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a b s t r a c t

The flow of a viscoelastic fluid through a microfluidic flow-focusing device is investigated numerically
with a finite-volume code using the upper-convected Maxwell (UCM) and Phan-Thien–Tanner (PTT) mod-
els. The conceived device is shaped much like a conventional planar “cross-slot” except for comprising
three inlets and one exit arm. Strong viscoelastic effects are observed as a consequence of the high defor-
mation rates. In fact, purely elastic instabilities that are entirely absent in the corresponding Newtonian
fluid flow are seen to occur as the Deborah number (De) is increased above a critical threshold. From
two-dimensional numerical simulations we are able to distinguish two types of instability, one in which
the flow becomes asymmetric but remains steady, and a subsequent instability at higher De in which
iscoelastic fluid
TT model
CM model

the flow becomes unsteady, oscillating in time. For the UCM model, the effects of the geometric param-
eters of the device (e.g. the relative width of the entrance branches, WR) and of the ratio of inlet average
velocities (VR) on the onset of asymmetry are systematically examined. We observe that for high veloc-
ity ratios, the critical Deborah number is independent of VR (e.g. Dec ≈ 0.33 for WR = 1), but depends
non-monotonically on the relative width of the entrance branches. Using the PTT model we are able to
demonstrate that the extensional viscosity and the corresponding very large stresses are decisive for the

sym
onset of the steady-flow a

. Introduction

While Newtonian fluid flows may exhibit inertial instabilities as
he Reynolds number (Re) increases, viscoelastic fluid flows may
evelop elastic instabilities as the Deborah number (De) increases
or arbitrarily small Reynolds numbers. The latter are the subject
f extensive reviews (e.g. [1,2]). Shaqfeh [2] focused on purely elas-
ic instabilities in viscometric flows in rheometry devices, which
nclude Taylor–Couette [3,4], parallel plate flow [5–7] and cone-
nd-plate flows [7,8]. These instabilities received extensive interest
ince they can be found in a wide variety of applications includ-
ng polymer processing, lubrication and coating, and can make the
ominally “viscometric” flow unsuitable for rheological measure-
ents. The underlying mechanism that leads to such instabilities is
ssociated with the large normal-stress differences, which depend
on-linearly on flow velocity and streamline curvature. In particu-

ar, it has been shown that the tensile stress along the streamlines
nd the local curvature of the flow play a decisive role on the onset
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of purely elastic instabilities [9,10]. McKinley et al. [10] define a
dimensionless criterion that must be exceeded for purely elastic
instability to be observed.

The advent of microfluidics has promoted a renewed interest
in purely elastic flow instabilities, which occur in the absence of
inertial forces when elastic forces are very strong. The small length
scales characteristic of microfluidics enable the generation of flows
with high deformation rates while keeping the Reynolds number
small. Conditions in microfluidic devices result in the ability to
promote strong viscoelastic effects, which are not masked by fluid
inertia, in dilute solutions that would otherwise exhibit Newtonian-
like behavior at the equivalent macroscale. Particular attention has
been given to internal stagnation point flows, such as cross-slot
flows [11,12]. Pathak and Hudson [11] used flow-induced birefrin-
gence and micro-particle image velocimetry to examine the flow of
wormlike micellar fluids in a microfluidic cross-slot and observed
a steady-flow asymmetry at high Weissenberg numbers. Arratia et
al. [12] used particle tracking velocimetry and tracer experiments
to study the flow of dilute polymer solutions through a cross-slot

device and observed two types of flow instabilities that occur as
the Deborah number is increased. The first instability consists of
a transition to steady asymmetric flow, in which the flow remains
steady but spatial symmetry is broken; the second instability, in
which the flow becomes time-dependent, follows at higher Deb-

http://www.sciencedirect.com/science/journal/03770257
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rah numbers. A similar behavior was predicted numerically by
oole et al. [13] in an analogous geometry. They used a finite-volume
ethod to simulate the flow of a viscoelastic fluid described by

he upper-convected Maxwell model, and demonstrated that the
teady asymmetry can be predicted and is purely elastic in nature.
n fact, they reported that inertia has a stabilizing effect, delaying
he onset of asymmetric flow and reducing the magnitude of the
symmetry. Xi and Graham [14] have also performed numerical
alculations to simulate viscoelastic fluid flow through a 2D cross-
lot geometry at low Reynolds numbers. In their finite-element
imulations, which use a FENE-P constitutive equation, the sol-
ent viscosity ratio is high and they only predict the existence of a
ime-dependent instability at high Deborah numbers. Furthermore,
recent study by Rocha et al. [15], who extended the work of Poole
t al. [13] by considering models other than the UCM and exploring
wider range of model parameters (such as the solvent viscosity

atio and extensibility parameter), clearly show that as the solvent
iscosity ratio is increased, the critical Deborah number becomes
igher and eventually the unsteady instability is reached before the
itchfork bifurcation, the outcome observed in the study of Xi and
raham [14]. It will be shown here that an identical situation arises

or the flow-focusing device.
A sound physical explanation for the mechanism generating the

nstability reported in the experiments of Arratia et al. [12] and the
imulations of Poole et al. [13] has not been fully established yet,
lthough Poole et al. [13] presented some evidence for compressive
tresses in the two incoming streams distorting the velocity field
n such a way that, coupled with streamline curvature, a destabi-
ization similar to that occurring in curvilinear Couette flow would
rise. It is not the purpose of the present study to provide a definite
nswer regarding the generating mechanism question, rather our
ain motivation for using a simple flow-focusing geometry was

o explore the possibility of attaining a region of constant strain-
ate by making use of opposing lateral fluid streams that shape a
hird inlet stream flowing perpendicularly to the lateral entrances.
similar geometry has been used by Luo [16] to explore electroki-

etic instability effects to promote mixing. The extensional flow
n such a device is studied in detail by Oliveira et al. [17]. While
xamining the effect of operating and geometric parameters on
he flow, we observed the onset of purely elastic instabilities sim-
lar to those mentioned previously. A rigorous characterization of

he transition from steady symmetric flow to steady asymmetric
ow is the main focus of this work and the numerical results are
xamined in Section 4. In the previous sections we layout the char-
cteristics of the flow-focusing geometry (Section 2) and present
n overview of the numerical method and computational meshes

ig. 1. (a) Schematic of the flow-focusing geometry, where Ui are mean velocities in chann
omputational mesh used to map the geometry with WR = 1 (�xmin = �ymin = 0.02D1).
n Fluid Mech. 160 (2009) 31–39

used (Section 3). We conclude the paper with a brief summary of our
findings.

2. Flow geometry and dimensionless numbers

The flow-focusing device under consideration is shaped much
like a conventional “cross-slot” except that it contains three inlets
and one exit channel. The geometric configuration used is illus-
trated in Fig. 1, where the main variables are identified. The
geometry is two-dimensional and symmetric about the plane x = 0,
with the origin of the coordinate system set at the center of the
geometry.

Side streams are introduced into the central mainstream
through two lateral channels of equal dimensions. The width of
the lateral channels (D2) was varied from 0.3D1 to 2D1, while the
width of the outlet channel (D3) was kept equal to D1, the width
of the central inlet channel. To account for the effects of geometric
parameters, we define the relative width of the entrance branches
as WR = D2/D1. For all configurations tested, the length of the inlet
and outlet channels was set to 30 times the central inlet channel
width (30D1). Increasing the channel lengths to 60D1 was found to
have a negligible effect on the flow patterns and critical Deborah
numbers.

The average velocity ratio (VR = U2/U1), defined as the ratio of
the inlet average velocities in the side streams (U2) to the average
velocity in the central inlet stream (U1), was varied between 1 and
500.

To characterize the degree of elasticity we make use of the Debo-
rah number, which represents the ratio between the relaxation time
of the fluid (�) and a characteristic time scale of the flow (tflow), here
defined as:

De = �/tflow = �U2/D1 (1)

For a given geometry, the Deborah number was varied between
0 (corresponding to Newtonian fluid flow) and the value corre-
sponding to the onset of time-dependent flow. For reasons of
rheological simplicity, most of the results presented here are for the
upper-convected Maxwell model (UCM). We also present a limited
number of simulation results using the linear form of the Phan-
hien–Tanner model (PTT), for which the extra-stress tensor is given
by [18]:

[
1 + �ε

�p
tr(�)

]
� + �

∇
� = 2�pD (2)

els of width Di and lengths of 30D1; (b) details of the central region of the standard
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Table 1
M.S.N. Oliveira et al. / J. Non-New

here � is the elastic contribution to the extra-stress tensor, the
ymbol � denotes the upper-convected derivative, tr(�) represents
he trace of �, �p is the zero-shear polymer viscosity, ε is the extensi-
ility parameter and D is the strain-rate tensor. The PTT model has
shear-thinning behavior, and the extensibility parameter influ-

nces significantly the extensional viscosity (increasing ε leads to a
ecrease of the extensional viscosity). The UCM model is a partic-
lar case that is recovered when ε = 0 and there is no contribution
f a solvent viscosity. It exhibits constant shear viscosity as well
s constant first normal-stress difference coefficient and relaxation
ime.

. Numerical method and computational meshes

We consider that the flow is isothermal, incompressible and that
t occurs in the absence of inertia, i.e. under creeping-flow condi-
ions (Re → 0). Even though in real flows the Reynolds number is
nite and our method is capable of modeling inertial flows, Re is
sually very small (Re � 1) in microfluidic flows which have char-
cteristic length scales on the order of tens to hundreds of microns.
hus, by considering Stokes flow in the numerical simulations, we
liminate the effects of inertia and are able to isolate the effects
f viscoelasticity on the flow patterns and on the potential onset
f flow asymmetries. As Poole et al. [13] have shown in a related
tudy, including a small, but finite, amount of inertia (Re = 0.01) has
ssentially no effect on the observed phenomena.

In order to model the flow in our flow-focusing device, a fully
mplicit finite-volume method (FVM) is used to solve the appropri-
te equations of conservation of mass and momentum:

· u = 0 (3)

∇p + ∇ · � + �s∇2u = 0 (4)

ogether with the constitutive equation described by Eq. (2) for the
lastic contribution to the extra-stress tensor. By setting ε = 0 and
eglecting the contribution from the solvent viscosity (�s = 0) the
CM model is recovered. In turn, this further simplifies to a New-

onian fluid by setting � = 0. In the above equations, u represents
he velocity vector, p is the pressure, and � is an explicit func-
ion of the conformation tensor (� = (�p/�)(A − I)), i.e. instead of
olving Eq. (2) we solve an equivalent form of the constitutive equa-
ion containing an evolution equation of the conformation tensor,
amely:

∇
A = −Y(tr|A|)(A − I) (5)

here the conformation function is Y(tr|A|) = 1 + ε(tr|A| − 3). The
volution equation of the conformation tensor is solved with the
og-conformation approach, which makes it possible to achieve
esults at higher Deborah numbers as compared to the standard
ormulation based on the differential equation for the extra-stress
ensor [19]. As such, we have adapted our standard fully implicit
VM [20,21] to implement the log-conformation formulation of the
iscoelastic constitutive equation proposed by Fattal and Kupfer-
an [22]. This methodology in the framework of FVM is thoroughly

iscussed in Afonso et al. [23] and a general overview can be found
n Oliveira et al. [17].

We have imposed steady-state, fully developed velocity and
tress profiles at the inlet boundaries for the Newtonian and UCM
uns. For the PTT runs, the analytical profiles imposed at inlet were
he same as for the UCM at the same Deborah number, but it was

onfirmed that the flow evolves quickly (in a distance smaller than
ne channel width) to the actual fully developed solution for the
TT model (cf. [24] for the analytical solutions for the PTT model
ith a Newtonian solvent). At the outlet, we imposed Neumann

oundary conditions for velocity, stresses and pressure gradient.
Total number of cells (NC) of the standard computational meshes.

WR 0.3 0.4 0.5 0.8 1 1.25 2
NC 13,965 15,471 16,475 20,491 23,001 26,013 35,551

The length of the outlet channel was long enough for the velocity
field to regain the fully developed conditions. Additionally, the no-
slip condition at the walls was included. Details of implementation
of boundary conditions can be found in Oliveira et al. [21].

The meshes used to map the various domains are block-
structured, orthogonal and divide the central region of the
geometry uniformly into cells of size �x = �y ≈ 0.02D1, as shown
in Fig. 1b. Mesh spacing is non-uniform along the cross-slot arms,
tending to concentrate towards the central region. With the purpose
of capturing flow asymmetries that may arise as a consequence of
viscoelasticity, we map the full spatial domain except for a lim-
ited number of simulations in which symmetry was imposed along
the line x = 0. The total number of cells (NC) varies according to the
specific geometric configuration under consideration, as shown in
Table 1.

Mesh refinement tests were carried out using a more refined
mesh, in which the number of cells in each direction was doubled
and the progression factors were square-rooted in order to consis-
tently halve the size of each cell. Refining the mesh results in small
differences in the velocity and stress profiles near the sharp corners
at (x = ±D1/2, y = −D2/2) and causes a slight decrease in the critical
De for the transition to time-dependent flow (<

˜
5%). Nevertheless,

mesh refinement has a negligible effect on the predicted flow pat-
terns and on the onset of flow asymmetry. Overall, the qualitative
trends obtained with the two meshes are identical and as a conse-
quence, most calculations were performed with the base meshes
of Table 1 and only those results are shown and discussed in this
paper, unless otherwise stated.

4. Results and discussion

The geometry shown in Fig. 1 makes use of opposing lateral
fluid streams that shape a third inlet stream which is flowing per-
pendicularly to the lateral entrances producing a converging flow
region [17]. In order to frame the discussion and as an illustration
of representative flow patterns, Fig. 2 shows the effect of Deborah
number on the flow patterns for WR = 1 and VR = 20, highlighting
the development of a purely elastic steady-flow asymmetry.

For low Deborah numbers, the flow is Newtonian-like remain-
ing steady and symmetric about x = 0. Up to critical conditions
(De<

˜
0.33), the curvature of the separation streamlines near the

lateral entrances is progressively enhanced as De increases. Under
these conditions, the flow in the converging region displays a
markedly extensional behavior as discussed in detail by Oliveira et
al. [17]. Along the centerline, the fluid accelerates as it approaches
the lateral entrances and a region of nearly linear velocity increase
is observed in the converging section as shown in Fig. 3a for WR = 1,
VR = 20 and De = 0.1. The dashed line in Fig. 3a highlights the region
of the velocity profile with a nearly linear increase. The flow in the
outlet channel quickly re-develops and a constant higher velocity
is attained (=1.5 U3, corresponding to uy/U1 of 61.5). The corre-
sponding streamline patterns and contour plot of the flow-type
parameter are shown in Fig. 3b. The flow-type parameter � is
used to classify the flow locally using Astarita’s criterion [25] and
the normalization proposed by Thompson and co-workers [26,27],

2 2
� ≡ (1 − R)/(1 + R); with R defined as R ≡ (tr(W̄ )/tr(D )) where D
is the strain-rate tensor and W̄ is the relative rate of rotation tensor.
As such, � = +1 corresponds to pure extensional flow, � = 0 corre-
sponds to pure shear flow and � = −1 corresponds to pure rotational
flow. Further details on the calculation of � can be found in Oliveira
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Fig. 2. Effect of Deborah number on the flow patterns (WR

Fig. 3. Extensional flow in the flow-focusing geometry (WR = 1, VR = 20): axial veloc-
ity profile along the centerline (x = 0) for De = 0.1 (a); contour plot of the flow-type
parameter together with corresponding streamline patterns for De = 0.1 (b) and for
De = 0.34 (c).
= 1, VR = 20): the onset of a steady-flow asymmetry.

et al. [17]. In this figure, one can clearly observe the presence of a
considerable and well-defined region of extensional flow near the
converging section.

Above the critical Deborah number, De>
˜

0.34, we observe the
onset of a steady supercritical pitchfork bifurcation, with the flow
becoming increasingly spatially asymmetric as De further increases.
Fig. 3c shows a contour plot of the flow-type parameter for condi-
tions under which the flow is asymmetric (De = 0.34). Eventually,
the flow becomes time-dependent for De>

˜
0.5. A similar instability

was observed experimentally for dilute flexible polymer solutions
flowing in a conventional cross-slot geometry [12] and was pre-
dicted numerically using a UCM fluid in an analogous geometry [13].
The flow in the cross-slot examined by Poole et al. [13] exhibits a
stagnation point at the center of the geometry, where the exten-
sional stresses in the UCM fluid flow become unbounded when
the local Weissenberg number exceeds 0.5. A fundamental differ-
ence of the current configuration relative to the cross-slot is that in
the current flow-focusing device there is no stagnation point and
although the axial normal stress (�yy) grows substantially along the
vertical centerline (x = 0), as shown in Fig. 4, it is always bounded.
This leads us to conclude that the singularity observed in the
typical cross-slot cannot be solely responsible for the symmetry-
breaking bifurcation. This conclusion is further supported by the
recent findings of Rocha et al. [15] using FENE-type models in the
cross-slot flow, and by our findings with the PTT model presented
below.

The transition to asymmetric flow is only observed for suf-

ficiently high velocity ratios. For VR<

˜
5, the flow evolves from

steady and symmetric to unsteady, fluctuating in time without
ever exhibiting steady asymmetric behavior. In the limit of high
VR (VR>

˜
20), the critical Deborah number becomes approximately

constant, Dec = 0.335 ± 0.005 for WR = 1, as shown in Fig. 5. Also



M.S.N. Oliveira et al. / J. Non-Newtonian Fluid Mech. 160 (2009) 31–39 35

F

i
o
h

i
l
s
p
a
v
v
m
a
s
f
i
t
t
a
b
n
p
l
d
t
m
s

ig. 4. Axial normal stress profiles along the centerline (x = 0) for WR = 1, VR = 20.

llustrated in Fig. 5 is the critical Deborah number for the onset
f unsteady flow, which also becomes approximately constant for
igh VR, but occurs at a larger value of De (De∗

c ≈ 0.50).
In order to evaluate the degree of flow asymmetry, we first exam-

ne the profile of the y-component of the velocity, uy, along the
ateral direction for y = −D2/2 near the entrance branches. This is
hown in Fig. 6a for WR = 1, VR = 20. For Newtonian fluid flow, the
rofile is perfectly symmetric with the fluid moving upstream (neg-
tive velocities) near the walls and flowing downstream (positive
elocities) in the region close to the centerline, where the maximum
elocity value is attained. As De increases, the profile retains its sym-
etry, but the maximum velocity uy on the centerline increases

nd the velocity near the wall decreases. Between 0.33 < Dec < 0.34,
teady asymmetric flow sets in and the maximum velocity shifts
rom the centerline. Increasing De further, the uy profile becomes
ncreasingly asymmetric with most of the fluid flowing upstream
hrough one half of the channel and flowing downstream through
he other half. We should reinforce that here the flow is steady
nd bistable, i.e. the system has two possible stable solutions, one
eing the mirror image of the other with respect to x = 0. We also
ote the existence of artificial oscillations of the predicted velocity
rofiles near |x/D1| = 0.5. These are singular points, and due to the

ocal unbounded nature of pressure and stresses, there is some local

etriment of the numerical accuracy. Refining the mesh reduces
hese local oscillations as shown in Fig. 6b and c. The locally refined

esh near the singular corners demonstrates that, even though the
tress and pressure fields are singular, smoother velocity and stress

Fig. 5. Flow classification map in the De–VR domain (WR = 1).
Fig. 6. Profiles along y = − D2/2 (WR = 1, VR = 20): (a) effect of the Deborah number
on the axial velocity profiles; (b) effect of mesh refinement on the axial velocity
profile (De = 0.32); (c) effect of mesh refinement on the axial normal stress profiles
(De = 0.32).

profiles are predicted as the mesh is further refined and this is not
the cause of the flow asymmetry.

Based on the velocity profiles shown in Fig. 6, we have deter-
mined the volumetric fluxes that cross the y = − D2/2 line and
calculated an asymmetry parameter, F* = (FW − FE)/F3, to quantify
the degree of asymmetry. F is the total flux through the exit branch
3
(F3 = Q3), FW is the net flux (taken as positive along the y direc-
tion) that passes through half of the mainstream entrance channel 1
between x = − D1/2 and x = 0, and FE is the net flux that passes on the
other half of channel 1 between x = 0 and x = +D1/2. The net volumet-
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ig. 7. Bifurcation diagram: effect of the Deborah number on the asymmetry param-
ter for various VR (WR = 1). The solid line represents a square-root fit to the function
∗ = a1

√
De − Dec .

ic total flux along y = − D2/2 is the same irrespective of whether the
ow is symmetric or asymmetric and is equal to the flow rate enter-

ng through the central entrance branch: F1 = Q1 = FE + FW. In Fig. 7,
e show the bifurcation diagram where we represent the asymme-

ry parameter F* as a function of De. The asymmetry parameter is
ero when the flow is symmetric and progressively deviates from
* = 0 as the flow becomes increasingly asymmetric. The bistabil-
ty can be clearly identified in this bifurcation diagram, as can the
ritical Deborah number (Dec) for the onset of the asymmetry. Inter-
stingly, the data for high VR collapses onto a single curve, which
hows not only that Dec becomes constant at high VR (in agreement
ith the results shown in Fig. 5), but also that the evolution of the

symmetry becomes independent of this parameter. Additionally in
ig. 7, we include a fit to the data for high VR, following a square-root
xpression, F∗ = a1

√
De − Dec , which is typical of pitchfork super-

ritical bifurcations. For VR > 20 and WR = 1 we obtain a1 = 0.59 and
ec = 0.33.

The existence of a symmetry-breaking bifurcation may be a
tress relief mechanism and can be related to minimization of
nergy dissipation by the flow. Strictly, the principle of free-energy
inimization only holds close to thermodynamic equilibrium and

herefore the present analysis serves only to show that the energy
oss in the device is smaller for a bifurcated flow than for a sym-

etric flow. To test this hypothesis, we have performed an energy
alance in the flow-focusing geometry to evaluate the extra energy
issipation that arises due to the presence of the converging region
elative to fully developed flow, and compare it with the corre-
ponding extra-energy dissipation when the flow is forced to be
ymmetric. In the numerical calculations, we can artificially impose
ymmetry upon the flow to observe the flow behavior in a hypo-
hetical situation in which the onset of asymmetry is precluded.
his imposition of symmetry is achieved by performing calcula-
ions using only half of the geometry and imposing a symmetry
oundary condition along x = 0.

The rate of energy dissipation, or power dissipation, �Ẇreal , can
e calculated from:

Ẇreal = Q1p1 + Q2p2W + Q2p2E − Q3p3

= Q1 (p1 − p3) + Q2 (p2W − p3) + Q2 (p2E − p3) (6)
here the subscripts 1, 2W, 2E and 3 identify the entrance/exit arm
c.f. Fig. 1b) where the variables are evaluated; variable p is the
ross-section average pressure in the corresponding channel at a
ocation where the flow is fully developed; and Q is the volumetric
ow rate in each arm. �Ẇreal can be compared to its counterpart
Fig. 8. Comparison of the dimensionless extra-power dissipation for real flow (solid
symbols) and symmetry imposed flow (open symbols): WR = 1 and various VR.

under permanent conditions of fully developed viscous flow, given
by:

�Ẇideal = Q1p′
1 + Q2p′

2W + Q2p′
2E − Q3p′

3

= Q1(p′
1 − p′

0) + Q2(p′
2W − p′

0) + Q2(p′
2E − p′

0) − Q3(p′
3 − p′

0)

(7)

In Eq. (7), the prime designates pressure under fully developed
conditions (note that in the present configuration p1 = p′

1, p2W =
p′

2W and p2E = p′
2E); p′

0 is the arbitrary pressure at the center of the
geometry. This equation may be re-written in terms of the pressure
gradient in each arm, assuming that under fully developed flow
conditions the pressure loss in the central intersection region is
negligible. Thus, we obtain:

�Ẇideal = Q1|dp′/dy|1L1 + Q2|dp′/dx|2W L2W

+ Q2|dp′/dx|2EL2E + Q3|dp′/dy|3L3 (8)

where L is the distance between the point where the pressure is
evaluated and the beginning/end of the corresponding channel,
where it opens into the central intersection. The excess power dis-
sipation due to the extensional flow is simply �Ẇexc = �Ẇreal −
�Ẇideal . In Eqs. (6) and (7) the contributions from the normal
stresses were not considered because they will cancel out when
calculating the difference between the real and ideal works. In gen-
eral, the same applies to the kinetic energy, although in our case
this contribution is negligible because we are dealing with creeping
flows. The excess power dissipation can be rendered dimensionless
according to:

K = �Ẇreal − �Ẇideal

Q3

∣∣dp/dy
∣∣
3
D3

(9)

Note that by using �Ẇreal − �Ẇideal instead of �Ẇreal , the
results become independent of L as long as L is sufficiently large
for fully developed conditions to be attained. Physically, one may
think of K as the extra-power dissipation in the flow-focusing device
expressed in terms of an equivalent number of downstream chan-
nel widths required to generate the same power dissipation in ideal
fully developed flow. It is worth noting that for the special case
where the flow rate is the same in all inlet channels, Q factors out
of Eq. (9), which then becomes equivalent to the so-called Cou-

ette correction (commonly used in contraction and expansion flows
[28–32]).

The evolution of the dimensionless extra-power dissipation
with the Deborah number is shown in Fig. 8 for WR = 1 and vari-
ous VR. For De = 0, the value of K calculated numerically is similar
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asymmetric flow. We used a solvent ratio of ˇ = 1/9, a typical value
used in numerical studies (e.g. [28]), and varied the extensibility
parameter, which is known to have a key influence on the exten-
sional viscosity (at low ε values the steady extensional viscosity is
Fig. 9. Flow patterns near the critical Deborah number for different WR.

o the value expected for a contraction with an equivalently high
ontraction ratio [28]. As De increases, K decreases and in some
ases becomes negative, which indicates an energy gain relative to
he fully developed flow case (�Ẇreal < �Ẇideal). A similar elastic
ecovery has been predicted numerically using Oldroyd-B and UCM
uids in contraction flows [20,28]; however no instances of elastic
ecovery have yet been observed experimentally.

The values of the dimensionless extra-power dissipation for the
orresponding forced symmetric flow are shown in Fig. 8 as open
ymbols. For Deborah numbers below the critical value, the results
sing the two meshes are obviously identical. Above the critical De,
he values of K obtained by imposing symmetry are higher than
hose obtained using the full domain. This difference in power dis-
ipation is enhanced for higher VR and also for higher De as the
symmetry becomes more pronounced. Our results indicate that
he viscoelastic flow consumes less energy by bifurcating to asym-

etric flow than it would if it were flowing symmetrically. Poole
t al. [13] and Rocha et al. [15] reported a similar effect, expressed
n terms of a difference in Couette correction, in the flow through
cross-slot configuration. The Couette correction used by Poole et
l. [13] is equivalent to the dimensionless excess power dissipa-
ion, expressed in Eq. (9), but the present approach is more general,
ince it allows for cases with multiple streams in which flow rates
re different in different sections of the geometry.

In addition to the study of the effect of VR on the symmetry-
reaking bifurcation, we have also examined the effect of the width
atio. As observed for low VR at WR = 1, for low WR (WR ≤ 0.3) steady
symmetric flow is not observed even for very high VR and the flow
volves directly from steady symmetric to unsteady as De increases.
hese results suggest that the flow rate ratio, FR = VR·WR (instead of
R), might be the controlling variable for the onset of asymmetric
ow. The behavior observed for 0.4 ≤ WR ≤ 2 is qualitatively similar
o that observed for WR = 1: at low De the flow is symmetric and

ecomes bistably asymmetric above a critical Deborah number. In
ig. 9, we show flow patterns at sub- and super-critical conditions
ear Dec for WR = 0.5 and WR = 2.

The effect of the flow rate ratio on Dec is illustrated in Fig. 10
or various WR (0.4 ≤ WR ≤ 2), where the lines are merely used to
Fig. 10. Effect of the flow rate ratio (FR ≡ VR × WR = (U2D2)/(U1D1)) on the onset
of flow asymmetries for various WR. The lines are indicative of the critical Deborah
number.

indicate the trends in the critical Deborah number. The error bars
represent the highest De corresponding to symmetric flow and the
lowest De at which asymmetric flow was obtained numerically. As
for WR = 1, Dec also varies with VR attaining a constant value for high
VR. Additionally, it is already apparent that the dependence of Dec

on WR at high VR is non-monotonic. Incidentally, the values of Dec

are the same for WR and 1/WR (e.g. WR = 0.5 and WR = 2), at least
within the range of WR studied (0.4 ≤ WR ≤ 2).

The corresponding bifurcation diagrams, obtained in the limit
of high VR, are shown in Fig. 11. Here one can clearly see that
WR influences both the value of Dec and the magnitude of the
flow asymmetry. Overall, the magnitude of the flow asymme-
try increases with decreasing WR and the variation of Dec with
the width ratio is non-monotonic, as already observed in Fig. 10.
To highlight this non-monotonic effect, Fig. 12 shows Dec in
the limit of high VR as a function of WR. The plot exhibits a
parabolic shape in semi-log coordinates, with a minimum value
of Dec,min ≈ 0.335 ± 0.005 at WR = 1.

As already discussed, we have conducted additional simula-
tions using the PTT model, in order to assess the importance of
the extensional properties of the fluid upon the onset of the steady
Fig. 11. Effect of WR on the bifurcation diagrams obtained in limit of high VR. The

solid lines represent square-root fits to the function F∗ = a1

√
De − Dec .
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ig. 12. Critical Deborah number in the limit of high VR as a function of WR. The line
epresents a parabolic fit.

nversely proportional to ε). In Fig. 13 we summarize the numerical
esults in a bifurcation diagram, from which several conclusions can
e inferred: (i) for ε = 0, when the Oldroyd-B model is recovered,
small delay in the critical conditions is observed, as compared
ith the UCM model. A similar behavior was reported for the cross-

lot flow instability [33]; (ii) increasing the ε parameter leads to an
ncrease in the critical De, and the degree of asymmetry (quantified
s F*) becomes less sensitive to De; (iii) for ε ≥ 0.04 the steady asym-
etry is no longer observed, and the flow transitions directly from

teady symmetric to unsteady at much higher De values (which
urther increases as ε increases). These results suggest that the
xtensional properties of the fluid are decisive for the onset of the
ow asymmetry that is observed above a critical De, which is related
o the development of large normal stresses along the centerline in
he converging region. To further establish this hypothesis, in Fig. 14
e plot the axial normal stress profiles along the centerline (x = 0)

or the cases shown in Fig. 13 that are just below critical condi-
ions. It is clear that similar levels of normal stresses are achieved
t critical conditions, highlighting the key role of the extensional
roperties of the fluid upon the inception of a steady-flow asym-

etry.

ig. 13. Effect of the constitutive model and the ε parameter on the bifurcation
iagram (VR = 100). The solid lines represent square-root fits to the function F∗ =
1

√
De − Dec .
Fig. 14. Axial normal stress profiles along the centerline (x = 0) corresponding to the
cases shown in Fig. 13 for De just below the critical conditions.

5. Conclusions

We have presented a detailed numerical study of the flow
of UCM and PTT fluids through a flow-focusing geometry under
creeping-flow conditions, aimed at identifying the onset of flow
asymmetries and instabilities as a function of Deborah number,
velocity ratio and width ratio. The device is two-dimensional, with
a cross-like shape containing three inlets and one outlet. The two
opposing lateral inlet streams shape the third main inlet stream
producing a converging flow region.

The results obtained with the UCM model show that at low
Deborah numbers the flow is symmetric relative to the centerline.
Strong viscoelastic effects were observed as the Deborah number
increased and the flow was seen to become asymmetric, while
remaining steady, for De above a critical value. Above an even higher
threshold value of the Deborah number, a subsequent instability
was identified in which the flow becomes unsteady. For very low VR
or WR, the flow evolves directly from steady symmetric to unsteady,
oscillating in time without ever going through the intermediate
regime of steady asymmetric flow, since the normal stresses are
not sufficiently high to trigger this intermediate transition.

The level of flow asymmetry was quantified using an asymmetry
parameter F* which is a measure of the imbalance of the relative net
flux through each side of the main inlet channel close to the cen-
tral region. As De is increased above the critical threshold, the flow
becomes increasingly asymmetric and the asymmetry parameter
gradually deviates from F* = 0 according to a square-root law, typical

of pitchfork supercritical bifurcations
(

F∗ = a1

√
De − Dec

)
. The

magnitude parameter, a1, and the critical Deborah number, Dec,
depend on both the velocity ratio and the width ratio. However, for
sufficiently high velocity ratios, the onset and the evolution of the
asymmetry becomes purely geometric, i.e. independent of VR. The
magnitude of the asymmetry increases with decreasing WR, while
the variation of Dec with WR is non-monotonic.

By performing an energy balance in the flow-focusing geometry
we were able to evaluate the dimensionless extra-power dissi-
pation in the device, and compared it with the case in which
symmetric flow is artificially imposed. The results suggest that
the bifurcation to asymmetric flow is a stress relief mechanism,
and demonstrate that the viscoelastic flow consumes less energy

by bifurcating to steady asymmetric state than it would if it were
flowing symmetrically.

The results obtained using the PTT model reveal that the exten-
sional properties of the fluid are crucial for the onset of the steady
asymmetric flow, and the critical De increases as ε increases. Above
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ow occurs at significantly higher values of De, which tend to rise
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