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a b s t r a c t

The flow of finite-extensibility models in a two-dimensional planar cross-slot geometry is studied numer-
ically, using a finite-volume method, with a view to quantifying the influences of the level of extensibility,
concentration parameter, and sharpness of corners, on the occurrence of the bifurcated flow pattern that
is known to exist above a critical Deborah number. The work reported here extends previous studies, in
which the viscoelastic flow of upper-convected Maxwell (UCM) and Oldroyd-B fluids (i.e. infinitely exten-
sionable models) in a cross-slot geometry was shown to go through a supercritical instability at a critical
value of the Deborah number, by providing further numerical data with controlled accuracy. We map the

2

ENE models
nstability predictions

effects of the L parameter in two different closures of the finite extendable non-linear elastic (FENE)
model (the FENE-CR and FENE-P models), for a channel-intersecting geometry having sharp, “slightly”
and “markedly” rounded corners. The results show the phenomenon to be largely controlled by the exten-
sional properties of the constitutive model, with the critical Deborah number for bifurcation tending to be
reduced as extensibility increases. In contrast, rounding of the corners exhibits only a marginal influence
on the triggering mechanism leading to the pitchfork bifurcation, which seems essentially to be restricted
to the central region in the vicinity of the stagnation point.
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. Introduction

Viscoelastic fluid flow in a cross-slot geometry has been a widely
mployed test case in computational rheology (e.g. Harlen et al. [1];
ingh and Leal [2]; Remmelgas et al. [3]) because it offers a number
f interesting advantages over similar flows. Most significantly it
s a geometry that, due to the existence of an interior stagnation
oint, can generate a high degree of accumulated Hencky strain,
uch higher than in comparable contraction flows and flow around

ylinders, see for instance Peters et al. [4]. Hence it is particu-
arly suited for the investigation of extensional flow properties,
llowing almost complete uncoil of flexible polymer molecules.
xperimental studies, often in conjuction with numerical simu-

ations (Schoonen et al. [5]), have also been conducted for the
ross-slot flow having both sharp and rounded corners, and more
ophisticated constitutive models have been employed such as a
ewly proposed version of the Pom–Pom model (Verbeeten et al.
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6]). Similar interior stagnation-point geometries such as the two-
Remmelgas and Leal [7]) and four- (Feng and Leal [8]) roll mills
ave been considered in numerical simulation studies as a means
f obtaining the extensional viscosity of dilute polymer solutions
rom optical measurements of molecular stretch.

Very recently two papers have been published, one experi-
ental and the other numerical, which have revived interest in

he cross-slot geometry. Arratia et al. [9] visualized the flow of
flexible polyacrylamide solution in a microfabricated geometry

ormed by the crossing of two rectangular cross-section chan-
els and observed that, even for the very low Reynolds number
f their experiments, the polymer solution flow tended to evolve
o a non-symmetric pattern while the corresponding Newtonian
ow remained perfectly symmetric regardless of flow rate. That
symmetric flow pattern, with the incoming flow tending to be
referentially diverted to one of the outlet arms of the cross, was
ound to be steady at small to moderate Deborah numbers (De),
hus corresponding to a supercritical pitchfork bifurcation (Larson

10]). When the flow rate was further increased, the flow remained
patially asymmetric but became unsteady. Such bifurcation phe-
omena had never been predicted in previous studies concerned
ith the cross-slot flow, in which most researchers adopted for the

olution domain only one quarter of the full geometry, in the belief

http://www.sciencedirect.com/science/journal/03770257
http://www.elsevier.com/locate/jnnfm
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Fig. 1. (a) Schematic of the cross-slot geometry an

hat the resulting flow would follow the symmetry imposed by
hat same solution domain, and thus sparing useful computational
esources. However, motivated by the thought-provoking observa-
ions of Arratia et al. [9], Poole et al. [11] simulated the complete
ross-slot geometry using the simplest of the available differential
onstitutive models, the upper-convected Maxwell (UCM) model,
nd were able to reproduce the main features of the experiments.
heir predictions were in qualitative agreement with all the experi-
ental observations: a supercritical bifurcation was found to occur

t a critical Deborah number of Decr≈0.31, under creeping-flow
onditions, and at higher De the flow became unsteady. A physical
xplanation was proposed based on a centrifugal-type instability
esulting from the distortion of the velocity field as the flow turned
nto the upper and lower arms, due to the elastic compressive
tresses generated by the two opposing incoming fluid streams.
n the present study the objective is to probe the effects of finite
xtensionability, polymer concentration and the effects of corner
harpness. The current results dramatically extend the results of
oole et al., which were based on the essentially phenomenolog-
cal UCM model, with the use of more realistic finite extendable
on-linear elastic (FENE) models. Both the original shear-thinning
ENE-P model (Bird et al. [12,13]) and the constant-viscosity FENE-
R (Chilcott and Rallison [14]) model will be considered.

. Problem definition

The task is to solve the equations of motion, together with a suit-
ble constitutive equation for the stresses, in the two-dimensional
eometry depicted in Fig. 1. The two incoming channels are
ssumed to be aligned with the x-axis while the two outgoing chan-
els are aligned with the y-axis. All channels have a constant width
f d, which will serve as a length scale, and are 10d long, a value
e have confirmed to be sufficiently large to eliminate end effects.
ith the x–y origin located at the centre of the cross-slot (Fig. 1),

nlet flow conditions with an average velocity U, to be used as veloc-
ty scale, are prescribed at x =±10.5d, and outlet flow conditions
ased on zero-streamwise gradients at y =±10.5d.

.1. Governing equations

By assuming incompressibility and separation of stress into a

ewtonian solvent contribution, with constant viscosity �s, and a
on-Newtonian polymeric part �, the mass and momentum con-
ervation equations are:

· u = 0, (1)

a
c
c
o
a

olution domain for the rounded-corner geometry.

Du

Dt
= −∇p+ 2�s∇ · D +∇ · �, (2)

here D = 1/2(�u +�uT) is the rate of deformation tensor, and the
onstitutive equations employed are:

+ �

∇(
�

f

)
= 2�pD (FENE-CR), (3)

+ �

∇(
�

f

)
= 2a�p

(
1
f

)
D − a�p

D

Dt

(
1
f

)
I. (FENE-P). (4)

In the above equations � is a relaxation time, �p is the zero-shear
ate polymer viscosity (Bird et al. [12] gives �p = nkT�b/(b + 5) in
erms of basic microstructure quantities), the constant a is defined
s a = L2/(L2−3) where L2 (or, equivalently, b) is the extensibility
arameter, f is a function of the stress invariants defined below, I

s the identity tensor, and
∇

(A) = DA/Dt − (A ·∇u+∇uT · A) denotes
he upper-convected derivative (Oldroyd [15]). Zero-shear rate vis-
osities are often prescribed by a solvent viscosity ratio defined
s ˇ = �s/�0, where �0 = �s + �p is the zero-shear rate viscosity. For
oth models, shear-thinning in the first-normal stress coefficient
1 is controlled by the function f which depends on the trace of

he polymer stress as

(�) = L2 + (�/�p)Tr(�)
L2 − 3

(FENE-CR), (5)

nd

(�) = L2 + (�/a�p)Tr(�)
L2 − 3

(FENE-P). (6)

These two functions have an almost identical dependence on the
race of the stress, except for the factor a which is approximately
nity when L2 is large (L→∞, a→1). In spite of this agreement, the
hear viscosity dependency of the FENE-P model is markedly differ-
nt as can be inferred from inspection of the first term on the right
and side of Eq. (4) because �p is divided by a term proportional to
r(�) thus inducing shear-thinning of the shear viscosity.

We recall that the FENE-P model was derived from kinetic the-
ry by Bird et al. [13] for a two-bead/spring-connector molecular
odel, without accounting for dumbbell interactions and excluded

olume effects, and the only approximation required to obtain the

bove closed-form equation was the Peterlin approximation for the
onnector force. The model predicts a shear-thinning shear vis-
osity but since in the present calculations the minimum value
f the solvent viscosity ratio is just ˇ = 0.05, the decay of �(�̇) is
t most about one decade. In contrast the FENE-CR model results
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Fig. 2. Mesh-generating blocks and detail

rom an empirical a-posteriori modification to the FENE-P equa-
ion in order to produce a model which exhibits a constant shear
iscosity (Chilcott and Rallison [14]). In spite of this somewhat ad-
oc empiricism, the model is very useful as it allows the study
f elastic effects without the sometimes conflicting influence of
hear-thinning in shear viscosity. In both models the molecular
xtensibility is measured by the parameter L2 which represents the
quare of the ratio of the maximum dumbbell extension to its equi-
ibrium value. Finally we note that Eqs. (4) and (6) already include
he corrections introduced by Bird et al. [12] to their original FENE-

equation in order to make it more consistent, and the relation
etween L2 and the more common b parameter is:

2 = b+ 5. (7)

ith this correspondence, the parameter a can also be defined as
= (b + 5)/(b + 2).

.2. Solution method

A finite-volume method (Oliveira et al. [16]) is used to solve the
et of Eqs. (1)–(3), or (1), (2) and (4) depending on the choice of FENE
odel. The scheme is a fully implicit, time-marching, pressure-

orrection method, based on the collocated mesh arrangement,
ith all unknown variables (velocities, pressure and stresses)

alculated at the centre of the control-volumes, and employing
econd-order discretization schemes: the three-time level method
or the unsteady terms; the CUBISTA scheme (Alves et al. [17])
or the advective terms; and central differences for the diffusive
nd source terms. The algorithm was here applied as described in
liveira [18] where further details can be found.
The solution domain of Fig. 1 was covered with a computational
esh generated by blocks, as shown in Fig. 2, and the main mesh

haracteristics are provided in Table 1. This base mesh was designed
fter a number of mesh refinement studies so that we guarantee
hat the results were only marginally affected by mesh fineness:

able 1
ain characteristics of base mesh

lock Nx Ny fx fy

50 51 0.929296 1.0
I 51 51 1.0 1.0
II 51 50 1.0 0.929296
V 51 50 1.0 1.075369

50 51 1.075369 1.0

CV 12801

c
t
w
t
i
a
Q

e
b
i
t
t
i
a

h near the intersection (−4≤ x/d, y/d≤4).

ome results of these studies are provided later in order to quantify
he accuracy of the predictions. It is worth noting that we inten-
ionally selected the number of cells placed uniformly across each
hannels to be an odd figure (51 cells, giving a nominal cell spac-
ng of �y∼=0.02d) thus producing a row of cells exactly along the
entreline of the two intersecting channels. Although orthogonal,
he mesh is non-uniform along the length of the inlet and outlet
hannels in order to concentrate cells in the common intersection
one of the cross-slot (block II in Fig. 2).

For the FENE-CR model, on account of the constant shear vis-
osity, the fully developed velocity profile is parabolic as in the
ewtonian case and it is a relatively straightforward matter (e.g.
liveira [19]) to derive the shear �xy and normal �xx stress compo-
ent profiles to be applied at the two inlet sections. For the FENE-P
odel, and especially when ˇ /= 0, the problem of obtaining fully

eveloped velocity and stress profiles is much more involved and
he analytical solution obtained by Cruz et al. [20] was applied at
he inlet sections. With these exact profiles imposed at inlet it is
ar simpler to evaluate the pressure loss due to the cross-slot (Sec-
ion 3.5) since a linearly decaying pressure variation is established
mmediately from the two inlet planes.

. Results

Quantitative results are essentially provided in terms of a bifur-
ation variable, which we have chosen to be the flow rate imbalance
Q, as a function of the Deborah number, De = �U/d. A robust
ifurcation variable should vary from 0, indicating absence of bifur-
ation, to ±1 above the critical point when three steady solutions
re possible (the “symmetric” solution, which is not stable; a bifur-
ated solution with more flow coming from the left and going
hrough the upper channel; and the opposite bifurcated solution
ith more flow from the left into the lower channel). The defini-

ion is thus DQ = (Q1−Q2)/Q with flow rates Q1 and Q2 indicated
n Fig. 1; the total flow rate in each incoming channel is Q = Ud
nd this incoming flow splits at the cross-slot region such that
= Q1 + Q2.

Most calculations are for a Reynolds number (Re = �Ud/�0) of
xactly zero, since it has already been established that the insta-
ility is purely elastic in nature and we do not want to consider
nertial effects here; this was specified by omitting the convective
erms in the momentum equations (�u·�u = 0) but, of course, not in
he constitutive equations. Poole et al. [11] have shown that a small
ncrease of inertia, with Re being increased from 0 to 3, leads to an
ttenuation of the asymmetry. Simulations containing a small, but
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Fig. 3. Variation of asymmetry parameter DQ with Deborah number for the FENE-CR
model: influence of extensibility (ˇ = 0.1). Symbols (�): finer mesh with L2 = 100.

Table 2
Bifurcation data for the FENE-CR fluid: (a) varying L2 (ˇ = 0.1) and (b) varying ˇ
(L2 = 100) (critical conditions indicated in bold)

(a) L2 = 50 L2 = 100 L2 = 200

De DQ De DQ De DQ

0.00 0.000 0.00 0.000 0.00 0.000
0.10 0.000 0.10 0.000 0.10 0.000
0.20 0.000 0.20 0.000 0.20 0.000
0.30 0.000 0.30 0.000 0.30 0.000
0.40 0.000 0.40 0.000 0.40 0.070
0.50 0.000 0.455 0.021 0.41 0.218
0.60 0.006 0.46 0.132 0.42 0.348
0.61 0.104 0.47 0.272 0.43 0.438
0.62 0.196 0.48 0.360 0.44 0.504
0.63 0.262 0.49 0.426 0.45 0.556
0.64 0.314 0.50 0.478 0.46 0.598
0.65 0.356 0.51 0.520 0.47 0.636
0.66 0.392 0.52 0.556 0.48 0.668
0.67 0.422 0.53 0.588 0.49 0.694
0.68 0.448 0.54 0.614 0.50 0.718
0.69 0.472 0.55 0.638 0.55 0.802
0.70 0.492 0.60 0.724 0.60 0.852
0.75 0.572 0.70 0.812 0.65 0.882
0.80 0.626 0.80 0.854 0.70 0.902
0.90 0.692 0.90 0.876 0.75 0.916
1.00 0.730 1.00 0.888 0.80 0.926

(b) ˇ = 0.05 ˇ = 0.10 ˇ = 0.20

De DQ De DQ De DQ

0.00 0.000 0.00 0.000 0.00 0.000
0.10 0.000 0.10 0.000 0.10 0.000
0.20 0.000 0.20 0.000 0.20 0.000
0.30 0.000 0.30 0.000 0.30 0.000
0.40 0.002 0.40 0.000 0.40 0.000
0.41 0.190 0.455 0.021 0.50 0.000
0.42 0.316 0.46 0.132 0.60 0.000
0.43 0.398 0.47 0.272 0.65 0.000
0.44 0.460 0.48 0.360 0.67 0.014
0.45 0.510 0.49 0.426 0.68 0.056
0.46 0.552 0.50 0.478 0.69 0.198
0.47 0.586 0.51 0.520 0.70 0.296
0.48 0.616 0.52 0.556 0.71 0.366
0.49 0.642 0.53 0.588 0.72 0.420
0.50 0.666 0.54 0.614 0.73 0.446
0.55 0.748 0.55 0.638 0.74 0.502
0.60 0.798 0.60 0.724 0.75 0.534
0.65 0.830 0.70 0.812 0.80 0.644
0.70 0.852 0.80 0.854 0.85 0.710
– – 0.90 0.876 0.90 0.752
– – 1.00 0.888 1.00 0.804

Table 3
Convergence with mesh refinement: values of DQ for L2 = 100 and ˇ = 0.1

De Mesh 1
N = 51

Mesh 2
N = 101

Extrapolation Error Mesh 1 (%) Error Mesh 2 (%)

0
0
0
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.5 0.478 0.499 0.506 5.5 1.4

.6 0.724 0.739 0.744 2.7 0.7

.7 0.812 0.825 0.829 2.0 0.5

nite, amount of inertia (Re = 0.01) where essentially identical to
he creeping-flow results (Re = 0).

.1. Effect of extensibility

Fig. 3 shows bifurcation plots obtained with the FENE-CR model
or three values of the extensibility parameter, L2 = 50, 100 and
00, at a fixed base value of the solvent viscosity ratio ˇ = 0.1.
or the purpose of future comparisons, the corresponding data
re detailed in Table 2a. L2 = 100 is a typical extensibility value
hich has been used in many other studies (Bird et al. [13]; Rem-
elgas et al. [3]; Oliveira [18]) and so here we are doubling and

alving that base extensibility. It is also useful to keep in mind
hat the UCM and Oldroyd-B models correspond to L2 =∞ and the
ritical Deborah number for the occurrence of a bifurcated solu-
ion was found to be Decr≈0.31 by Poole et al. [11] for the UCM

odel. The variation of the asymmetry parameter, DQ, vs. De seen
n Fig. 3 is typical of supercritical pitchfork bifurcations, with two
table (and steady) possible end states; either most of the flow
ntering from the left channel leaves through the upper vertical
hannel (DQ→+1) or, alternatively, most flow leaves through the
ower channel (DQ→−1). Numerically, any of theses two solutions

ay be obtained, depending on the exact initial conditions, time
tep employed, or any other “numerical” parameter. The bifurca-
ion is thus very similar to the viscoelastic Coanda effect predicted
n two-dimensional planar expansions (Oliveira [19]; Rocha et al.
21])—compare Fig. 3 here with Fig. 13 in Oliveira [19] (for a 1:3
xpansion) for example. However an important difference should
e pointed out: while in the planar expansion the pitchfork bifur-
ation was essentially an inertial effect (for increasing Re) with
lasticity tending to promote stability, here for the cross-slot it is a
urely elastic instability (Re = 0) and elasticity through extensional
iscosity (�E increases with L2) having a destabilising effect. When
he molecular stretch is allowed to reach large values, thus inducing
trong extensional viscosities in the cross-slot central region where
olymer molecules tend to remain for a long time and therefore
re expected to uncoil and become fully stretched, the bifurca-
ion occurs at lower flow rates (that is, as L2 increases, then Decr

ecreases, cf. Fig. 11 further down).
As commented upon above, in order to quantify the discretiza-

ion errors involved in our simulations we have carried out a set
f simulations for the case L2 = 100 using a mesh with double the
umber of control volumes along each direction (having a total
umber of 50,601 control volumes and a minimum mesh spacing
f �y∼=0.01d) and these predictions are also indicated in Fig. 3.
n the figures the differences between meshes are hardly percep-
ible and we may conclude that our base mesh provides adequate
ccuracy. Predictions of DQ on the two meshes at some selected
eborah numbers are also provided in Table 3, indicating differ-
nces between meshes of at most 5% in the region close to the
ritical point when DQ raises sharply.
Theoretically, a bifurcation variable such as DQ should scale as
Q ∼

√
De− Decr for De above the critical point, Decr; this scaling

s apparent from Fig. 3 and will be discussed in the next subsection,
here both influences of L2 and ˇ are analysed.
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Fig. 4. Streamline maps for: (a) Newtonian fluid; (b) De = 0.

Streamline plots provide a clear visualization of the bifurcated
ow, allowing us to contrast the final flow pattern against the sym-
etrical flow of the Newtonian case (which can be thought as the

olvent without any added polymer solute), and also for observing
ow the degree of bifurcation increases rapidly over a short range
f De immediately above the critical value. Fig. 4 shows a zoomed
iew of streamlines for the base case (L2 = 100, ˇ = 0.1) at four Deb-
rah numbers, namely De = 0 (Newtonian), 0.4 (below critical), 0.46
immediately above critical) and 0.70 (almost fully bifurcated),
hus illustrating the previous comments. The corresponding stress
elds �xx and �yy, normalised using a viscous scaling, are shown

n Figs. 5 and 6 for increasing De: these evolve from the centrally
ymmetrical situation of Newtonian flow – in the absence of con-
ective terms, since Re = 0, the equations of motion are linear and
ymmetry about both x and y axis must be satisfied (and also about
he two diagonals, y =±x) – to the compressive stresses for the
iscoelastic cases along the horizontal channels, and the typical
birefringent strands” due to the strong and localised extensional
ow along the centrelines of the vertical channels. These bire-

ringence strands (Harlen et al. [1]) have been the focus of much
esearch in previous studies concerned with the cross-slot geome-
ry, in particular researchers have used constant-viscosity models,
nd modifications to existing ones, in order to predict the longer
trands observed in experiments (Remmelgas et al. [3]). However,
he birefringent strands do not appear to be related to the origin of

he bifurcation, which is rather linked to the compressive flow in
he inlet channels (Poole et al. [11]). It should be pointed out that

olecular stretch is proportional to the trace of the polymer stress
ensor, but a plot of �xx + �yy is essentially unchanged from the �yy

ontour plots of Fig. 6 and so is not included here.

e
d
3

D

De = 0.46; and (d) De = 0.70 (FENE-CR, L2 = 100 and ˇ = 0.1).

.2. Effect of concentration

It is possible to define a polymer concentration parameter c in
erms of the solvent viscosity ratio ˇ, as was done most notably by
eal and co-workers (Singh and Leal [2]; Remmelgas et al. [3] and
7]; and Feng and Leal [8]); thus c = �p/�s which implies the relation
= (1/ˇ)−1. Therefore Boger fluids, whose shear-thinning in shear
iscosity is masked by the dominant solvent viscosity, should have
alues of ˇ close to 1 and hence a small concentration parame-
er c, while by decreasing ˇ from the Newtonian value of unity,
he concentration parameter increases up to infinity. It is there-
ore expected that as ˇ decreases, elasticity effects should become

ore dominant and the behaviour of DQ vs. De in terms of dimin-
shing ˇ should replicate qualitatively the conclusions obtained in
he previous subsection for increasing L2. This situation is indeed
he case as shown by Fig. 7 (numerical data provided in Table 2b),
f. Fig. 3, but an important distinction should be made: while L2 is
losely related to elasticity through extensional effects, ˇ is related
o elasticity through normal-stress difference (N1) effects in shear.
t should therefore be possible to separate the two effects by incor-
orating the effect of ˇ in a re-scaled Deborah number, for example
e←De(1−ˇ), and thus completely isolate extensional elasticity
nd normal-stresses elasticity. However, FENE models do not allow
clear separation of these two influences and therefore re-scaling

he Deborah number does not translate into a complete collapse of

lasticity effects, although the main influence is still captured. Such
uality is present in the bifurcation scaling (cf. Fig. 11b in Section
.3):

Q ∝ A(L2)
√

De− Decr(ˇ, L2), (8)
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Fig. 5. Contour plots of horizontal normal stress �xx/(�0U/d) for: (a) Newtonian fluid; (b) De = 0.40; (c) De = 0.46; and (d) De = 0.70. (FENE-CR, L2 = 100 and ˇ = 0.1).

Fig. 6. Contour plots of vertical normal stress �yy/(�0U/d) for: (a) Newtonian fluid; (b) De = 0.40; (c) De = 0.46; and (d) De = 0.70. (FENE-CR, L2 = 100 and ˇ = 0.1).
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R model: influence of polymer concentration through solvent viscosity ratio ˇ
L2 = 100).

hich is drawn on the basis of Figs. 3 and 7. While the critical Deb-
rah number is controlled by both normal stress and extensional
lasticity, the magnitude of the bifurcation is mainly controlled by
xtensibility. Our predictions yield the results for A and Decr given
n Tables 4 and 5 which also include the results for the rounded
orner cases which we discuss in detail in the following section.

hile in Table 4 the critical De is obtained directly from the raw
ata of Table 1, being thus dependent on the step used to increase
e, in Table 5 both A and Decr are estimated from a linear correlation
etween DQ2 and De close to the critical De.

Figure 8 provides an illustration of the quality of the fitting
efined by Eq. (8) when most data points of the DQ vs. De varia-
ion are included and the Decr are assumed from the data of Table 2
nd are given in Table 4. A fine tuning of a correlation like Eq. (8)

s achieved by linearising it to obtain DQ2 = A2(De−Decr) and thus
rrive at A and Decr by a standard linear regression technique. In this
ay the critical point in terms of Deborah number is not based on

he assumed step for the increase in De, which was the same for all

able 4
ritical Deborah numbers for bifurcation: (a) varying L2, at ˇ = 0.1 and (b) varying ˇ,
t L2 = 100

Sharp R = 0.05d R = 0.5d

a) L2

50 0.61 0.63 0.85
100 0.46 0.47 0.62
00 0.41 0.42 0.54

b) �
0.05 0.41 0.42 0.56
0.10 0.46 0.47 0.62
0.20 0.68 0.70 0.86

able 5
arameters of the square-root fitting according to Eq. (8): (a) varying L2 (ˇ = 0.1) and
b) varying ˇ (L2 = 100)

Sharp corners R = 0.05d R = 0.5d

Decr A Decr A Decr A

a) L2 (ˇ = 0.1)
50 0.607 1.74 0.625 1.69 0.849 1.34

100 0.456 2.32 0.468 2.26 0.618 1.80
00 0.402 2.58 0.410 2.47 0.539 2.11

b) ˇ (L2 = 100)
0.05 0.402 2.36 0.412 2.31 0.554 1.93
0.10 0.456 2.32 0.468 2.26 0.618 1.80
0.20 0.682 2.18 0.698 2.11 0.855 1.61
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ig. 8. (a) Square-root fitting of the bifurcation data for the FENE-CR model with
hree extensibility values (cf. Eq. (8)) and (b) Zoomed view shows DQ2 vs. De on two

eshes including linear regressions.

eshes (we varied De by steps of �De = 0.01), but rather on the par-
icular correlation defined as DQ ≈

√
De− Decr valid for pitchfork

ifurcations as discussed in the previous subsection. By employ-
ng a standard least-squares fitting procedure we obtained for the
ase case (L2 = 100, ˇ = 0.1) the values A = 2.344 and Decr = 0.457 (lin-
ar correlation coefficient, r = 0.999) on the base mesh (N = 51), and
= 2.437 and Decr = 0.456 (linear correlation coefficient, r = 0.997)
n the finer mesh (N = 101). In this way a more precise error mea-
ure based on the critical De value is 0.001/0.456 = 0.2%, while it
aises to 3.8% for the coefficient A.

.3. Effect of rounding corners: R = 0.05d and 0.5d

A natural question that arises is related with the presence of
harp corners and whether the bifurcation is triggered by some
ossible imbalance of the high stresses generated in those cor-
er regions. Sharp corners are well known to be troublesome in
he numerical solution of viscoelastic flow equations (Owens and
hilips [22]) and in many of the early simulations of the cross-slot,
n which only one quarter of the full geometry was simulated, the
orner was artificially rounded by a slight amount (e.g. Remmelgas
t al. [3]) in order to enable solutions at high Deborah numbers to
e obtained. Even experimental studies (Schoonen et al. [5]) have
ollowed the route of rounding the corners to avoid extreme stress
oncentration and allow easier interpretation of the birefringence
isualizations. Since our argument to explain the bifurcation, and

ndeed the explanation put forth by Poole et al. [11], hinges on the
igh compressive stresses generated in the centreline region of the
wo incoming flow streams, then we do not expect rounding of the
orners to affect significantly the bifurcation phenomenon.
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Fig. 9. Effect of rounding the corners on the asymmetry plot for two curvature radius
w
0

t
0
a
t
c
b
a
c
T
t
r
D
c
n
F
a
a
t
R
t
i
o
c
(
t
l
w
(
t
p

Table 6
Bifurcation data for the FENE-CR fluid in the rounded geometry (R = 0.5d): (a) varying
L2 (ˇ = 0.1) and (b) varying ˇ (L2 = 100) (critical conditions indicated in bold)

(a) L2 = 50 L2 = 100 L2 = 200

De DQ De DQ De DQ

0.00 0.000 0.00 0.000 0.00 0.000
0.10 0.000 0.10 0.000 0.10 0.000
0.20 0.000 0.20 0.000 0.20 0.000
0.30 0.000 0.30 0.000 0.30 0.000
0.40 0.000 0.40 0.000 0.40 0.000
0.50 0.000 0.50 0.000 0.50 0.000
0.60 0.000 0.60 0.000 0.53 0.000
0.70 0.000 0.61 0.000 0.54 0.066
0.80 0.000 0.62 0.076 0.55 0.218
0.85 0.056 0.63 0.200 0.56 0.304
0.86 0.138 0.64 0.268 0.57 0.370
0.87 0.192 0.65 0.324 0.58 0.422
0.88 0.234 0.66 0.372 0.59 0.468
0.89 0.268 0.67 0.412 0.60 0.505
0.90 0.296 0.68 0.444 0.65 0.638
0.91 0.322 0.69 0.474 0.70 0.719
0.92 0.346 0.70 0.501 0.75 0.772
0.93 0.366 0.75 0.600 0.80 0.810
0.94 0.384 0.80 0.666 0.85 0.836
0.95 0.402 0.90 0.746 0.90 0.856
1.00 0.470 1.00 0.790 1.00 0.884

(b) ˇ = 0.05 ˇ = 0.10 ˇ = 0.20

De DQ De DQ De DQ

0.00 0.000 0.00 0.000 0.00 0.000
0.10 0.000 0.10 0.000 0.10 0.000
0.20 0.000 0.20 0.000 0.20 0.000
0.30 0.000 0.30 0.000 0.30 0.000
0.40 0.000 0.40 0.000 0.40 0.000
0.50 0.000 0.50 0.000 0.50 0.000
0.55 0.000 0.60 0.000 0.60 0.000
0.56 0.146 0.61 0.000 0.70 0.000
0.57 0.244 0.62 0.076 0.80 0.000
0.58 0.312 0.63 0.200 0.85 0.000
0.59 0.366 0.64 0.268 0.86 0.110
0.60 0.410 0.65 0.324 0.87 0.198
0.61 0.448 0.66 0.372 0.88 0.256
0.62 0.480 0.67 0.412 0.89 0.302
0.63 0.510 0.68 0.444 0.90 0.342
0.64 0.534 0.69 0.474 0.91 0.376
0.65 0.558 0.70 0.500 0.92 0.406
0.70 0.644 0.75 0.600 0.93 0.434
– – 0.80 0.666 0.94 0.458
– – 0.90 0.746 0.95 0.480
–

3

C
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t
n
a
stronger tendency to yield a non-steady end-state flow: while for
ith the FENE-CR model: R = 0.05d and 0.5d. (a) L2 = 50, 100 and 200 and (b) ˇ = 0.05,
.1, 0.2.

In order to test this hypothesis, two modified cross-slot geome-
ries (see Fig. 1b) with corners rounded up to curvature radius of
.05d (small curvature) and 0.5d (large curvature) were prepared
nd covered with non-orthogonal meshes having similar charac-
eristics to the sharp-corner geometries in Table 1. The resulting
ritical Deborah numbers for the onset of the supercritical insta-
ility are provided in Tables 4 and 5, for both a constant ˇ = 0.1
nd increasing L2, and a constant L2 = 100 and increasing ˇ; bifur-
ation plots are shown in Fig. 9 and the numerical data given in
able 6 for the milder curvature case. It is clear from these results
hat the above supposition holds: when the corners are first slightly
ounded (R = 0.05d) both the critical values and the variation of
Q with De remains virtually unchanged from the sharp-corner
ases. One may thus safely conclude that the triggering mecha-
ism for the bifurcation is not controlled by near-corner features.
or the larger curvature geometry the velocity field is significantly
ltered (as quantified in Fig. 10 for the base Newtonian flow) with
n anticipated reduction of strain rate, ε̇ = ∂u/∂x, on approaching
he internal stagnation point at the cross-slot centre (by 32% from
= 0 to R = 0.5d) and therefore the expected outcome is a stabiliza-

ion of the flow with a delay of the instability onset, as we observe
n our simulations and show in Table 5 and Fig. 11a. The change
f the base flow strain rate is reflected in the extensional-related
haracteristics (the slope of the variation of Decr with L2 in Fig. 11a
solid lines), especially at low L2, is now significantly different to
he sharp-corner case) but the influence of concentration (dashed
ines) is hardly different from the sharp-corner cases. In Fig. 11b

e plot the same critical De data but as a function of the group

1−ˇ)L2/ˇ: a reasonable correlation is obtained thus implying that
he critical Deborah number is in fact controlled by the ratio of
olymer and solvent maximum elongational viscosities.

t
D
fl

– 1.00 0.790 1.00 0.566

.4. Effect of viscoelastic model

In terms of both shear and extensional properties the FENE-
R and FENE-P models are not too dissimilar, except for the
hear viscosity which, as we have already discussed, is con-
tant for the FENE-CR and shear-thinning for the FENE-P model.
ince the cross-slot bifurcation is essentially controlled by
xtensional/compressional effects along the channels centreline,
ignificant differences between these two models are not expected.
ig. 12 shows a comparison between the FENE-P (points denoted
y symbols) and FENE-CR (lines) bifurcation plots revealing that
he shear-thinning model tends to bifurcate at a lower Deborah
umber, for the two extensional parameters shown, that is L2 = 50
nd 100. At the higher extensibility the FENE-P model has a much
he FENE-CR model the flow bifurcates but remains steady up to
e≈1, for the FENE-P model the results suggest that a slightly
uctuating bifurcated-flow regime tends to set in at much lower
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ig. 10. Profiles of strain rate for Newtonian flow along the two incoming-channels
entreline: influence of corner curvature, R = 0, 0.05d and 0.5d.
evels of Deborah number. In order to illustrate this unsteady phe-
omenon, which was also observed by Arratia et al. [9] in the
icrofluidic apparatus when this bifurcation was measured for

he first time, the FENE-P model predictions of DQ at De = 0.46 are

ig. 11. Critical Deborah number for the FENE-CR model and various corner curva-
ures as a function of: (a) extensibility and polymer concentration separately and
b) the maximum extensional stress group (1−ˇ)L2/ˇ. Note: in part (b) solid lines,
= 0.1; dashed lines, L2 = 100.
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ig. 12. FENE-P (symbols) and FENE-CR (full line) model predictions of the bifurca-
ion diagram for L2 = 50 and 100.

lotted in Fig. 13 where a periodic evolution of the asymmetry is
hown with a period of about 50 time units (d/U). While this cyclic
attern is not an expected outcome of the FENE-P model, since

n general shear-thinning tends to stabilize the numerical solu-
ion and allows higher Deborah numbers to be reached, the flow
eld resulting from the simulations in a zone very close to the re-
ntrant corners shows signs of some local velocity perturbations,
enerated by the very large stresses existing at those locations,
hich appear to be responsible for the onset of the second instabil-

ty and the time-dependent oscillations present in the numerical
olution.

.5. Energy loss

It would be useful to have an all-encompassing explanation for
he onset mechanism that leads to the bifurcated flows observed
n the cross-slot configuration for both constitutive models. In the
imit, if one could establish that there is a reduction of energy to
rive the flow when it bifurcates, then it would be possible to argue

or a “less-effort” mechanism to explain the bifurcation. This effect
s actually observed in simulation works as well as theoretical stud-
es (Lagnado et al. [23]) and a possible measure of this effect is to
valuate the pressure drop required to drive the flow in the cross-

ig. 13. Time-dependent evolution of DQ for FENE-P model at De = 0.46 (L2 = 100).
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ig. 14. Couette correction variation as a function of Deborah number for full doma
f: (a) extensibility (FENE-CR, ˇ = 0.1); (b) polymer concentration (FENE-CR, L2 = 100
= 0.1).

lot configuration, as it is directly proportional to the energy loss.
ig. 14 shows the Couette correction (C) for a number of situa-
ions, evaluated as the pressure drop between inlet and outlet after
ccounting for the fully developed pressure drop:

= �p−�pFD

2�w
. (9)

Here �p = p1−p4 is the pressure difference between any of
he inlets and one of the outlets (see Fig. 1), �pFD is the
ressure drop required to drive fully developed flow in the

nlet and outflow straight channels of width d and total length
×10d for an average velocity U, and �w is the wall shear

tress under fully developed conditions. As a consequence of the
onstant shear viscosity of the FENE-CR model, the wall shear
tress is the same as for a Newtonian fluid with the same total
iscosity �0, that is �w = 3�0U/(d/2). The fully developed pres-
ure gradient is related to �w by −(dp/dx)FD = 2�w/d, therefore
pFD/(�0U/d) = 2(L/d)�w/(�0U/d) = 240. With the presence of shear-

hinning as in the FENE-P model both �pFD and �w differ from the
ewtonian case and although explicit analytical solutions can be
erived (see Cruz et al. [20]) it is easier to re-interpret Eq. (9) as
n excess pressure-gradient ratio, C = (L/d)(�p/�pFD−1), since the

revious relation between wall stress and pressure gradient is still
alid.

For the base case with FENE-CR model, L2 = 100 and ˇ = 0.1, the
ocalised pressure loss is shown by the closed triangular symbols in
ig. 14a, while corresponding simulations in a quarter of the geom-

c
A
c
s
f

sed symbols) and symmetry-imposed (open symbols) cases showing the influence
orner curvature (FENE-CR, ˇ = 0.1, L2 = 200) and (d) model (shear-thinning) (L2 = 50,

try, enforcing symmetry, results in the open triangular symbols.
hereas for De≤Decr = 0.46 the loss coefficient for those two cal-

ulations coincide, for De > Decr the actual flow in the full geometry
ields a reduced pressure loss in contrast to the symmetrical solu-
ion for which C continues to rise with increasing De. It is thus clear
rom Fig. 14a, and the other graphs in Fig. 14 where various influ-
nces other than extensibility are studied, that the bifurcation is
ccompanied by a reduction of the pressure loss, that is, less energy
s required to drive the asymmetric flow compared with the corre-
ponding “artificial” symmetric flow patterns. We also note that
here are no signs of hysteresis effects: careful calculations start-
ng from a bifurcated solution (De > Decr) followed by small steps
f decreasing De lead to a recovery of the symmetric pattern once
e < Decr. Thus, regardless of the initial conditions, it was not possi-
le to maintain an asymmetric pattern below the critical threshold.
ig. 14 may therefore be interpreted as a manifestation of a strict
inimum energy rule, with two curves intersecting at Decr, one

or the symmetrical configuration and the other for the bifurcated
ne. When De is less than Decr, the symmetric flow requires less
onsumption of energy and is preferred. When De exceeds Decr

he opposite situation arises, with a smaller Couette correction
or the full cross-slot geometry observed in Fig. 14, hence indi-

ating that less energy is required to drive the asymmetric flow.
lthough this explanation is valid for the present inertialess vis-
oelastic flow, it is not a general principle as demonstrated by other
teady instabilities exemplified by the Taylor–Couette cell pattern
ormation in the flow between co-axial rotating cylinders when
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he Taylor number (and consequently Re) exceeds a certain thresh-
ld.

Lagnado et al. [23] conducted a linear stability analysis of the
ldroyd-B model for the flow close to a planar stagnation point
nd found an instability at finite Weissenberg numbers. While their
nalysis can only be used as a guide to the present situation, since
hey assumed an unbounded flow with a base velocity field which
s significantly different to the current case, it is interesting to
ote that they find a stronger stability for the case when the main
tagnation streamlines meet at an acute angle. That is, a bifurcated-
ike stagnation flow of an Oldroyd-B fluid is more stable than the
onfiguration at 90◦, which may be viewed as the corresponding
n-bifurcated case. The theoretical results of Lagnado et al. [23] are
orroborated by the present study: the bifurcated flow dissipates
ess energy and it is here preferred to the possible symmetric flow

ith incoming and outgoing streams making a 90◦ angle.
In addition, Fig. 14 also illustrates the various influences of

xtensibility (Fig. 14a), polymer concentration (Fig. 14b), corner
urvature (Fig. 14c) and constitutive model (Fig. 14d). While the
aximum extensibility of the molecules for the FENE-CR model is

een (Fig. 14a) to have an important influence upon the localised
ressure loss coefficient for Deborah numbers up to the critical
oint when the bifurcation occurs, with lower L2 and thus smaller
longational viscosities showing reduced Couette corrections, once
he asymmetrical patterns set in the evolution of C vs. De is inde-
endent of extensibility. The solvent viscosity ratio, on the other
and, has hardly any influence upon C under subcritical conditions,
specially when plotted as a function of a modified Deborah num-
er De(1−ˇ), and the C vs. De(1−ˇ)variation for De > Decr follows
ifferent paths essentially because for higher concentration (lower
) the bifurcation occurs at earlier De. These two graphs in Fig. 14

hus provide a clear distinction between two factors contributing
o viscoelasticity: elongational-related elasticity and normal-stress
lasticity. Fig. 14c shows once more that slightly rounding the cor-
ers has only a marginal effect on the flow and the pressure drop,
hile significant corner curvature strongly reduces the strain rates

nd hence gives rise to much smaller pressure drops in the whole
ange of De, both sub- and supercritical. The final graph quantifies
he effect on the constitutive model: for up to De≈0.35 (We≈1.0)
oth the FENE-CR and FENE-P yield the same values of C; however,
or higher De the FENE-P predicts higher pressure losses. This might
eem counter-intuitive on account of the shear-thinning character-
stics of the FENE-P compared with the constant viscosity of the
ENE-CR model. However it should be realised that the definition
f C balances the effect of shear-thinning due to the scaling with the
all shear stress (�w in the denominator of Eq. (9)); as commented

bove, C might be written as a normalised additional channel length
ue to steeper pressure gradient compared with the fully developed
ase. In this case, the higher C value of the FENE-P model must be
elated to a stronger rise of the elongational viscosity for this model
hich leads to the earlier transition to assymmetry observed before

cf. Fig. 12).

. Conclusions

This numerical study has investigated the influence of finite
xtensibility and polymer concentration on the steady flow bifur-
ation that occurs in a cross-slot geometry having both sharp and
ounded corners, with two different curvature radii. The rheolog-

cal models employed were the FENE-CR and FENE-P, exhibiting

constant shear viscosity and a shear-thinning shear viscosity,
espectively, and being adequate for the simulation of dilute unen-
angled polymer solutions. In all cases the inertialess viscoelastic
ow through the symmetric cross-like geometry was predicted to

[

[
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ecome asymmetric, while remaining steady, for a Deborah num-
er above a critical threshold level, in qualitative agreement with
he experiments of Arratia et al. [9] in a microfluidic apparatus. That
ritical Deborah number decreases with increasing values of the
xtensibility parameter of the FENE models, here taken as L2, thus
uggesting the more elastic the fluid (in the sense of higher exten-
ional viscosities) the earlier the flow destabilises and evolves to a
ifurcated pattern. Regarding the influence of polymer concentra-
ion the effect is similar to that of L2, which is not surprising since
n added amount of polymer in a given solvent corresponds to a
ore elastic liquid. A measure of the amplitude of the secondary
otion generated by the instability is provided by the asymme-

ry parameter DQ which offers a measure of the imbalance of flow
ate exiting through each outlet arm of the cross-slot. When the
ontrolling variable De is raised, the bifurcation measure DQ varies
ccording to a theoretically expected square-root curve, given by
q. (8), with the magnitude parameter A depending only on the
xtensibility of the model (L2), while the critical Deborah number
epends on both L2 and ˇ which act jointly as (1−ˇ) L2/ˇ. Finally,
he introduction of a small degree of curvature into the cross-slot
orners is shown to have practically no influence upon the bifurca-
ion characteristics: both the amplitude A and the critical Deborah
De)cr remain virtually unchanged. This finding provides support
o the explanation of Poole et al. [11] for the bifurcation mecha-
ism which resided on the compressive-like flow located around
he central stagnation point.

cknowledgements

Funding by Fundação para a Ciência e a Tecnologia (Portugal)
nder grant SFRH/BD/22644/2005 and projects PTDC/EME-
FE/70186/2006 and PTDC/EQU-FTT/71800/2006 are gratefully

cknowledged. We are grateful to a referee for suggesting the scal-
ng used in Fig. 11b.

eferences

[1] O.G. Harlen, J.M. Rallison, M.D. Chilcott, High-Deborah-number flows of dilute
polymer solutions, J. Non-Newtonian Fluid Mech. 34 (1990) 319–349.

[2] P. Singh, L.G. Leal, Finite element simulation of flow around a 3pi/2 corner using
the FENE dumbbell model, J. Non-Newtonian Fluid Mech. 58 (1995) 279–313.

[3] J. Remmelgas, P. Singh, L.G. Leal, Computational studies of nonlinear dumbbell
models of Boger fluids in a cross-slot flow, J. Non-Newtonian Fluid Mech. 88
(1999) 31–61.

[4] G.W.M. Peters, J.F.M. Schoonen, F.P.T. Baaijens, H.E.H. Meijer, On the perfor-
mance of enhanced constitutive models for polymer melts in a cross-slot flow,
J. Non-Newtonian Fluid Mech. 82 (1999) 387–427.

[5] J.F.M. Schoonen, F.H.M. Swartjes, G.W.M. Peters, F.P.T. Baaijens, H.E.H. Meijer,
A 3D numerical/experimental study on a stagnation flow of a polyisobutylene
solution, J. Non-Newtonian Fluid Mech. 79 (1998) 529–561.

[6] W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Viscoelastic analysis of
complex polymer melt flows using the eXtended Pom–Pom model, J. Non-
Newtonian Fluid Mech. 108 (2002) 301–326.

[7] J. Remmelgas, L.G. Leal, Computational studies of the FENE-CR model in a two-
roll mill, J. Non-Newtonian Fluid Mech. 89 (2000) 231–249.

[8] J. Feng, L.G. Leal, Transient extension and relaxation of a dilute polymer solution
in a four-roll mill, J. Non-Newtonian Fluid Mech. 90 (2000) 117–123.

[9] P.E. Arratia, C.C. Thomas, J. Diorio, J.P. Gollub, Elastic instabilities of polymer
solutions in cross-channel flow, Phys. Rev. Lett. 96 (2006) 144502.

10] R.G. Larson, Review: instabilities in viscoelastic flows, Rheol. Acta 31 (1992)
213–263.

11] R.J. Poole, M.A. Alves, P.J. Oliveira, Purely elastic flow asymmetries, Phys. Rev.
Lett. 99 (2007) 164503.

12] R.B. Bird, O. Hassager, R.C. Armstrong, C.F. Curtiss, Dynamics of Polymeric Liq-
uids, Kinetic Theory, vol. 2, John Wiley, New York, 1987.

13] R.B. Bird, P.J. Dotson, N.L. Johnson, Polymer solution rheology based on a finitely

extensible bead-spring chain model, J. Non-Newtonian Fluid Mech. 7 (1980)
213–235.

14] M.D. Chilcott, J.M. Rallison, Creeping flow of dilute polymer solutions past
cylinders and spheres, J. Non-Newtonian Fluid Mech. 29 (1988) 381–432.

15] J.G. Oldroyd, On the formulation of rheological equations of state, Proc. R. Soc.
Lond. A 200 (1950) 523–541.



nian F

[

[

[

[

[

[

G.N. Rocha et al. / J. Non-Newto

16] P.J. Oliveira, F.T. Pinho, G.A. Pinto, Numerical simulation of on-linear elastic
flows with a general collocated finite-volume method, J. Non-Newtonian Fluid
Mech. 79 (1998) 1–43.

17] M.A. Alves, P.J. Oliveira, F.T. Pinho, A convergent and universally bounded inter-
polation scheme for the treatment of advection, Int. J. Numer. Meth. Fluids 41

(2003) 47–75.

18] P.J. Oliveira, Method for time-dependent simulations of viscoelastic flows:
vortex shedding behind cylinder, J. Non-Newtonian Fluid Mech. 101 (2001)
113–137.

19] P.J. Oliveira, Asymmetric flows of viscoelastic fluids in symmetric planar expan-
sion geometries, J. Non-Newtonian Fluid Mech. 114 (2003) 33–63.

[

[

luid Mech. 156 (2009) 58–69 69

20] D.O.A. Cruz, F.T. Pinho, P.J. Oliveira, Analytical solutions for fully developed lam-
inar flow of some viscoelastic liquids with a Newtonian solvent contribution,
J. Non-Newtonian Fluid Mech. 132 (2005) 28–35.

21] G.N. Rocha, R.J. Poole, P.J. Oliveira, Bifurcation phenomena in viscoelastic flows
through a symmetric 1:4 expansion, J. Non-Newtonian Fluid Mech. 141 (2007)

1–17.

22] R.G. Owens, T.N. Phillips, Computational Rheology, World Scientific Press,
2002.

23] R.R. Lagnado, N. Phan-Thien, L.G. Leal, The stability of two-dimensional lin-
ear flows of an Oldroyd-type fluid, J. Non-Newtonian Fluid Mech. 18 (1985)
25–59.


	On extensibility effects in the cross-slot flow bifurcation
	Introduction
	Problem definition
	Governing equations
	Solution method

	Results
	Effect of extensibility
	Effect of concentration
	Effect of rounding corners: R=0.05d and 0.5d
	Effect of viscoelastic model
	Energy loss

	Conclusions
	Acknowledgements
	References


