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a b s t r a c t

This study reports the results of a systematic numerical investigation, using the upper-convected Maxwell
(UCM) and Phan-Thien–Tanner (PTT) models, of viscoelastic fluid flow through three-dimensional gradual
planar contractions of various contraction ratios with the aim of investigating experimental observa-
tions of extremely large near-wall velocity overshoots in similar geometries [R.J. Poole, M.P. Escudier,
eywords:
iscoelastic flow in gradual contractions
at’s ears
CM model
TT model

P.J. Oliveira, Laminar flow of a viscoelastic shear-thinning liquid through a plane sudden expansion pre-
ceded by a gradual contraction, Proc. Roy. Soc. Lond. Ser. A 461 (2005) 3827]. We are able to obtain good
qualitative agreement with the experiments, even using the UCM model in creeping-flow conditions,
showing that neither inertia, second normal-stress difference nor shear-thinning effects are required for
the phenomenon to be observed. Guided by the numerical results we propose a simple explanation for

city
reeping flow
inite-volume method

the occurrence of the velo

. Introduction

Experimental velocity measurements of the flow of a high-
olecular weight flexible polymer solution through planar gradual

ontraction–sudden expansion geometries [1,2] have revealed an
nteresting fluid-dynamic effect. Spanwise1 profiles of the stream-

ise velocity in the XZ-centreplane exhibited extreme velocity
vershoots close to the sidewalls, up to three times the centreline
elocity in magnitude, that due to their appearance were called
cat’s ears”. More recent experiments, without the sudden expan-
ion component, have confirmed that the appearance of the “cat’s
ars” profiles are a sole consequence of the smooth contraction [3].
epresentative velocity profiles are reproduced in Fig. 1(a), together
ith a schematic of the contraction geometry used in the experi-
ents, in which a representative velocity profile along the spanwise

neutral) direction is illustrated (Fig. 1(b)).
Three-dimensional viscoelastic calculations using the Phan-

hien–Tanner (PTT) model [4] have been attempted to match the
xperimental conditions of Ref. [2] with a few limited simula-
ions reported in Poole et al. [2] and an extended systematic study

eported in Afonso and Pinho [5]. Although some modest suc-
ess in predicting velocity overshoots was achieved, the magnitude
f the overshoots – at most about 10% higher than the centre-
ine velocity – was always much lower than that observed in the

∗ Corresponding author. Fax: +351 225081449.
E-mail addresses: robpoole@liv.ac.uk (R.J. Poole), mmalves@fe.up.pt (M.A. Alves).

1 Here we use the terms streamwise for the flow (x) direction and spanwise for
he neutral (z) direction.
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overshoots and the conditions under which they arise.
© 2009 Elsevier B.V. All rights reserved.

experiments. To capture these weak overshoots the full PTT model
was required (� /= 0 producing N2 /= 0 in steady simple shear
flow) together with strong strain hardening (low values of ε) and
some inertia. In these simulations it was speculated that the pres-
ence of the geometric singularity due to the sudden expansion
prevented convergence at higher Deborah numbers and that, if
convergence could be achieved, a non-zero second normal-stress
difference may not be required for the effect to be observed (i.e.
� /= 0 just allowed the De–Re space to be reached where “cat’s ears”
occur).

Our interest in the current study is to revisit the problem in an
attempt to capture the extreme nature of the “cat’s ears” effect and
to try to reveal the mechanism for their appearance. To do so our
approach, in contrast to the simulations of Refs. [2,5], is to concen-
trate on modelling a gradual contraction section alone, as in the
recent experiments of Keegan et al. [3]. Furthermore we set aside
the goal of trying to exactly match the experimental conditions
of Refs. [1,2] by selecting a related, but simplified, 3D-geometry
and by varying the Re and De numbers in a systematic way. Using
such a methodology we are able to show that, even for the rheo-
logically “simple” UCM model, extreme velocity overshoots can be
predicted even in the absence of inertia, i.e. the velocity overshoots
are a purely elastic effect. Thus “cat’s ears” profiles appear to be
an inherent feature of viscoelastic flow through gradual contrac-
tions provided certain conditions, which we identify based on our

numerical results, are satisfied.

The rest of this paper is organised as follows; in Section 2 we
briefly describe the equations to be solved, the numerical method,
the geometry and the meshes used; in Section 3 we discuss the

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
mailto:robpoole@liv.ac.uk
mailto:mmalves@fe.up.pt
dx.doi.org/10.1016/j.jnnfm.2009.03.005
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Fig. 1. (a) Spanwise profiles of the streamwise velocity for an aqueous solution of
3
(

r
t
w
s

2
c

v
t
o

∇

a

�

r
m
p

geometries used in Refs. [1–3], this choice enables consistency
000 ppm polyacrylamide in an 8:1 planar gradual contraction flow Re ≈ 5, De ≈ 34
adapted from Ref. [3]) and (b) schematic of the geometry and coordinate axis.

esults for a Newtonian fluid followed by the results of the viscoelas-
ic models in Section 4; in Section 5, based on our numerical results,
e discuss a possible mechanism for the “cat’s ears” effect before

ummarising our findings in Section 6.

. Governing equations, numerical method, geometry and
omputational meshes

We are concerned with the isothermal flow of an incompressible
iscoelastic fluid through a gradual three-dimensional planar con-
raction geometry. The equations to solve are those of conservation
f mass:

· u = 0, (1)

nd of momentum:[
∂u

∂t
+ u · ∇u

]
= −∇p + ∇ · �. (2)
For reasons of rheological simplicity most of the simulations we
eport here are for the well known upper-convected Maxwell (UCM)
odel [6]; in addition some simulations are conducted for the sim-

lified version of the Phan-Thien and Tanner model (PTT) [4] of
Fig. 2. Schematic of planar gradual contraction geometry. The depth of the geometry
in the z-direction is constant (2 H1) (adapted from Ref. [10]).

which the UCM is a limiting case:

�

[
∂�

∂t
+ ∇ · u�

]
+ f (Tr �)� = �p(∇u + ∇uT) + �(� · ∇u + ∇uT · �).

(3)

Eq. (3) retains only the upper-convected part of the full Gordon-
Schowalter derivative. In the current study the stress function f(Tr �)
takes the linear form proposed in Ref. [4]:

f (Tr �) = 1 + �ε

�p
Tr(�). (4)

In Eqs. (3) and (4) the constant model parameters are the relaxation
time of the polymer �, the zero-shear polymer viscosity �p and the
extensibility parameter ε. Setting the ε parameter to zero produces
the UCM model. The UCM model exhibits both a constant shear
viscosity � and first normal-stress coefficient (and hence relax-
ation time) allowing us to explore the effects of elasticity without
the complications of shear-thinning of either the shear viscosity or
relaxation time. In contrast the PTT model exhibits shear-thinning
of both these parameters but has the benefit of bounded exten-
sional stresses in purely extensional flow enabling higher Deborah
numbers to be reached.

A fully implicit finite-volume numerical method is used to solve
Eqs. (1)–(4). The original numerical method, and subsequent devel-
opments, has been described in great detail in Refs. [7–9] and so is
not unnecessarily repeated here.

The gradual contraction geometries we investigate here are
essentially three-dimensional versions of the geometries we used
to investigate the phenomenon of “divergent flow” in Ref. [10].
A schematic 2D projection of the geometry used in the numer-
ical simulations is shown in Fig. 2. The geometry consists of
two ducts, the larger (inlet) one being square in cross-section
and having a half-height H1 and the other (entrant) having the
same width but different height (2H2) connected by two arcs
(one convex, the other concave) of constant radius of curvature,
R = H1 − H2. Defining the contraction ratio as CR (=H1/H2) we can
also express this radius of curvature as R = (CR − 1)H2. The coor-
dinate system is set on the XY and XZ symmetry planes at the
“entrance” to the smaller channel. Although not identical to the
between geometries of differing contraction ratio and also a con-
stant wall radius of curvature. Despite these small differences the
essential nature of the experimental geometry used in Ref. [3] is
maintained.
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ig. 3. Zoomed view of two representative computational meshes (a) CR = 2 (the
egion −4 ≤ x/H2 ≤ 2 is shown) and (b) CR = 8 (the region −20 ≤ x/H2 ≤ 5 is shown).

In the current problem the non-dimensional parameters of rel-
vance for the UCM fluid flow are those of the Reynolds number
≡�U2H2/�), the Deborah number which here we define based
n downstream quantities, De = �U2/H2, and the contraction ratio
R = H1/H2.

To study the effect of contraction ratio we investigated four dif-
erent geometries of varying contraction ratio: CR = 2, 4, 8 and 16.
he meshes used are structured and non-orthogonal, and were cre-
ted in such a way that the cells are approximately aligned with
he streamlines in the two-dimensional Newtonian case [10]. Due
o the symmetry of the geometry only a quarter of the full domain
s simulated with symmetry boundary conditions imposed at the
Y and XZ symmetry planes. Typical meshes are shown in Fig. 3 and

uantified in Table 1.

able 1
ajor characteristics of the computational meshes.

esh NC DOF �xmin/H2 �ymin/H2 �zmin/H2

R2 176 384 1 763 840 0.027 0.021 0.041
R4 131 144 1 311 440 0.044 0.021 0.08
R8 164 944 1 649 440 0.046 0.025 0.19
R16 378 560 3 785 600 0.045 0.027 0.41

C, number of cells; DOF, number of degrees of freedom; �xmin, �ymin, �zmin,
inimum cell sizes.
n Fluid Mech. 160 (2009) 47–54 49

3. Newtonian simulations

In classical Newtonian fluid mechanics gradual contractions are,
at least at relatively high contraction ratios, often used to produce
“uniform” velocity profiles; the most obvious exploitation of which
is in wind-tunnel design in aerodynamics [11,12], although they
are also used in pipe-flow studies as inlet conditioners [13,14] and
elsewhere [15].

Fig. 4 shows 3D contours of the velocity development in the
XZ-centreplane for a modest contraction ratio (in this case CR = 4)
for different Reynolds numbers. In order to quantify this flatten-
ing effect for different contraction ratios and Reynolds numbers
it is useful to define a “flattening parameter” F which represents
the spanwise extent over which the velocity is “two dimensional”
at the end of the contraction section (x = 0) in the XZ-centreplane.
We define “two dimensional” as being within 5% of the centreline
velocity and we normalise with the width of the duct, such that
0 < F < 1. We plot this flattening parameter versus Re for various
contraction ratios in Fig. 5.

As can be observed in Fig. 5 the flattening parameter increases
with Re, although at high values of Re there is a reduction of F, at
least for low CR cases. This slight reduction is directly related with
the increase of the development length as Re increases (see, e.g.
Ref. [16]). Fig. 4, for CR = 4, and other results for different contrac-
tion ratios (not shown here for concision) clearly illustrate that the
velocity profiles are monotonic along both the x- and z-directions.
For creeping-flow conditions the flattening parameter can be esti-
mated from the fully developed downstream velocity profile, since
the velocity development length is small. Comparison between
numerical simulations at Re = 0.01 and predictions from the the-
oretical fully developed velocity profiles agree to within 5% (CR = 2)
and 2% (CR = 16).

The results illustrated in Figs. 4 and 5, obtained with Newtonian
fluids, lead us to conclude that the onset of velocity under-
shoots/overshoots along the streamwise direction (which is typical
of viscoelastic flows [10]), or along the spanwise direction (the
“cat’s ears” phenomenon) is related with viscoelastic effects, either
alone or complemented by inertia and/or shear-thinning, as will be
demonstrated in the next section.

4. Viscoelastic simulations

In order to identify the driving mechanism for the onset of “cat’s
ears”, we undertook a systematic study of the influence of De and
CR on the observed flow patterns and on the local spanwise veloc-
ity profiles within the contraction using the UCM model. In Fig. 6
we show the effect of De on the observed velocity profiles along
the XZ centreplane for a high contraction ratio (CR = 8) and in Fig. 7
we present similar plots for a low contraction ratio (CR = 2). For the
higher contraction ratio, one observes that viscoelasticity leads to
a significant overshoot of the streamwise velocity along the cen-
treline (y = z = 0), a behaviour typically observed in contraction and
expansion flows of highly elastic fluids (e.g. Refs. [10,17]). In this
high CR case no velocity overshoots along the spanwise direction
(“cat’s ears”) are observed. However, for the case of low contrac-
tion ratios it can be observed that at high De streamwise velocity
overshoots are present along the spanwise direction, which are
stronger within the gradual contraction region. These velocity over-
shoots propagate from the lateral sidewalls towards the centre, until
eventually they are smeared out by diffusion. For the Newtonian
cases presented in Figs. 6 and 7, the velocity profiles have a similar

behaviour to those illustrated in Fig. 4 for CR = 4.

These results show that the “cat’s ears” phenomenon can be
reproduced using the UCM model under creeping-flow conditions,
thus demonstrating that this effect is purely elastic in nature. In
order to quantify the intensity of the “cat’s ears” for different con-
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ig. 4. Streamwise velocity profiles on the XZ centreplane (y = 0) for a Newtonian fl
he streamwise velocity profiles represented as lines are at consecutive x-positions

raction ratios and Deborah numbers, we find it useful to define the
ollowing dimensionless parameter,

= max
[

umax(x, y = 0, z) − uc(x, y = 0, z = 0)
uc(x, y = 0, z = 0)

]
, (5)
here umax represents the maximum streamwise velocity along
he spanwise direction along the centreplane y = 0, at a constant
treamwise position x, and uc the centreline velocity (y = z = 0) at the
ame x-location. Thus C is a relative measure of spanwise velocity
vershoots, with C = 0 for the Newtonian case devoid of such phe-

ig. 5. Effect of CR and Re on “flattening parameter” for Newtonian fluid flow through
radual planar contractions.
different Reynolds numbers for CR = 4: (a) Re = 0; (b) Re = 1; (c) Re = 10; (d) Re = 100.
re apart a distance of �x/H2 = 1.

nomena. In Fig. 8 we plot the C parameter for CR = 2, 4 and 8, as a
function of the Deborah number, under creeping-flow conditions.
We observe that the critical De for the onset of “cat’s ears” increases
approximately linearly with CR. It is also apparent that above the
critical De the rate of increase of C decreases with CR, however for
the higher contraction ratios only a limited range above the critical
conditions is achieved before the flow looses steadiness. Therefore
we cannot conclude that the “cat’s ears” effect is a feature solely of
low CR contractions, as might be expected from Figs. 6 and 7.

The previous results demonstrate that it is possible to predict
the “cat’s ears” phenomenon without inertia. Nevertheless, the
observed profiles in the experiments [1–3] are significantly more
intense. In order to reproduce such extreme behaviour, we have
conducted additional simulations for flow conditions where iner-
tial effects are important, as is the case in the experiments. We
varied the Reynolds number for different De cases, and, as a typical
example, in Fig. 9 we show the velocity profiles for CR = 4 and a high
Deborah number flow (De = 6) using the UCM model. Increasing
inertial effects leads to significantly more intense “cat’s ears”, and
the velocity profiles become even more complex downstream of the
contraction region. However, for Re�2 a reduction of the velocity
overshoots is observed, coupled with a delay of flow redevelop-
ment. Interestingly for the highest Re a second velocity overshoot
appears downstream of the end of the contraction.

Although the fluids used in the experiments [1–3] all have shear-
thinning characteristics, to a greater or lesser extent dependent on
concentration, the simulations with the UCM model demonstrate

that shear-thinning is not a necessary condition for the onset of
strong “cat’s ears”. Nevertheless, we have also performed additional
simulations using the linear form of the PTT model (i.e. Eqs. (3) and
(4)) in order to demonstrate that it is not necessary to use models
that exhibit unbounded behaviour under strong extensional flow,
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nomenon, we will restrict the present analysis to creeping flow of
constant shear-viscosity fluids. However it can be expected that the
underlying mechanism remains the same regardless of the level of
inertia.
ig. 6. Streamwise velocity profiles in the XZ centreplane (y = 0) under creeping-
ow conditions for CR = 8 for (a) Newtonian fluid and (b) UCM fluid at De = 12. The
treamwise velocity profiles – represented as lines – are at consecutive x-positions
hat are apart a distance of �x/H2 = 2.

uch as the UCM model, to capture the “cat’s ears” effect. We note
hat the UCM model only exhibits an unbounded extensional vis-
osity under steady-state extensional flow. In a contraction flow
he fluid is subjected to a finite extension, and therefore the normal
tresses (and extensional viscosity) under purely extensional flow
along the centreline) are always bounded (for details cf. Ref. [10]).

For the PTT model we selected an extensibility parameter
= 0.02, which is typical of dilute polymeric solutions (such as some
f those fluids used in the experiments of Refs. [1–3]). In Fig. 10
e present the velocity profiles predicted along the streamwise
irection along the plane y = 0, illustrating that a substantial veloc-

ty overshoot in the centreline is observed, a behaviour typical of
ighly elastic flows in contraction geometries (although in this case
he overshoot is significantly more intense than has been observed
n these flows hitherto). Again, we also observe the emergence of
onsiderable “cat’s ears” in the smooth contraction region, further
emonstrating that this elastic phenomenon is a “landmark” fea-
ure of highly elastic smooth contraction flows. In the next section
e describe a simple mechanism to explain qualitatively the driv-

ng force that leads to the appearance of the velocity overshoots for
ighly elastic flows.

. Origin of “cat’s ears” phenomena
From the foregoing it is clear that the “cat’s ears” phenomenon
s due to elastic effects and can be predicted under creeping-flow
onditions. Although, as we have shown, inertia enhances the phe-
Fig. 7. Streamwise velocity profiles in the XZ centreplane (y = 0) under creeping-
flow conditions for CR = 2 for (a) Newtonian fluid and (b) UCM fluid at De = 5. The
streamwise velocity profiles – represented as lines – are at consecutive x-positions
that are apart a distance of �x/H2 = 0.5.
Fig. 8. Quantification of the “cat’s ears” effect (cf. Eq. (5) for C definition) as a function
of the Deborah number for geometries of different contraction ratio (UCM fluid at
Re = 0).
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ig. 9. Influence of the Reynolds number on the streamwise velocity profiles in the
e = 1, (d) Re = 2, (e) Re = 5, and (f) Re = 10.

We shall focus our attention on the central XZ plane (y = 0), as this
s the plane where the “cat’s ears” are observed. In Fig. 11(a) and (b)

e plot the stream traces at the centreplane, for CR = 2, to illustrate
he difference between the Newtonian case (a), and a high Deborah
umber flow (b), where the “cat’s ears” are present. We superim-
ose the contours of dimensionless pressure, (p − pref)/(�U2/H2),

n order to better illustrate the coupling between the stream
races and the pressure field. The reference pressure was chosen
t x/H2 = −5 (y = z = 0). The stream traces are aligned with the x-
irection in the Newtonian case, a result that is compatible with the
bsence of velocity overshoots along the spanwise (neutral) direc-

ion. In contrast for the viscoelastic case we observe a significant
eviation of the stream traces in this plane especially in the con-
raction region (the beginning and the end of the contraction are

arked with arrows in Fig. 11), and the pressure field is found to
e the main driving force for the deviation of the stream traces.
treplane (y = 0) for CR = 4 and De = 6 using the UCM model. (a) Re = 0, (b) Re = 0.5, (c)

To better illustrate this finding, in Fig. 12 we plot the streamwise
pressure profiles along the centreline (y = z = 0) and along the z-
plane channel wall (y = 0; z/H1 = 1). For the Newtonian case there is
no visible difference between the pressure profiles, as anticipated
from Fig. 11, thus the driving force for flow is the pressure gradient
along the x-direction, and therefore the flow in the XZ centreplane
is nearly unidirectional. For the viscoelastic case close to the end of
the contraction region we observe a significant pressure recovery
near the sidewall (point C, cf. Fig. 11) and this non-negligible pres-
sure gradient along the spanwise direction (C–D) leads to a bending
of the stream traces towards the centreline. This partly elucidates

the large velocity overshoots on the centreline that emerge at high
De, for all CR as shown in Figs. 6(b) and 7(b).

Along the centreline the flow is extensionally dominated, and
the analysis presented by Alves and Poole [10] for UCM fluid flow
in smooth planar contractions is useful. In Ref. [10] it was shown
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Fig. 10. Streamwise velocity profiles in the XZ centreplane (y = 0) for CR = 4, using
the PTT model with ε = 0.02, at De = 16 and Re = 0.5.

Fig. 11. Stream traces and dimensionless pressure contours of (p − pref)/(�U2/H2) on
the XZ centreplane (y = 0) for CR = 2 and (a) Newtonian fluid at Re = 0; (b) UCM fluid
at De = 5 and Re = 0. The reference value of pressure, pref , was chosen at x/H2 = −5
(y = z = 0). Arrows indicate start and end of contraction.

Fig. 12. Pressure profiles along the centreline and near the wall (y = 0) for the UCM
model under creeping-flow conditions for CR = 2. Comparison between Newtonian
fluid and De = 5 results.
n Fluid Mech. 160 (2009) 47–54 53

that for two-dimensional contractions strong velocity undershoots
along the centreline were observed for highly elastic flows at low
CR. The existence of these velocity undershoots at the entrance of
the contraction region lead to the onset of diverging streamlines,
in which the flow moves away from the centreline in a converging
region (XY plane), where a converging flow would be expected (see,
e.g. Ref. [18]). As described in Ref. [10] the existence of strong veloc-
ity undershoots and the corresponding diverging flow in smooth
contractions is enhanced for low CR, and was correlated to the exis-
tence of a maximum of the transient Trouton ratio curve that can
be estimated for a contraction flow in which the fluid experiences
a finite extension, εH = ln(CR). Incidentally, our numerical simula-
tions suggest that there is a strong correlation between the onset
of strong diverging streamlines (in the XY plane) and strong veloc-
ity overshoots observed in the XZ plane (i.e. “cat’s ears”). Indeed
the stream traces in the XZ centreplane (y = 0), shown in Fig. 11,
exhibit a similar behaviour to the diverging-flow phenomenon. For
the sake of simplicity, in what follows we assume that the unidirec-
tional flow in the centreplane observed at low De and low CR would
still be valid for high De number flows (which we already know is
not the case, as shown in Fig. 11). In this idealised case, the flow at
each z plane near the centreline (i.e. for small z) would behave as a
two-dimensional smooth contraction flow, in essence the flow anal-
ysed by Alves and Poole [10]. Since at the plane z = 0 the velocities
are higher, then locally the effective Deborah number at that plane
would be a maximum, and we would expect the velocity under-
shoot to be stronger. In the region where the velocity undershoot
is maximum, one expects that the flow will diverge (from continu-
ity), both in the y and z directions, thus confirming the strong link
between diverging streamlines in the XY and XZ planes and why
the observed stream traces behave as those illustrated in Fig. 11(b)
for high De and low CR. As demonstrated in Ref. [10], the diverging
flow that occurs at the entrance of the contraction region ensures
that near the end of the contraction, where the shear and normal
stresses are greatest near the wall, the flow converges towards the
centre, thus reducing locally the shear rate at the curved walls with
the benefit of reducing the energy dissipation. Although this will
lead to a significant increase of the strain rate on the centreline, it
does not lead to a significant increase of the normal stresses at the
centreline for low CR (indeed, as demonstrated in Ref. [10], for low
CR increasing the strain rate leads to a decrease of the Trouton ratio
estimated at a characteristic strain εH = ln [CR]). The previous argu-
ments confirm the flow behaviour observed on the XZ centreplane
for low CR, as illustrated in Fig. 11. Between points A and E illus-
trated in Fig. 11, the streamwise velocity undershoot progressively
decreases. On the other hand, near point E in the XZ plane stream
traces are converging, thus a local velocity maximum (as compared
to along the z direction at a fixed x-position) is observed, generating
the surprising “cat’s ears” velocity profiles.

6. Conclusions

We have conducted a systematic numerical study of viscoelastic
flow, modelled using both the UCM and PTT models, through three-
dimensional gradual planar contractions with the aim of simulating
the experimentally observed “cat’s ears” effect [1–3]. We have been
able to reproduce the phenomenon using the UCM model, even for
creeping-flow conditions, and our results thus show that neither
inertia, shear-thinning shear viscosity nor a second-normal-stress
difference are required for these extreme velocity overshoots to
occur. Inertia, up to a certain level at least, and the inclusion of

shear-thinning effects was seen to enhance the phenomenon.

Guided by the numerical simulations we describe a simple
mechanism for the occurrence of the velocity overshoots and how
these relate to the diverging flow behaviour typical of highly elastic
flows in smooth contractions with small contraction ratios.
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