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a b s t r a c t

In this study, two-dimensional steady-state simulations of laminar natural convection in square enclo-
sures with differentially heated sidewalls have been carried out where the enclosures are considered to
be completely filled with a yield stress fluid obeying the Bingham model. Yield stress effects on heat and
momentum transport are investigated for nominal values of Rayleigh number (Ra) in the range 103–106

and a Prandtl number (Pr) range of 0.1–100. It is found that the mean Nusselt number Nu increases
with increasing values of Rayleigh number for both Newtonian and Bingham fluids. However, Nu val-
ues obtained for Bingham fluids are smaller than that obtained in the case of Newtonian fluids with the
same nominal value of Rayleigh number Ra due to weakening of convective transport. The mean Nusselt
ield stress

ingham model
eat transfer

number Nu in the case of Bingham fluids is found to decrease with increasing Bingham number, and,
for large values of Bingham number Bn, the value settles to unity (Nu = 1.0) as heat transfer takes place
principally due to thermal conduction. The effects of Prandtl number have also been investigated in detail
and physical explanations are provided for the observed behaviour. New correlations are proposed for
the mean Nusselt number Nu for both Newtonian and Bingham fluids which are shown to satisfactorily

ative
capture the correct qualit

. Introduction

Natural convection, i.e. flow caused by temperature-induced
ensity variations, occurs frequently in nature and in technolog-

cal devices. Even the relatively simple case of natural convection
n rectangular enclosures has numerous engineering applications
uch as in so-called “solar collectors”, in heating and preservation
f canned foods and in electronic equipment cooling and for energy
torage and conservation. As a consequence of these applications,
nd its geometrical simplicity, a large body of the existing literature
1–3] is available for such flows especially in the case of Newtonian
uids. Interested readers are referred to Ostrach [4] for an extensive
eview. Although various different configurations of the enclosure
roblem are possible, one of the most studied cases involves two-
imensional square enclosures where two opposing sides are held

sothermally at different temperatures while the other two walls

re insulated to ensure adiabatic conditions. When the vertical
alls are adiabatic and the lower horizontal wall held at the higher

emperature then one has the classical Rayleigh–Bénard config-
ration [5]. The Rayleigh–Bénard problem has been investigated
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and quantitative behaviour of Nu in response to changes in Ra, Pr and Bn.
© 2010 Elsevier B.V. All rights reserved.

for a range of different non-Newtonian models including inelastic
Generalised Newtonian Fluids (GNF) [6,7], fluids with a yield stress
[8–10] and viscoelastic fluids [11]. The present study analyses the
case where the horizontal walls are adiabatic and the temperature
difference driving the convection comes from the sidewalls as in
the classic benchmark paper of de Vahl Davies [1] for Newtonian
fluids. Although this configuration has been studied extensively for
Newtonian fluids only a relatively limited amount of information
is available if the rheological behaviour is more complex. A few
papers have investigated variations of this problem for GNF mod-
els using both analytical approaches and full numerical simulation
of the governing equations. For example Lamsaadi et al. [12,13]
has studied the effect of the power-law index in the high Prandtl
number limit of tall [12] and also shallow enclosures [13] where
the sidewall boundary conditions are constant heat fluxes (rather
than isothermal). Barth and Carey [14] utilized more complex GNF
models (containing limiting viscosities at low and high shear rates)
to study a modified three-dimensional version of the problem (the
adiabatic boundary conditions are replaced by a linear variation in
temperature to match the experimental conditions of [15]).
For fluids exhibiting a yield stress, i.e. materials that behave as
rigid solids for shear stresses lower than a critical yield stress but
which flow for higher shear stresses, the recent paper of Vola et
al. [16] is the only paper that deals with the sidewall heating case.
Vola et al. [16] developed a numerical method to calculate unsteady
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Nomenclature

cp specific heat at constant pressure [J/kg K]
e relative error [−]
Fs factor of safety [−]
g gravitational acceleration [m/s2]
h heat transfer coefficient [W/m2 K]
k thermal conductivity [W/mK]
L length and height of the enclosure [m]
q heat flux [W/m2]
T temperature [K]
ui ith velocity component [m/s]
U, V dimensionless horizontal (U = u1L/˛) and vertical

velocity (V = u2L/˛) [−]
ϑ characteristic velocity [m/s]
xi coordinate in ith direction [m]
˛ thermal diffusivity [m2/s]
ˇ coefficient of thermal expansion [1/K]
ı,ıth velocity and thermal boundary layer thickness [m]
� dimensionless temperature (� = (T − TC)/(TH − TC))

[−]
� plastic viscosity [Ns/m2]
�yield yield viscosity [Ns/m2]
� kinematic viscosity [m2/s]
� density [kg/m3]
�y yield stress [N/m2]
� general primitive variable
 stream function [m2/s]

Subscripts
C cold wall
ext extrapolated value
eff effective value
H hot wall
max maximum value
ref reference value
wall wall value

Special characters
	T difference between hot and cold wall temperature

(=(TH − TC)) [K]
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	min,cell minimum cell distance [m]
r grid expansion ratio [−]

ow of yield stress fluids obeying the Bingham model in a series
f geometries. They investigated yield stress effects on the flow
attern and temperature field in square enclosures with differen-
ially heated vertical sidewalls. Their results show that as the yield
tress is increased the convection currents diminish and, as a con-
equence, the mean Nusselt number decreases. At high Bingham
umbers convection is essentially absent from the flow and the
eat transfer takes place solely by conduction (i.e. the tempera-
ure distribution is linear). As the main interest of the work of Vola
t al. [16] was primarily in developing the numerical technique
he configuration was not investigated in detail and only limited
esults, for a single Prandtl number (=1), were presented. In the
resent study the results of Ref. [16] are extended to determine
he effects of yield stress on heat and momentum transport for a
arge range of Rayleigh numbers (103 < Ra < 106) and Prandtl num-

ers (0.1 < Pr < 100). The wide range of Prandtl numbers considered

n this study is so that a robust correlation can be achieved. The
alue of Pr = 0.1 is characteristic of molten metals, and, although
eal yield stress fluids are unlikely to have such low Pr values, it is
ncluded here for the sake of completeness.
id Mech. 165 (2010) 901–913

Without wishing to enter into the ongoing debate about the very
existence of a “true” yield stress, it is readily acknowledged that
the notion of an apparent yield stress is a very useful engineering
empiricism for a wide range of materials [17,18] and from here on
this concept will be adopted for the rest of the paper. A number of
empirical models have been proposed for describing the interrela-
tion between shear stress and strain rate in yield stress fluids. The
most well-known model, and certainly the oldest, is the Bingham
model [17] which, in tensorial form, can be expressed as:


̇ = 0, for � ≤ �y, (1)

� =
(
�+ �y


̇

)

̇, for � > �y, (2)

where 
̇ij = ∂ui/∂xj + ∂uj/∂xi are the components of the rate of
strain tensor 
̇ , � the stress tensor, �y the yield stress, � the so-

called plastic viscosity of the yielded fluid, � and 
̇ are evaluated
based on the second invariants of the stress and the rate of strain
tensors in a pure shear flow respectively, which are given by:

� =
[

1
2
� : �

]1/2
, (3)


̇ =
[

1
2

̇ : 
̇

]1/2
. (4)

O’Donovan and Tanner [19] used the bi-viscosity model to
mimic the stress shear-rate characteristics for a Bingham fluid in
the following manner:

� = �yield
̇, for 
̇ ≤ �y
�yield

, (5)

� = �y +�
[

̇ − �y

�yield

]
, for 
̇ >

�y
�yield

, (6)

where �yield is the yield viscosity, and � is the plastic viscosity. In
effect this GNF model replaces the solid material by a fluid of high
viscosity. O’Donovan and Tanner [19] showed that a value of�yield
equal to 1000� mimics the true Bingham model in a satisfactory
manner.

In the present study, the heat transfer rate characteristics in a
square enclosure (of dimension L) with differentially heated sided
walls filled with a Bingham fluid is compared with the heat transfer
rate obtained in the case of Newtonian fluid flows with the same
nominal Rayleigh number Ra. The Rayleigh number Ra represents
the ratio of the strengths of thermal transports due to buoyancy
to thermal diffusion, which is defined in the present study in the
following manner:

Ra = �2cpgˇ	TL3

�k
= Gr Pr (7)

where Gr is the Grashof number and Pr is the Prandtl number, which
are defined as:

Gr = �2gˇ	TL3

�2
and Pr = �cp

k
. (8)

The Grashof number represents the ratio of the strengths of
buoyancy and viscous forces while the Prandtl number depicts the
ratio of momentum diffusion to thermal diffusion. Alternatively,
the Prandtl number can be taken to represent the ratios of hydro-

dynamic boundary layer to thermal boundary layer thicknesses.
These definitions are referred to as “nominal” values as they con-
tain the constant plastic viscosity� (i.e. are not based on a viscosity
representative of the flow). Using dimensional analysis it is possi-
ble to show that for Bingham fluids: Nu = f1(Ra, Pr, Bn) where the
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usselt number Nu and Bingham number Bn are given by:

u = h L

k
and Bn = �y

�

√
L

gˇ	T
(9)

here Nu represents the ratio of heat transfer rate by convection
o that by conduction in the fluid in question and the heat transfer
oefficient h is defined as:

=
∣∣∣∣∣−k ∂T∂x

∣∣∣∣
wf

× 1(
Twall − Tref

)
∣∣∣∣∣ (10)

here subscript ‘wf’ refers to the condition of the fluid in contact
ith the wall, Twall is the wall temperature and Tref is the appro-
riate reference temperature, which can be taken to be TC (TH) for
he hot (cold) wall. The Bingham number Bn represents the ratio
f yield stress to viscous stresses. In Eq. (9) the viscous straining
= �

√
gˇ	TL/L) is estimated based on velocity and length scales

iven by
√
gˇ	TL and L respectively. It is worth noting that in

ingham fluid flows, as the viscosity varies throughout the flow, an
ffective viscosity expressed as�eff = �y/
̇ +�might be more rep-
esentative of the viscous stress within the flow than the constant
lastic viscosity �. Therefore the Rayleigh, Prandtl and Bingham
umbers could have been defined more appropriately if �eff was
sed instead of �. However 
̇ is expected to show local varia-
ions in the flow domain so using a single characteristic value in
he definitions of the non-dimensional numbers may not yield any
dditional benefit in comparison to the definitions given by Eqs.
7)–(9). This subtlety can have important implications when ana-
yzing the effects of yield stress and this issue will be discussed in
etail later in the paper. In the present study the effects of Ra, Bn and
r on Nu are investigated systematically and suitable correlations
roposed. However, it is worth noting that in the present study the
lastic viscosity � and yield stress �y are taken to be independent
f temperature for the sake of simplicity and also due to a lack of
eliable data regarding how these effects should be incorporated.
lthough not ideal this approach seems reasonable as a first step
nd is consistent with several previous studies on Bingham flu-
ds in the literature [8–10,16]. In addition experimental data [20]
or a well-known model yield stress system (“Carbopol”) suggests
hat, in the temperature range 0–90 ◦C, the yield stress is approxi-

ately independent of temperature and the plastic viscosity is only
weakly decreasing function of temperature.

. Numerical method

The commercial package FLUENT is used to solve the cou-
led conservation equations of mass, momentum and energy. This
ommercial package has been used successfully in a number of
ecent studies to simulate both inelastic power-law fluids [21] and
ingham fluids [22,23]. In this framework, a second-order central
ifferencing scheme is used for the diffusive terms and a second-
rder up-wind scheme for the convective terms. Coupling of the
ressure and velocity is achieved using the well-known SIMPLE
Semi-Implicit Method for Pressure-Linked Equations) algorithm
24]. The convergence criteria in FLUENT were set to 10−9 for all
he relative (scaled) residuals.

.1. Governing equations
For the present study steady-state flow of an incompress-
ble Bingham fluid is considered. For incompressible fluids the
onservation equations for mass, momentum and energy under
teady-state take the following form:
Fig. 1. Schematic diagram of the simulation domain.

Mass conservation equation

∂ui
∂xi

= 0 (11)

Momentum conservation equations

�uj
∂ui
∂xj

= − ∂p
∂xi

+ �gıi2ˇ(T − TC ) + ∂�ij
∂xj

(12)

Energy conservation equation

�ujcp
∂T

∂xj
= ∂

∂xj

(
k
∂T

∂xj

)
(13)

where the cold wall temperature TC is taken to be the reference
temperature for evaluating the buoyancy term �gıi2ˇ(T − TC ) in
the momentum conservation equations following several previous
studies [1–6,16].

The default Bingham model in FLUENT utilizes a bi-viscosity
model [19], which is given by Eqs. (5) and (6). The buoyancy effects
are accounted for by Boussinesq’s approximation but the fluid prop-
erties are otherwise assumed to be temperature-independent. The
ratio of the yield viscosity (�yield) to the plastic viscosity (�) was
set to 104. In order to assess the sensitivity of the �yield value,
the simulations have been carried out for both �yield = 103� and
�yield = 104� and quantitative agreement between the results are
found to be satisfactory (i.e. maximum deviation in Nu is of the
order of 0.5%) for all the cases. Given this agreement in what fol-
lows only results corresponding to �yield = 104� are presented. An
estimation of a representative effective viscosity �eff is presented
later (see Eq. (28)) in Section 4 of this paper and for all the com-
putations �yield remained about two orders of magnitude greater
than �eff.

2.2. Boundary conditions

The simulation domain is shown schematically in Fig. 1 where
the two vertical walls of a square enclosure are kept at different
temperatures (TH > TC), whereas the other boundaries are consid-
ered to be adiabatic in nature. Both velocity components (i.e. u1 and
u2) are identically zero on each boundary because of the no-slip

condition and impenetrability of rigid boundaries. The tempera-
tures for cold and hot vertical walls are specified (i.e. T(x = 0) = TH
and T(x = L) = TC ). The temperature boundary conditions for the
horizontal insulated boundaries are given by: ∂T/∂y = 0 at y = 0
and y = L. Here 4 governing equations (1 continuity + 2 momen-
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Table 1
Non-dimensional minimum cell distance (	min,cell/L) and grid expansion ratio (r) values.

Grid M1 M2 M3 M4

× 40 80 × 80 160 × 160

534 × 10−3 8.7848 × 10−4 4.3001 × 10−4

303 1.1092 1.0532
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Table 3
Comparison of present simulation results for Newtonian fluid with the benchmark
[1] for Pr = 0.71.

Present study Benchmark [1]

Ra = 103 Nu 1.118 1.118
Numax 1.506 1.505
Umax 3.649 3.649
Vmax 3.701 3.697

Ra = 104 Nu 2.245 2.243
Numax 3.531 3.528
Umax 16.179 16.178
Vmax 19.655 19.617

Ra = 105 Nu 4.520 4.519
Numax 7.717 7.717
Umax 34.748 34.730
Vmax 68.562 68.590

Ra = 106 Nu 8.823 8.800
Numax 17.530 17.925

T
N
N

20 × 20 40

	min,cell/L 4.1325 × 10−3 1.8
r 1.5137 1.2

um + 1 energy) for 4 quantities (u, v, p, T) are solved and thus no
urther boundary conditions are needed for pressure.

.3. Grid independency study

The grid independence of the results has been established based
n a careful analysis of four different non-uniform meshes M1
20 × 20), M2 (40 × 40), M3 (80 × 80) and M4 (160 × 160) the details
f which are included in Table 1. For some representative simula-
ions (Newtonian (Bn = 0) and Bn = 0.5 for Ra = 104 and Pr = 7) the
umerical uncertainty is quantified here using a grid convergence

ndex (GCI) which is based on Richardson’s extrapolation theory
25–27]. For a general primitive variable � the grid-converged
alue according to Richardson extrapolation is given by: �h=0 =
1 + (�2 − �1)/(rp − 1) where �1 is obtained based on the fine grid
nd �2 is the solution based on next level of coarse grid, r is the
atio between the coarse to fine grid spacings and p is the theoret-
cal order of accuracy. Under this framework the GCI is defined as
CI = Fs |e|/(rp − 1) where e = (�2 − �1)/�1 is the relative error,

s is a factor of safety which is often taken to be 3.0. The GCI
ssentially indicates an error band around the asymptotic numer-
cal value [25–27]. The procedure of the method is given in Ismail
nd Karatekin [27]. In this analysis the apparent order p was taken
o be 2. The numerical uncertainties for the mean Nusselt num-
er Nu =

∫ L
0
Nudy/L and the maximum non-dimensional vertical

elocity magnitude on the horizontal mid-plane of the enclosure

Vmax) are presented for different GCI values in Table 2. For the
ewtonian simulations the numerical uncertainty for the maxi-
um dimensionless vertical velocity component on the horizontal
id-plane improved from 0.91% between meshes M2 and M3 to

.176% between meshes M3 and M4. For the mean Nusselt number

able 2
umerical uncertainty for mean Nusselt number Nu and maximum non-dimensional ver
ewtonian and Bingham (Bn = 0.5) fluids.
Umax 64.859 64.630
Vmax 220.887 219.360

the differences between the meshes are essentially negligible. For
the Bingham fluid simulations the uncertainty is higher: decreas-
ing from 0.315% to 0.066% for the mean Nusselt number and from
2.506% to 0.74% for the vertical velocity magnitude.

Based on these uncertainties the simulations in the remainder of

the paper, unless where otherwise stated, were conducted on mesh
M3 which provided a reasonable compromise between high accu-
racy and computational efficiency. Any simulation in the parameter
range in terms of Ra, Pr and Bn explored in the current study using

tical velocity component Vmax on the horizontal mid-plane at Ra = 104 and Pr = 7 for
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esh M3 took typically 8–10 h to converge on a single PC (CPU
.0 GHz, 2.00 GB of RAM).

.4. Benchmark comparison

In addition to the aforementioned grid-dependency study, the
imulation results for Newtonian fluids have also been compared
gainst the well-known benchmark data of de Vahl Davis [1] for
ayleigh numbers Ra ranging from 103 to 106 and Prandtl number
qual to Pr = 0.71. The comparisons between the present simula-
ions results with the corresponding benchmark values are very
ood and entirely consistent with our grid-dependency studies. The
omparison is summarised in Table 3.

The Bingham fluid simulations have been carried out for Bing-
am numbers Bn ranging from 0 to Bnmax where Bnmax is the
ingham number at which the mean Nusselt number approaches
o unity (i.e. Nu = 1.0). At Bn > Bnmax the solution is independent
f the Bingham number Bn because the mean Nusselt number Nu
emains equal to unity due to heat transfer taking place solely by
onduction as the fluid flow dies out in the cavity. It is important
o note that Vola et al. [16] did not report the values of Bn but sim-
ly provided the values of yield stress �y. According to the present
efinition of Bingham number Bn (see Eq. (9)) the values of Bn for
a = 104,105 and 106 cases in Table 5 of Vola et al. [16] turn out to
e 3, 0.95 and 0.3 respectively. For these limited cases the present
imulation results for the above values of Bn and Ra for Pr = 1.0
ere in reasonable agreement with the values reported by Vola et

l. [16] (maximum difference inNu is smaller than 3% for example).

. Scaling analysis

A scaling analysis is performed to elucidate the anticipated
ffects of Rayleigh number, Prandtl number and Bingham number
n the Nusselt number for yield stress fluids. The wall heat flux q
an be scaled as:

∼k	T
ıth

∼h	T (14)

hich gives rise to the following relation:

u∼h L
k

∼ L

ıth
or Nu∼ L

ı
f2(Pr, Bn) (15)

here the thermal boundary layer thickness ıth is related to the
ydrodynamic boundary layer thickness ı in the following man-
er: ı/ıth∼f2(Pr, Bn) where f2(Pr, Bn) is a function of Prandtl and
ingham numbers (i.e. Pr and Bn), which is expected to increase
ith increasing Prandtl number. In order to estimate the hydrody-
amic boundary layer thickness ı, a balance of inertial and viscous

orces in the vertical direction (i.e. y-direction) is considered:

ϑ2

L
∼�
ı

(16)

here ϑ is a characteristic velocity scale. For Bingham fluids the
hear stress � can be estimated as: �∼�y +�ϑ/ı, which upon sub-
titution in Eq. (16) gives:

ϑ2

L
∼

(
�y +�ϑ

ı

)
1
ı
. (17)
Using Eq. (17) the hydrodynamic boundary layer thickness can
e estimated as:

= 1
2
�yL

�ϑ2
+ 1

2
L

�ϑ2

√
�2
y + 4�

ϑ3

L
�. (18)
id Mech. 165 (2010) 901–913 905

For natural convection the flow is induced by the buoyancy force
and thus the equilibrium of inertial and buoyancy forces gives:

ϑ2

L
∼gˇ	T. (19)

This balance leads to an expression for the characteristic velocity
scale:

ϑ∼
√
gˇ	TL (20)

which can be used in Eq. (18) to yield:

ı∼ �/�√
gˇ	T L

[
Bn

2
+ 1

2

√
Bn2 + 4

(
Ra

Pr

)1/2
]

(21)

where Ra and Bn are given by Eqs. (7) and (9) respectively. This scal-
ing gives rise to the following expression for the thermal boundary
layer thickness ıth:

ıth∼ min

[
L,

L Pr1/2

f2(Bn, Pr)Ra1/2

[
Bn

2
+ 1

2

√
Bn2 + 4

(
Ra

Pr

)1/2
]]
. (22)

The above expression accounts for the fact the thermal boundary
layer thickness becomes of the order of the enclosure size L under
very high values of Bn when the Bingham fluid acts essentially as a
solid material. Eq. (22) suggests that ıth decreases with increasing
Ra, which acts to increase the wall heat flux. Substitution of Eq. (22)
into Eq. (15) yields:

Nu∼Max

⎡
⎢⎢⎣1.0,

Ra1/2/Pr1/2[
Bn
2 + 1

2

√
Bn2 + 4

(
Ra
Pr

)1/2
] f2(Pr, Bn)

⎤
⎥⎥⎦ . (23)

The scaling predictions provide useful insight into the antici-
pated behaviour of Nu in response to variations of Ra, Pr and Bn.
The analysis suggests that Nu is expected to decrease with increas-
ing Bn for a given value of Ra whereas Nu increases with increasing
Ra for a given value of Bn. It is also important to note that the Nusselt
number behaviour for Newtonian fluids can be obtained by setting
Bn = 0 in Eq. (23). Doing so gives Nu∼Ra0.25f2(Pr)/Pr0.25 for New-
tonian fluids whereas Berkovsky and Polevikov [28] proposed the
correlation Nu = 0.18[RaPr/(0.2 + Pr)]0.29. Given the simplicity of
the above scaling analysis it is not surprising that a small quanti-
tative difference between the value of exponent of Ra between the
prediction of Eq. (23) and the correlation function exists (0.25 cf.
0.29). However, the qualitative trends are nicely captured by the
scaling relations.

4. Results and discussion

4.1. Rayleigh number effects

The variation of mean Nusselt number Nuwith normalised ver-
tical distance y/L is shown in Fig. 2. The results show that Nu
increases with Ra for both Newtonian and Bingham fluids, which is
consistent with the scaling analysis discussed earlier (see Eq. (23)).
In addition it can be observed that the values of Nu for Bingham
fluids are smaller than that obtained in the case of Newtonian flu-
ids with the same nominal Rayleigh number Ra. Again this effect
is also in agreement with the scaling estimate of Nusselt number
given by Eq. (23).
It is instructive to look into the distributions of the dimension-
less temperature � and vertical velocity component V to explain
the variation of Nuwith Bn shown in Fig. 2. Only the vertical veloc-
ity component is shown as the horizontal velocity component is
of the same order for square enclosures. The distributions of � and
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ig. 2. Variation of Nu with normalised vertical distance along the hot wall for Pr = 7
—) Newtonian case and (- - -) Bingham fluid case (for Bn = 0.5).

for both Newtonian and Bingham fluids (at Bn = 0.5) along the
orizontal mid-plane are shown in Fig. 3 for different values of
ayleigh number Ra. At Ra = 103 the distribution of � is completely

inear and the vertical velocity component is essentially negligible
ue to very weak flow as the effects of buoyancy forces are domi-
ated by viscous effects. Under this circumstance, the heat transfer
akes place entirely by conduction across the enclosure. The effects
f buoyancy force strengthens relative to the viscous force with
ncreasing Ra for a given set of values of Bn and Pr, which in turn aug-

ents heat transfer by convection due to stronger buoyancy-driven
ow with higher vertical velocity magnitude. This effect is clearly
vident from Fig. 3, which indicates that the vertical velocity mag-
itude does indeed increase with increasing Ra for both Newtonian
nd Bingham fluids. The distribution of non-dimensional temper-
ture becomes increasingly non-linear with the strengthening of

onvective transport for higher values of Ra for both Newtonian
nd Bingham fluids. This strengthening is also apparent in Fig. 4a
nd b where the contours of stream function and non-dimensional
emperature are shown for both Newtonian and Bingham fluids (at

ig. 3. Variations of non-dimensional temperature � and vertical velocity component V a
ase (for Pr = 7).
id Mech. 165 (2010) 901–913

Bn = 0.5) for different values of Ra. It is evident from Fig. 4a and b that
the isotherms become increasingly curved with increasing Rayleigh
number due to a strong convective current within the enclosure,
while temperature contours are parallel to the wall due to the
conduction-dominated thermal transport at the lowest Rayleigh
number. It can be discerned from Fig. 4b that the thermal bound-
ary layer thickness on the side walls decreases with increasing Ra
for both Newtonian and Bingham fluids, which is consistent with
the trend predicted by our scaling estimate of ıth (see Eq. (22)).

The “unyielded” zones (defined using the criteria proposed in
Ref. [18]: zones of fluid where |�| ≤ �y) are also shown in Fig. 4a. It is
important to note that these zones are not really “unyielded” in the
true sense as pointed out by Mitsoulis and Zisis [29]. In the present
study a bi-viscosity approximation is used to model the Bingham
fluid flow so there will always be flow within these essentially very
high viscosity regions – regions of extremely slowly moving fluid
(Mitsoulis and Zisis [29] called them “apparently unyielded regions
(AUR)”). It is important to stress that the small islands of AUR within
the centre of the enclosure alter significantly with increasing values
of�yield (shown in Fig. 4a for�yield = 104�) while the mean Nusselt
number, the stream function and the zones of AUR at the corners
of the enclosure are independent of �yield for �yield ≥ 103�. For a
given value of �y the zones with very low shear rate, which satisfy
|�| ≤ �y, are expected to shrink with an increase in �yield, as the
strain rate field remains independent of �yield for the simulations
considered here. As the AUR zones are dependent on the choice of
�yield, any in depth discussion of their significance is not consid-
ered to be worthwhile for this paper. The streamlines in the bottom
right-hand corner of the enclosure are also shown within Fig. 4a
(as a zoomed insert), which highlight the approximate size of the
corner eddy. This corner vortex diminishes in size with increasing
Rayleigh number.
4.2. Bingham number effects

The variations of the mean Nusselt number Nu with Bingham
number Bn are shown in Fig. 5 for nominal values of Rayleigh num-

long the horizontal mid-plane for Newtonian case (left column) and Bingham fluid
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ig. 4. (a) Contours of non-dimensional stream functions ( /˛) and unyielded zone
f non-dimensional temperature � for Newtonian case (left column) and Bingham fl

er Ra = 103, 104, 105 and 106. The Prandtl number Pr is taken to be
.0 as this value represents a realistic value of Pr for incompressible
uids. It is clear from Fig. 5 thatNudecreases with increasing Bn, and
ltimately the value ofNu settles to unity, as demonstrated in Fig. 5.
his behaviour is consistent with earlier results by Vola et al. [16].
t is worth noting that heat transfer due to pure conduction yields

Nusselt number value equal to Nu = 1.0 (i.e. q∼k�T/L∼h�T or
u = hL/k∼1.0) so the value of Nu essentially indicates the extent

f deviation from the pure conduction simulation results. For high
alues of Bingham number Bn, the viscous force more readily over-
omes the buoyancy force and as a result of this, no significant
ow is induced within the enclosure. This result is clearly appar-

ig. 5. The interrelation between the mean Nusselt number Nu and Bingham num-
er Bn for different values of Rayleigh number at Pr = 7.
) including a zoomed inset of qualitative features of corner vortex and (b) contours
ase (for Bn = 0.5, right column) at Pr = 7.

ent from Fig. 6a and b where the effects of Bn on the distributions
of non-dimensional temperature and vertical velocity component
along the horizontal mid-plane are shown for Ra = 104 and Ra = 106

respectively. It can be seen from Fig. 6a and b that the tempera-
ture profiles become linear and the vertical component of velocity
disappears for higher values of Bn (i.e. Bn ≥ Bnmax) when the mean
Nusselt number approaches to unity (i.e.Nu = 1.0) (see Fig. 5). This
behaviour can further be understood by comparing the contours
of stream function and non-dimensional temperature shown in
Fig. 7a and b for different values of Bn at Ra = 104 and Ra = 106. Both
Figs. 6 and 7 suggest that the effects of convection (i.e. fluid flow)
within the enclosure decreases with increasing Bn and the Bingham
fluid starts to behave as a solid for Bn ≥ Bnmax: the fluid velocities
drop to such low values that for all practical purposes the fluid is
essentially stagnant. The values of Bingham number either close to
or greater than Bnmax will henceforth be referred to as large values
of Bingham number for the rest of the paper.

In the absence of flow in the enclosure, heat transfer takes place
due to conduction and thus the isotherms remain parallel to the side
walls (see Fig. 7) conforming to the pure conduction solution. This
effect is reflected by Nu = 1.0 for Bn ≥ Bnmax in Fig. 5. The effects
of buoyancy force strengthen in comparison to the viscous effects
with increasing Ra. As a result of the stronger buoyancy effects, the
Bingham number at which Nu approaches to unity (i.e. Bn = Bnmax)
increases with increasing Ra. It has already been mentioned that
the situation when buoyancy effects become insignificant and heat

transfer is purely due to thermal conduction is given by Nu = 1.0.
Thus, the value of Bingham number Bn at which Nu approaches to
Nu = 1.0 is a critical Bingham number Bnmax which essentially indi-
cates that natural convection effects are important (unimportant)
for Bn < Bnmax (Bn ≥ Bnmax).
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Fig. 6. Variations of non-dimensional temperature � and vertical velocity component V along the horizontal mid-plane for different values of the Bingham number Bn in the
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.3. Prandtl number effects

In this section, Prandtl number effects are investigated for both
ewtonian and Bingham fluid cases for Prandtl numbers ranging

rom Pr = 0.1 to 100 in the Rayleigh number range Ra = 104–106.
he lower Ra bound is close to the onset of significant convec-
ion effects whereas our upper bound choice reflects our desire to
nsure steady-state two-dimensional simulations retain physical
ignificance. Based on the simulation results new correlations for
u are suggested for both Newtonian and Bingham fluids in terms
f Rayleigh number Ra, Prandtl number Pr and Bingham number
n.

.3.1. Newtonian fluids
The variation of Nu with Pr for Newtonian fluids is shown in

ig. 8 which indicates thatNu increases with increasing Pr. It can be
een from Fig. 8 that the results for Newtonian fluids are consistent
ith earlier numerical results [30] whereas the simulation results
eviate somewhat from the correlation proposed by Berkovsky

nd Polevikov [28] (Nu = 0.18
[
Ra Pr/(0.2 + Pr)

]0.29
). Moreover, it

s clear that Pr has an important influence on Nu for small val-
es (Pr � 1). However, Nu is relative insensitive to Pr for high
randtl number values. In the present configuration, the relative
trengths of inertial, viscous and buoyancy forces determine the
ow behaviour. For small values of Pr the thermal boundary layer
hickness remains much greater than the hydrodynamic bound-
ry layer thickness. As a result of this difference, the transport
ehaviour in the majority of the domain is governed by the inertial
nd buoyancy forces. In contrast, for large values of Pr the hydro-
ynamic boundary layer thickness remains much greater than the
hermal boundary later thickness thus the transport characteris-

ics are primarily driven by buoyancy and viscous forces (see the
caling analysis by Bejan [5] for example). For Pr � 1, an increase
n Pr decreases the thermal boundary layer thickness in compar-
son to the hydrodynamic boundary layer thickness. This change
ssentially acts to increase the heat flux which is reflected in the
increasing Nusselt number. In the case of Pr � 1, a change in Prandtl
number principally modifies the relative balance between viscous
and buoyancy forces so the heat transport in the thermal boundary
layer gets only marginally affected. This modification is reflected in
the weak Prandtl number dependence of Nu for large values of Pr
(i.e. Pr � 1) in Fig. 8.

In the case of Newtonian fluids, the average Nusselt number Nu
is expressed in terms of an algebraic function of Ra and Pr:

Nu = aRam
(

Pr

1 + Pr
)n
. (24)

The values of coefficients a, m and n were determined using
an iterative minimisation function of a commercial software pack-
age with the parameters from the Berkovsky and Polevikov [28]
fit used as initial values (giving a = 0.162, m = 0.293 and n = 0.091).
Including more free parameters resulted in only marginal improve-
ments to the fit. As Fig. 8 shows the correlation given by Eq.
(24) predicts the mean Nusselt number Nu obtained from the
simulation data satisfactorily for different values of Ra and Pr.
In addition Eq. (24) offers an improvement over the correlation
of Berkovsky and Polevikov [28] which, for high Prandtl num-
bers, over-predicts the mean Nusselt number (differences of the
order of 10%).

4.3.2. Bingham fluids
In order to demonstrate the effects of Pr on Nu for Bingham

fluids, the variations of Nu with different values of Pr and Bn at
a nominal Rayleigh number value Ra = 105 are shown in Fig. 9. It is
evident from Fig. 9 that Nu decreases with increasing Pr for large
values of Bn unlike the situation for Newtonian fluids. In contrast,
the mean Nusselt number Nu increases with increasing Pr for very
small values of Bn, which is consistent with the behaviour obtained

for Newtonian fluids (see Fig. 8). Moreover, the value of Bingham
number Bnmax for which Nu approaches to unity decreases with
increasing Pr. The same qualitative behaviour is also observed for
other values of Ra and thus is not shown here for the sake of concise-
ness. In order to explain this observation it is instructive to examine
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ig. 7. Contours of non-dimensional stream functions ( /˛) (left column) with u
alues of Bn at Pr = 7, (a) Ra = 104 and (b) Ra = 106.

he non-dimensional temperature contours at various values of Pr,
hich are presented in Fig. 10 for a range of values of Bn at a nominal
ayleigh number Ra = 105. It can be observed from Fig. 10 that the
ffects of convection disappear for smaller values of Bn for higher
alues of Pr, which is consistent with the observations based on
ig. 9. This variation clearly demonstrates that the Bingham num-
er at which the fully-conduction regime starts depends on Pr for

given value of Ra. From the foregoing it can be concluded that the
ffects of Pr on natural convection at a given value of Ra are not fully
ndependent of Bn. This inference is an artefact of how the nominal
a is defined in the present analysis (see Eq. (7)). In the case of nat-
ral convection in Bingham fluids the use of an effective viscosity
ed zones (gray), and non-dimensional temperature � (right column) for different

�eff instead of the constant plastic viscosity � in the definition of
Rayleigh number would have been more appropriate. One way of
estimating an “effective” viscosity is described below:

�eff = �y/
̇ +� (25)
which can be scaled as:

�eff∼�yı/ϑ +�. (26)
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Fig. 8. Variation of mean Nusselt number Nuwith Rayleigh Ra and Prandtl Pr num-
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Using Eq. (21) in Eq. (26) yields:

eff∼�
{
Bn

[
Bn�

2�ϑL
+ �

2ϑL�

√
Bn2 + 4

�ϑ L

�

]}
+�. (27)

Using velocity scale ϑ∼
√
gˇ�T L (Eq. (20)) gives:

eff /�∼
{
Bn

[
Bn

2Gr1/2
+ 1

2Gr1/2

√
Bn2 + 4Gr1/2

]}
+ 1. (28)

Based on Eq. (27) an effective Grashof number Greff can be
efined as:
reff = �2gˇ	TL3

�2
eff

= Gr
[{
Bn

[
Bn

2Gr1/2
+ 1

2Gr1/2

√
Bn2 + 4Gr1/2

]}
+ 1

]−2
. (29)

ig. 9. Variations of mean Nusselt number Nu with Prandtl number for Bingham
uids at Ra = 105.
id Mech. 165 (2010) 901–913

The variation of Greff with Pr according to Eq. (29) is shown in
Fig. 11 for different values of Bn. The case with Bn = 0 corresponds to
the Newtonian case and Fig. 11 suggests that the effective Grashof
number decreases with increasing Pr for a given value of Ra and this
drop becomes increasingly rapid with increasing values of Bn. For
large values of Bn the effects of the buoyancy force becomes increas-
ingly weak in comparison to the viscous effects with increasing Pr
when Ra is held constant. This reduced buoyancy force relative to
the viscous force gives rise to a weakening of convective transport
which acts to decreaseNuwith increasing Pr. This effect is relatively
weak for small values of Bn where an increase in Prandtl number
acts to reduce the thermal boundary layer thickness which in turn
acts to increase the heat transfer rate as discussed earlier in the
context of Newtonian fluids. In contrast, for large values of Bn, the
effects of thinning of the thermal boundary layer thickness with
increasing Pr is superseded by the reduction of convective transport
strength due to a smaller value of the effective Grashof number. This
reduction gives rise to a decrease in Nuwith increasing values of Pr
(for a given value of Ra) when the Bingham number assumes large
values. Eventually this gives rise to the beginning of the conduction-
dominated regime for smaller values of Bnmax for higher Pr values as
shown in Fig. 10 (for constant Ra). As a consequence Bnmax depends
on both Rayleigh and Prandtl numbers, and Bnmax increases with
increasing Rayleigh number, whereas it decreases with increas-
ing Prandtl number. These results are shown in Table 4 where the
variations of Bnmax with Ra and Pr are summarised.

Once again useful insight into this behaviour can also be
obtained using a scaling analysis. According to Eq. (15) Nu can
be estimated as: Nu∼L f2(Pr, Bn)/ı, which leads to the following
expression according to Eq. (22) when Nu approaches to unity

f2 (Pr, Bnmax)
Ra1/2

Pr1/2
∼

[
Bnmax

2
+ 1

2

√
Bn2

max + 4
(
Ra

Pr

)1/2
]

(30)

which can be manipulated to yield:

Bnmax∼f2 (Pr, Bnmax)
Ra1/2

Pr1/2
− 1
f2 (Pr, Bnmax)

. (31)

Eq. (31) demonstrates that Bnmax depends on both Ra and Pr,
which is consistent with the simulation results. In the present
study the mean Nusselt number Nu is taken to be of the follow-
ing form in the ranges given by 0.1 ≤ Pr ≤ 100, 104 ≤ Ra ≤ 106 and
0 ≤ Bn ≤ Bnmax:

Nu = 1 + ARa1/2[
Bn
2 + 1

2

√
Bn2 + 4

(
Ra
Pr

)1/2
][

1 − Bn

Bnmax

]b
(32)

so that

limBn→BnmaxNu = 1 + ARa1/2[
Bnmax

2 + 1
2

√
Bn2

max + 4
(
Ra
Pr

)1/2
]

×
[

1 − Bnmax

Bnmax

]b
= 1.0 (33)

where A, b and Bnmax are input parameters in the correlation which
need to be determined from the numerical results. The parameter A
is chosen in such a manner that Eq. (33) becomes identically equal
to Eq. (24) when the Bingham number Bn goes to zero. This yields
the following expression for A:
A = aRam−0.25 Pr
n−0.25

(1 + Pr)n − 1
Ra0.25Pr0.25

. (34)

The simulation results suggest that the parameter b depends on
both Ra and Pr and it has been found that the variation of b with Ra
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Fig. 10. Contours of non-dimensional temperature � for

nd Pr can be accurately expressed with the help of the following
ower-law:

= 0.42Ra0.13Pr0.12. (35)
It has been discussed earlier that the value of Bnmax is dependent
n Ra and Pr and here the value of Bnmax is estimated by fitting the
imulation results, which leads to:

nmax = 0.019Ra0.56Pr−0.46. (36)
ent values of Prandtl and Bingham numbers at Ra = 105.

The correlation is applicable for any Bingham fluid in the fol-
lowing range of Prandtl and Rayleigh numbers: 0.1 ≤ Pr ≤ 100,
104 ≤ Ra ≤ 106. The predictions of the correlation given by Eq. (32)
is compared with our numerical data obtained from the present
simulation data in Fig. 12, which demonstrates that the correlation

given by Eq. (32) satisfactorily captures both qualitative and quan-
titative variations of Nuwith Bn for the range of Ra and Pr analysed
in this study. However, the agreement between the prediction of
Eq. (32) and the simulation results deteriorates for smaller values
of Prandtl number (i.e. Pr = 0.1). For example, the correlation given
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Table 4
Values of Bnmax at different values of Ra and Pr.

Pr Ra = 104 Ra = 105 Ra = 106

0.1 10 35 125
1 3 10 45
ig. 11. Variation of effective Grashof number Greff with Prandtl number Pr at
a = 105.

y Eq. (32) under predicts Nu for small values of Bn for Ra = 104

nd Pr = 0.1 and this disagreement originates principally due to the
imitation of the correlation of the Newtonian fluids (Eq. 24) in pre-
icting Nu for small values of Pr (see Fig. 8), which in turn affects

he prediction of Eq. (32) through the value of A (see Eq. 34). How-
ver, the implications of this inaccuracy is not likely to be severe
ecause all known yield stress fluids in practical applications are

ikely to have Pr significantly greater than 0.1.

Fig. 12. Comparison of the prediction of the correlation
10 1 4 15
100 0.3 1 5

5. Conclusions

In this study, the heat transfer characteristics of steady lami-
nar natural convection of yield stress fluids obeying the Bingham
model in a square enclosure with differentially heated side walls
have been numerically studied. The effects of Rayleigh number Ra,
Prandtl number Pr and Bingham number Bn on heat and momen-
tum transport have been systematically investigated. It is found
that the mean Nusselt number Nu increases with increasing values
of the Rayleigh number for both Newtonian and Bingham fluids.
However the Nusselt numbers obtained for Bingham fluids are
smaller than those obtained in the case of Newtonian fluids with

the same values of nominal Rayleigh number. The Nusselt number
was found to decrease with increasing Bingham number, and, for
large values of Bingham number, the value of mean Nusselt number
settled to unity (i.e. Nu = 1) as the heat transfer took place princi-

(—) given by Eq. (32) and simulation results (©).
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ally by conduction. The conduction-dominated regime occurs at
igher values of Bn for increasing values of Ra.

The simulation results show that the mean Nusselt number Nu
ncreases with increasing Pr for Newtonian fluids and low Bing-
am number flows for a given value of the Rayleigh number. In
ontrast the opposite behaviour was observed for Bingham flu-
ds for large values of the Bingham number. The relative strengths
f buoyancy and viscous forces and the effects of Prandtl number
n thermal boundary layer thickness are shown to be responsi-
le for this non-monotonic Prandtl number dependence of the
ean Nusselt number Nu in Bingham fluids. Moreover, a mono-

onic behaviour is observed when an “effective” viscosity is used to
efine an effective Grashof number.

Finally, guided by a scaling analysis, simulation results are used
o propose new correlations for Nu for both Newtonian and Bing-
am fluids. These correlations are shown to satisfactorily capture
he variation of Nu with Ra, Pr and Bn for all the cases considered
n this study.

It is important to note that in the present study the tem-
erature dependences of yield stress and plastic viscosity have
een neglected as a first step to aid the fundamental understand-

ng of natural convection in Bingham fluids in square enclosures
ith differentially heated side walls. Although the inclusion

f temperature-dependent thermo-physical properties are not
xpected to change the qualitative behaviour observed in the
resent study, the inclusion of temperature dependence of plastic
iscosity� and yield stress �y is probably necessary for quantitative
redictions since � especially decreases with increasing tempera-
ure [20]. As a result of this reduction, the value of the Bingham at
hich Nu approaches to unity (i.e. Bnmax) is likely to increase with

ncreasing hot wall temperature TH when the cold wall temperature
C is held constant. Thus future investigation on the same config-
ration with temperature-dependent thermo-physical properties
e.g. �y and particularly �) of Bingham fluids will be necessary for
eeper understanding and more accurate quantitative predictions.
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