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n this technical brief, we report the results of a systematic nu-
erical investigation of developing laminar pipe flow of yield

tress fluids, obeying models of the Bingham-type. We are able to
how that using a suitable choice of the Reynolds number allows,
or high Reynolds number values at least, the development length
o collapse to the Newtonian correlation. On the other hand, the
evelopment length remains a weak, nonmonotonic, function of
he Bingham number at small values of the Reynolds number
Re�40�. �DOI: 10.1115/1.4001079�

Introduction
Notwithstanding the long �and continuing� debate about the

ery existence of a “true” yield stress, it is readily acknowledged
hat the notion of an apparent yield stress is a very useful engi-
eering empiricism for a wide range of materials �1–3�. These
aterials appear solidlike below some critical �yield� stress but
ow above this value. Here we are interested in the development

ength problem for such fluids, i.e., the length of pipe required for
he flow of such fluids to become “fully developed.” Although this
roblem is classical, and has been investigated repeatedly, only
elatively recently have accurate results become available even for
ewtonian �4� and non-Newtonian inelastic fluids �obeying the
ower-law model �5��. For pipe flow, Durst et al. �4� proposed the
ollowing correlation for Newtonian fluids

XD/D = ��0.619�1.6 + �0.0567 Re�1.6�1/1.6 �1�

here XD is the development length �m�, D is the pipe diameter
m�, and Re is the Reynolds number. For power-law fluids a modi-
cation to Eq. �1� was proposed to account for the low Reynolds
umber dependence on the power-law index �consult Ref. �5� for
etails�.

For visco-plastic fluids, although a number of studies have in-
estigated this issue either analytically or numerically �6–11�,
ith the exception of Ookawara et al. �11�, the results of these

tudies have ignored the diffusion-dominated case �i.e., low Rey-
olds number� and proposed correlations of the form XD /D
C�Re�, where C is a function of the nondimensional yield stress

usually represented as a Bingham number�. Thus they incorrectly
redict that for creeping flows �i.e., Re→0� the flow instanta-
eously develops. In addition, as Ref. �11� highlight, the occur-
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rence of the “plug” region means that although the centerline ve-
locity reaches 99% of its fully developed value in a rather shorter
distance than the Newtonian case, the complete radial variation in
the velocity at this location is not yet fully developed �see their
Fig. 1 for example�. Thus one of the conclusions of Vradis et al.
�9� that “the velocity profiles develop faster with higher values of
the yield �Bingham� number” is essentially incorrect. To over-
come this difficulty, Ookawara et al. �11� redefined the entry
length as the axial distance where the velocity at a radial position
of 95% of the plug radius reaches 99% of the calculated maxi-
mum velocity �at the same radial location�. Although Ookawara et
al. �11� highlighted this important issue and provided a correlation
that also predicts the development length for low Reynolds num-
bers ��10�, their yield stress results �obtained using the Bingham
model� are restricted to just five simulations and their correlation
is independent of the Bingham number, something which, at low
Reynolds number at least, seems unrealistic, given the results for
the power-law model �5�. In this technical brief we report the
results of a detailed numerical study, of quantified accuracy, which
attempts to reconcile these issues.

2 Nondimensional Groups
To investigate the yield stress effects in the laminar developing

pipe flow, we use here a Bingham-type approach, e.g., a model of
the form �=�0+�p�̇, where � is the shear stress �Pa�, �0 is the
yield stress �Pa�, �̇ is the shear rate �s−1�, and �p is the plastic
viscosity �Pa s�. To quantify the importance of the yield stress we
use the well-known Bingham number

Bn =
�0D

�pUB
�2�

where D is the pipe diameter �m�, UB is the bulk velocity �m/s�,
and � is the density �kg /m3�.

Guided by the results of Ookawara et al. �11� we use the fol-
lowing definition for the Reynolds number based on the momen-
tum correction coefficient method1 �11�

Re��a,�� =
�UBD

�a
� �3�

where �a=3�p / �a4−4a+3�, �=9�5+6a−11a2� /5�3+2a+a2�2,
and a is the relative plug radius for the Bingham model �12�.

3 Numerical Method
We assume that the flow is laminar, incompressible, steady, and

axisymmetric �i.e., two-dimensional�. We utilize the commercial
package FLUENT to solve the governing equations of the conser-
vation of mass and momentum. The differencing schemes used
are both formally second-order in accuracy: central differencing is
used for the diffusive terms and a second-order up-winding
scheme for the convective terms. Coupling of the pressure and
velocity was achieved using the well-known semi-implicit method
for pressure-linked equations �SIMPLE� implementation of Patan-
kar �13�. The default “Bingham” model in FLUENT utilizes a bi-
viscosity model �see Ref. �14� for example� of the form

� = �yield�̇ �̇ �
�0

�yield

� = �0 + �P��̇ −
�0

�yield
� �̇ �

�0

�yield
�4�

i.e., for low shear rates the material acts as a very viscous liquid
�equal to the “yielding” viscosity �yield� rather than a true solid.

1This is the Reynolds number obtained when the friction-factor Reynolds number
relationship is forced to be equal to the Newtonian one in a laminar flow �e.g.,
f�Re�=16 for a pipe�. It is the Bingham model equivalent of the Metzner-Reed

Reynolds number for power-law fluids.
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Downloa
e also investigate here the role played by the exact value of this
ielding viscosity. As the default model is discontinuous, we also
eveloped a user defined function �UDF� for the apparent viscos-
ty to incorporate the exponential model due to Papanastasiou �15�

� = �0�1 − e−m�̇� + �P�̇ �5�

here m is the stress growth exponent, which has the dimensions
f time. Again this model transforms the “solid” region to a vis-
ous one of high viscosity. It is usually thought that mU /D
500 is sufficient for Eq. �5� to mimic the Bingham model suc-

essfully �15�. We also note that although Eqs. �4� and �5� ap-
roximate the true Bingham model over a wide range of shear
ates �3�, both models are fundamentally different to a true “yield
tress” model as deformation occurs below the yield stress. As
ecent analytical work �16� has suggested that for a true Bingham
odel the development length may be “infinitely delayed,” and

he continuing debate regarding the existence of a true yield stress
2�, we feel that the use of Eqs. �4� and �5� to approximate a yield
tress fluid is reasonable.

A schematic representation of the computational domain is
iven in Fig. 1. At inlet �x=0�, we apply a uniform velocity UB
nd as discussed in the introduction, we define the development
ength XD as the axial distance required for the velocity to reach
9% of the calculated maximum value at a radial location corre-
ponding to 95% of the plug radius. We use the well-known no-
lip boundary condition at the wall and impose zero axial gradi-
nts at the outlet. The length of the domain is dependent on the
eynolds and Bingham numbers of the flow in question �L
f�Re,Bn��. Broadly, longer domain lengths were necessary than

n the case of Newtonian or power-law fluids �5�.
A preliminary series of calculations at low Re �=0.001� were

arried out to assess the effects of mesh refinement, domain
ength, choice of Bingham-like model �i.e., Eq. �4� and �5��, value
f yielding viscosity, and nondimensional value of the m param-
ter. Our coarse mesh, which is 10 diameters in length, corre-
ponds to mesh M2 of our previous study �5� and comprises 20

200 cells, our base mesh “M3” comprises 40
400 cells, and
ur refined mesh “M4” comprises 80
800 cells. The cells are
uadrilateral and of constant dimension �x=2�r. We note that
ur base mesh here is of lower refinement than our results for the
ower-law model: a consequence of the longer domain lengths
nd the significantly increased time for convergence required for
he Bingham-type models used here. In addition to the variation in
D, to allow us to estimate the accuracy of the various conditions,
e define a relative error

E =
uc − UC,FD

UC,FD
�6�

here uc is the calculated centerline velocity �m/s� at the outlet
lane and UC,FD is the corresponding fully developed analytical

ig. 1 Schematic of the computational domain and boundary
onditions
alue �m/s�. The analytical solution for fully developed pipe flow
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of a Bingham fluid is well-known �see Ref. �12� for example� and
so is not repeated here. The results of this series of calculations
are shown in Tables 1–4 and from these information, we conclude
the following: �a� Our coarse mesh �M2� shows discrepancies
with the analytical fully developed solution, and therefore, all re-
maining calculations were conducted using M3 �simulations using
M4 were prohibitively expensive and were not pursued above
creeping-flow conditions, limited results are provided in Table 4�;
�b� although for a given mesh E exhibited little sensitivity to the
yielding viscosity and stress growth exponent, the development
length was more effected; �c� despite the bi-viscosity and expo-
nential models becoming independent of these parameters in a
given mesh, there is still a difference of about 2% between the
development lengths predicted for nominally identical conditions
�Re and Bn�; and �d� although at low Reynolds numbers XD is
shorter for yield stress fluids than in the Newtonian case, longer

Table 1 Effect of various parameters using mesh M2 and do-
main length of 10D „NC=4000 cells, Re=0.001…

uc /UB

E
�%� XD /D

Bi-viscosity �Bn=1�
�yield /�p=101 1.865 0.26 0.6282
�yield /�p=102 1.852 �0.45 0.5832
�yield /�p=103 1.850 �0.53 0.5757
�yield /�p=104 1.850 �0.53 0.5753

Exp. model �Bn=1�
mU /D=37 1.852 �0.43 0.6269
mU /D=370 1.850 �0.53 0.5916
mU /D=3700 1.850 �0.54 0.5899

Bi-viscosity �Bn=10�
�yield /�p=104 1.427 �0.59 0.5834
�yield /�p=105 1.426 �0.60 0.5804

Exp. model �Bn=10�
mU /D=1050 1.426 �0.61 0.6267
mU /D=10,500 1.426 �0.60 0.6044
mU /D=105,000 1.426 �0.63 0.5985

Table 2 Effect of various parameters using mesh M3 and do-
main length of 10D „NC=16,000 cells, Re=0.001…

uc /UB

E
�%� XD /D

Bi-viscosity �Bn=1�
�yield /�p=101 1.872 0.67 0.6305
�yield /�p=102 1.859 �0.06 0.6000
�yield /�p=103 1.857 �0.14 0.5923
�yield /�p=104 1.857 �0.16 0.5922

Exp. model �Bn=1�
mU /D=37 1.859 0.04 0.6297
mU /D=370 1.858 �0.13 0.6077
mU /D=3700 1.858 �0.13 0.6066

Bi-viscosity �Bn=10�
�yield /�p=104 1.434 �0.10 0.5852
�yield /�p=105 1.431 �0.30 0.5695
�yield /�p=106 1.432 �0.23 0.5731

Exp. model �Bn=10�
mU /D=10,500 1.432 �0.23 0.5916
mU /D=105,000 1.432 �0.23 0.5910
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Downloa
omain lengths are required for XD to become independent of this
omain length �see data in Table 3�.

We use the bi-viscosity model for the rest of our simulations
ith a yield viscosity ratio ��yield /�p� of at least 104 and 105 for
n=10. The data in Tables 1 and 2 show that the use of the
apanastasiou model would produce very similar results. Given
ll of the effects investigated we believe that the uncertainty in our
stimation of XD is no better than 2%.

To highlight the quality of the simulations, in Fig. 2, we show
he radial variation in the outlet axial velocity profile from our
imulations for Re=0.001 �bi-viscosity model, �yield /�p=104,

Table 4 Effect of mesh refinement us

Bn=1 ��yield /�p=104� XD /D Bn=3.16 ��yield /

M2 10D 0.5753 M2 10D
M3 10D 0.5922 M3 10D
M4 10D 0.6011 M4 10D
Extrapolated 0.6047 Extrapolat

Bn=2 ��yield /�p=104� Bn=5 ��yield /�
M2 10D 0.5417 M2 10D
M3 10D 0.5440 M3 10D
M4 10D 0.5498 M4 10D
Extrapolated 0.5521 Extrapolat

Table 3 Effect of domain length and the Bing
and �yield/�p=104

„Re=0.001…

Bn=1 XD /D Bi=3.16

2D 0.5703 2D
5D 0.5904 5D
10D 0.5922 10D

Bn=2 Bi=5
2D 0.5008 2D
5D 0.5352 5D
10D 0.5440 10D

r / R

u
/U

B

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Analytical
Bi = 0
Bi = 1.0
Bi = 2.0
Bi = 3.14
Bi = 5.0
Bi = 10.0

ig. 2 Comparison of the numerical simulation velocity pro-
les at the pipe exit with the fully developed analytical solution
t Re=0.001 for a range of Bingham numbers „bi-viscosity

4
odel, �yield/�p=10 , mesh M3 10D length…

ournal of Fluids Engineering
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mesh M3 and domain length of 10D� compared with the analyti-
cal solutions for the fully developed flow. Excellent agreement
can be seen with �E� at most 0.3%.

4 Results and Conclusions
The nondimensional development length is plotted as a function

of the modified Reynolds number, Eq. �3�, in Fig. 3 for a range of
Bingham numbers 1�Bn�10. At higher values of Bn conver-
gence became increasingly difficult and, as discussed in Ref. �3�,
as most interesting viscoplastic phenomena occuring in the range
1�Bn�10 simulations at higher Bn were not pursued. For Bn
=0.1 we found that the results were practically indistinguishable
from our Newtonian data �Bn=0� and are, therefore, not included

the bi-viscosity model and Re=0.001

104� XD /D Bn=10 ��yield /�=105� XD /D

0.5238 M2 10D 0.5804
0.5087 M3 10D 0.5695
0.5113 M4 10D 0.5766
0.5123 Extrapolated 0.5975

04�
0.5361
0.5258
0.5320
0.5345

number for M3 using the bi-viscosity model

XD /D Bi=10 XD /D

0.4839 2D 0.5371
0.5033 5D 0.5620
0.5087 10D 0.5852

0.4997
0.5182
0.5258

Re

X
D
/D

10-2 10-1 100 101 102 103
10-1

100

101

102

Durst et al 2005
Bi = 0
Bi = 1.0
Bi = 2.0
Bi = 3.16
Bi = 5.0
Bi = 10.0
ing

�p=

ed

p=1

ed
ham
Fig. 3 Development length variation for Bingham fluids
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ere. Much as was observed for non-Newtonian power-law fluids
5�, above a critical value of Re, the data collapse to the Newton-
an correlation �4�. Below this critical value of Re, which appears
o be about 40 at the highest Bn, the development length departs
rom the Newtonian correlation in a nonmonotonic fashion depen-
ent on the Bingham number. To highlight this variation in Fig. 4
e plot the creeping flow development length �i.e., Re→0� versus

he Bingham number �the Richardson extrapolation values shown
n Fig. 4 and quantified in Table 4 were determined using the

ethod outlined in Ref. �5��. The variation in the development
ength with Bn is complex; as the yield stress effects increase �i.e.,
s Bn increases� the central solid “plug” region grows—
ffectively changing the pipe diameter that the fluid “sees”—and
he characteristic diffusion velocity also changes. Simple scaling
rguments such as that used for power-law fluids �5� did not help
econcile this behavior. As the differences are relatively small—
he maximum departure from the Newtonian correlation being
bout 20%—we propose that the Newtonian correlation �Eq. �1��

Bn

X
D
/D

⎥
R

e→
0

1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

Newtonian
M3
M4
Richardson Extrapolation

ig. 4 Variation in the creeping-flow development length with
he Bingham number
an be used for engineering purposes �estimating entrance effects,

34501-4 / Vol. 132, MARCH 2010
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for example, when designing pipe flow systems �17��, provided
that the momentum corrected Reynolds number is used in lieu of
the Newtonian Reynolds number.
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