytical solution for fully developed annular flow

s provided in standard fluid mechanics text books and so is not
nnecessarily repeated here �see Ref. �9�, for example�; however,

wall

Ro

Ri

h

symmetry axis

outlet

r

wall

UB

x

ig. 1 Schematic of coordinate system, computational do-
ain, and definitions including radius ratios studied „the inner

olid line on the right hand side diagram corresponds to N
0.5 while the other radius ratios are indicated by dashed lines…

Table 1 Mesh characteristics and developm
„NC=total number of grid points…

N=0.8 �L=10h�

Mesh �r /h �x /h NC

M1 0.004 0.008 12,50
M2 0.002 0.004 50,00
M3 0.001 0.002 200,00
Richardson extrapolation

N=0.5 �L=10h�

Mesh �r /h �x /h NC

M1 0.01 0.02 12,50
M2 0.005 0.01 50,00
M3 0.0025 0.005 200,00
Richardson extrapolation

N=0.1 �L=10h�

Mesh �r /h �x /h NC

M1 0.018 0.036 12,50
M2 0.009 0.018 50,00
M3 0.0045 0.009 200,00
Richardson extrapolation

N=0.1 �L=10h�

Mesh �r /h �x /h NC

M1 0.0198 0.0396 12,50
M2 0.0099 0.0198 50,00
M3 0.00495 0.0099 200,00
Richardson extrapolation
64501-2 / Vol. 132, JUNE 2010
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the Um,FD values corresponding to each of our geometries are
included together with the results of our grid-dependency study in
Table 1. First we note that the variation of XD between meshes is
at most about 2.1%. If we estimate the “Richardson” extrapolation
value for this quantity �i.e., the value extrapolated to zero mesh
size; see Ref. �10�, for example� we still find that the error in our
simulations, defined as er= ��XD,MX−XD,Extrap� /XD,Extrap� where
XD,M1 represents the development length obtained for each mesh
M1 �X=1�, etc., especially for meshes M2 and M3, is small
��1.0%�.

Based on these levels of error, and the amount of computing
time required for a specific mesh density, we conducted all re-
maining calculations using a mesh density corresponding to mesh
M2, which, for the case studied above, gives “errors” �both based
on our E parameter and in comparison to the zero grid-size ex-
trapolation er� less than 1.0%.

3 Results
A complication that arises with flow through annuli—which is

absent in simple pipe and channel flows—is the different choices
of length scale available with which to define Reynolds numbers
and to normalize the development length. In addition to the outer
radius �Ro�, inner radius �Ri�, and annular gap or spacing �h=Ro

−Ri� the hydraulic diameter concept �see Ref. �9�, for example�
can also be employed, which here for annuli is simply DH=2h.
The simplest scaling is to use the outer radius: In an experimental
investigation, for example, it is likely the outer cylinder would
stay fixed and centerbodies of different diameters be inserted. The
results of our numerical study, together with the results of Ref. �5�
for comparison, are shown in Fig. 2�a�. In this figure the devel-

lengths for various radius ratios at Re=0.1

um /UB E �%� �Um,FD /UB=1.5008� XD /Ro

er
�%�

1.4973 0.23 0.1236 2.29
1.5000 0.06 0.1257 0.66
1.5006 0.02 0.1263 0.19

0.1265

um /UB E �%� �Um,FD /UB=1.5078� XD /Ro

er
�%�

1.5043 0.232 0.3248 2.00
1.5069 0.057 0.3282 0.97
1.5075 0.016 0.3305 0.28

0.3314

um /UB E �%� �Um,FD /UB=1.5673� XD /Ro

er
�%�

1.5641 0.20 0.7375 2.09
1.5664 0.06 0.7488 0.59
1.5671 0.01 0.7520 0.17

0.7532

um /UB E �%� �Um,FD /UB=1.6613� XD /Ro

er
�%�

1.6668 0.33 0.9601 0.75
1.6629 0.10 0.9637 0.38
1.6618 0.03 0.9663 0.11

0.9673
ent

0
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pment length is normalized by Ro and the Reynolds number de-
ned as Re=�UBRo /�. As was observed in the study of Durst et
l., at low Re—where the flow is diffusion dominated—the devel-
pment length is essentially constant �although nonzero� and in-

Re

X
D
/R

o

10-2 10-1 100 101 102 103
10-1

100

101

102

Eqn 2
N = 0.8 [Nouar et al 1995]
N = 0.5 [Nouar et al 1995]
N = 0.8
N = 0.5
N = 0.1
N = 0.01

Reh

X
D
/h

10-2 10-1 100 101 102 103
10-1

100

101

102

Eqn 2
N = 0.8
N = 0.5
N = 0.1
N = 0.01

Reh*

X
D
/h

*

10-2 10-1 100 101 102 103
10-1

100

101

102

Eqn 2
N = 0.8
N = 0.5
N = 0.1
N = 0.01

(b)

(a)

(c)

ig. 2 Effect of radius ratio on normalized development length
ariation with Reynolds number „a… using Ro as the length
cale, „b… using h as the length scale and „c… using h�

„Eq. „6……
s the length scale
reases with increasing inertia above a certain Re. Using this scal-
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ing we can see that there is a significant effect of radius ratio: For
example, in the low-Re limit, the development length increases by
a factor of about 10 between N=0.8 and N=0.01.

As was mentioned in the Introduction, in the limit of Ri→Ro
�or h→0�, the annular geometry approaches the channel-flow
limit and we should expect h to become the dominant length
scale. Replotting the data in this manner �e.g., XD normalized by h
and the Reynolds number defined as Reh=�UBh /�� in Fig. 2�b�
confirms that the data at high radius ratios �N=0.8� do indeed
collapse to the channel-flow correlation of Durst et al. It is also
clear that even for N=0.5 the data are sufficiently close for the
correlation to be usable. Unfortunately for lower values of N the
data show a marked discrepancy from the channel-flow correla-
tion: At low Re for N=0.01, for example, the development length
is 50% greater than that for the channel-flow case. In an attempt to
collapse all of the data �i.e., for all N values� onto the channel-
flow correlation we investigated the use of �twice� the distance
from the outer wall to the location of the peak velocity �as the
peak moves closer to the inner cylinder with increasing N� but this
scaling also failed to collapse the data. A length scale based on a
scaling factor such that the fully developed Poiseuille number—
which depends on N �see Ref. �9� or Ref. �11��—was made to
equal the channel-flow value �i.e., f ·Reh=48� was also unable to
collapse the data �this length scale is called the “laminar equiva-
lent diameter” �12��. Given these difficulties we choose to adopt a
purely empirical approach by determining a length scale h� such
that when the low-Re development length limit is normalized by
this value it collapses to the channel-flow value �XD /h=0.631�.
Selecting this length to normalize both the development length
and the length scale in the Reynolds number collapses the data
onto the channel-flow correlation, as shown in Fig. 2�c�. That this
length scale must also be used in Re �a plot of XD /h� versus Reh
does not collapse� provides confidence in this approach. This
modified length scale is reasonably well fitted �the square of the
correlation coefficient R2=0.983� by the following expression:

h�/h = − 0.119 ln�N� + 1 �6�

which is valid in the region 0.01�N�1.0. Although an empiri-
cism, we believe that this approach represents a reasonable solu-
tion to enabling the channel-flow correlation to be used for all
radius ratios.

4 Conclusions
We have reported the results of a systematic numerical investi-

gation of developing laminar flow in axisymmetric concentric an-
nuli over a wide range of radius ratio �0.01�Ri /Ro�0.8� and
Reynolds number �0.001�Re�1000�. When the annular gap is
used as the length scale we find that for radius ratios greater than
0.5 the development length collapses to the channel-flow correla-
tion. The use of a modified length scale to normalize both the
development length and the characteristic length scale in the Rey-
nolds number collapses all of the data onto the channel-flow cor-
relation regardless of the radius ratio.
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