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Using a numerical technique we demonstrate that the flow of the simplest differential viscoelastic fluid
model (i.e., the upper-convected Maxwell model) goes through a bifurcation to a steady asymmetric state
when flowing in a perfectly symmetric ‘‘cross-slot’’ geometry. We show that this asymmetry is purely
elastic in nature and that the effect of inertia is a stabilizing one. Our results are in qualitative agreement
with very recent experimental visualizations of a similar flow in the microfluidic apparatus of Arratia et al.
[Phys. Rev. Lett. 96, 144502 (2006)].
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Because of their inherent nonlinearity the flow of visco-
elastic liquids often leads to strikingly different flow be-
havior in comparison to the ‘‘equivalent’’ Newtonian flow.
Examples of such extreme behavior, often seemingly coun-
terintuitive, include the well-known Weissenberg or rod-
climbing effect [1], the Fano or open-siphon effect [2], the
large vortex enhancement that is observed in sudden
contraction-flow geometries [3], and the extreme off-
centerline velocity overshoots that occur in smooth con-
traction flow [4]. In addition to such gross-flow manifes-
tations of viscoelasticity, a growing body of evidence has
shown that viscoelastic fluid flows may develop purely
elastic flow instabilities [5]. In contrast, Newtonian liquids
flowing at the same conditions remain perfectly steady.
Such purely elastic instabilities have been observed experi-
mentally in a number of geometries: Taylor-Couette flow
[6], cone-and-plate flow [7], and lid-driven cavity flows [8]
amongst many others. It is now well accepted that the
destabilizing mechanism which leads to such instabilities
is a combination of large normal stresses (which lead to
tension along the fluid streamlines) and streamline curva-
ture. McKinley and co-workers [8,9] showed that the cur-
vature of the flow and the tensile stress along the
streamlines could be combined to form a dimensionless
criterion that must be exceeded for the onset of purely
elastic instabilities. More recent experiments have shown
that after such purely elastic instabilities set in the flow
may go on to develop a chaotic nature that displays many
of the same features as classical turbulence [10–12]. In the
current Letter we present the first numerical simulations of
one such novel viscoelastic instability recently observed
experimentally in a ‘‘cross-channel’’ geometry [13].

The birth of ‘‘microfluidic’’ research, and the attendant
interest in such flows, has highlighted a number of previ-
ously unobserved flow phenomena that occur solely due to
viscoelasticity [14]. The inherently small scale of such
flows is directly responsible for accentuating the non-
Newtonian behavior observed: the small length scale si-

multaneously makes the Reynolds number (��UD=�)
small and the Deborah (��U=D), or Weissenberg
(�� _"), number, which characterizes the degree of elastic-
ity in the flow, large. In these expressions � and � are the
density and shear viscosity of the fluid, respectively, U is a
characteristic velocity, D is a characteristic length scale,
and _" is the strain rate. Physically the Reynolds number
(Re) represents the relative importance of inertial to vis-
cous forces within the flow, the Deborah number (De)
represents the ratio of a characteristic time of the fluid (a
relaxation time, �) to that of the flow, and the Weissenberg
number (Wi) represents the ratio of elastic to viscous
stresses in the flow; often for a given flow De and Wi are
identical and are used interchangeably. ‘‘Elastic turbu-
lence’’ described above has been exploited to enhance
mixing in small curved microfluidic channels [15], while
Quake and co-workers [16,17] have exploited the nonline-
arity of viscoelastic microfluidic flows to demonstrate
devices that can act as memory or control devices such
as anisotropic flow rectifiers. An in-depth and systematic
study of microfluidic contraction flows [18], in which
inertia forces were also present, showed that such flows
can also exhibit a wealth of nonlinear dynamics, including
inertio-elastic instabilities, large vortex growth, and ‘‘di-
verging’’ flow [19]. Very recently Arratia et al. [13] dem-
onstrated experimentally that the low-Re flow of a flexible
polymer solution through a microfluidic cross-channel ge-
ometry (which, in earlier macroflow studies was termed a
‘‘cross-slot’’ flow: a convention we adhere to in the current
Letter) can give rise to two different instabilities: a first
instability in which the flow remains steady but becomes
spatially asymmetric and a secondary instability in which
the flow becomes unsteady and fluctuates nonperiodically
in time. These experimental results were the stimuli for our
own numerical investigations that we report here. To our
knowledge this first instability, in which the flow remains
steady but is strongly asymmetric, is the first time such a
steady, possibly purely elastic, asymmetry has been ob-
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served experimentally and described in detail. The obser-
vations of these various authors, and, in particular, the
study of Ref. [13], prompts a natural question: are the
instabilities reported amenable to a theoretical explanation
[20] or can they at least be predicted by existing constitu-
tive models for viscoelastic fluids?

In the current Letter we show that such a steady asym-
metric flow pattern can be predicted using the upper-
convected Maxwell model due to Oldroyd [21] in the
absence of inertia (i.e., it is purely elastic in nature). At
low De the flow remains steady and Newtonian-like before,
beyond a critical De (�0:31), it becomes bistably asym-
metric. With increasing elasticity the flow becomes in-
creasingly asymmetric until beyond a second critical De
it eventually becomes time dependent. Although our simu-
lations capture both instabilities, our interest in the current
Letter is confined to the first steady instability. Our ration-
ale is that this is the first instance that such a steady purely
elastic asymmetry has been predicted in contrast to the
onset of time dependency, which is more usually observed
in creeping flows of viscoelastic fluids at high De.

To model the cross-slot flow, we assume that the flow is
creeping (i.e., Re! 0), two dimensional, isothermal, and
incompressible. Under these conditions, the equations that
need to be solved are those of conservation of mass r �
u � 0 and of momentum �rp� r � � � 0 together with
a suitable choice for the viscoelastic stress tensor �. As
already discussed, we use the UCM model [21], ��
���1� � 2�D, where ��1� is the upper-convected derivative
and D is the strain rate tensor. Although a number of
shortcomings exist with this model, most notably the un-
bounded nature of the steady extensional stresses above a
critical strain rate and its inability to predict shear-thinning
behavior, it is the simplest differential model of an elastic
fluid that can capture qualitatively many features of highly
elastic flows. A fully implicit finite-volume numerical
method is used to solve the constitute equation together
with the equations of conservation of mass and momen-
tum. The numerical method has been described in great
detail [22,23] and so is not repeated here.

The cross-slot geometry is shown in Fig. 1. The inlet and
outlet ‘‘arms’’ are ten channel widths (D) in length, and we
impose fully developed velocity (average value U) and
stress profiles at inlet and Neumann boundary conditions
at the outlets. We confirmed that extending both the outlet
arm lengths and mesh refinement had a negligible effect on
the critical De and the observed flow patterns.

Streamlines, superimposed upon contours of the first
normal-stress difference [scaled using a viscous stress,
i.e., ��xx � �yy�=��U=D�] to provide an indication of the
stress field, are shown for four representative cases in
Figs. 2(a)–2(d) for Re � 0. The Newtonian [2(a)] and
low Deborah number [De � 0:3, 2(b)] results are symmet-
ric, but above a critical Deborah number (�0:31) the flow
becomes increasingly asymmetric (De � 0:32 [2(c)] and
De � 0:4 [2(d)]). From the numerical results it is possible

to estimate a local Weissenberg number (�� _") based on
the strain rate at the stagnation point, and we include these
data in Fig. 2 [and as an inset of Fig. 3(b)]. Notably well
before the asymmetry sets in, the Weissenberg number at
the stagnation point exceeds the ‘‘critical’’ value of 0.5 and
therefore the extensional stresses at this point become
unbounded. Although singular, the stress field is integrable
(our numerical results predict that the �yy stresses grow to
infinity along the horizontal centerline at a rate between
jxj�0:25 and jxj�0:38), and therefore this issue does not
prevent a steady solution being obtained. Similar singular
behavior is observed in the flow past a salient corner (e.g.,
in contraction flows) even for creeping flow of a Newtonian
fluid [24]. Calculations we have performed using constit-
utive equations with bounded extensional viscosity
(FENE-CR and PTT models), not shown here, also exhibit

Q

Q

D

10 D

INLET B.CS 
FULLY-
DEVELOPED 
VELOCITY & 
STRESSES 

10 D

D

QQ

OUTLET

OUTLET

x
yQ1

Q2

10 D

Q2

Q1

y = -x 

FIG. 1. Schematic of cross-slot geometry. Minimum cell spac-
ing �xmin � �ymin � 0:01D, total number of cells � 50601.

FIG. 2 (color online). Streamline patterns superimposed onto
contour plots of ��xx � �yy�=��U=D� to provide an indication of
the stress field, for (a) Newtonian fluid, (b) De�0:3 (Wi�0:57),
(c) De � 0:32 (Wi � 0:55), and (d) De � 0:4 (Wi � 0:48).
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the asymmetry, and so this singularity is not responsible for
the symmetry-breaking bifurcation that we predict. To
quantify the degree of asymmetry, we define the parameter
DQ � �Q2 �Q1�=�Q1 �Q2�. The total flow rate supplied
to each inlet channel Q � UD � Q1 �Q2 divides into
either the upper outflow arm (Q1 in case of ‘‘left’’ arm)
or the lower outflow arm (Q2 in the case of the left arm) as
illustrated in Fig. 1. For a symmetric flow DQ � 0 while
for a completely asymmetric flow DQ � 	1. It is also
worth emphasizing here that the total flow rate (Q) leaving
each outlet arm is the same irrespective of whether the flow
is symmetric. We show the variation of this asymmetry
parameter with Deborah number in Fig. 3(a). In this figure
we also include, close to the critical De, a square root fit to
the data which is typical of supercritical bifurcations
(DQ � A

������������������������

De� DeCR

p
where A � 3:1 and DeCR �

0:309). To understand this phenomenon, we calculate the
additional pressure drop that arises due to the presence of
the cross slot. To do so we use the so-called ‘‘Couette’’
correction, which is defined as C � ��p��pfd�=2�w
where �w is the wall shear stress in the inlet arms evaluated
under fully developed conditions and �pfd is the pressure
drop required to drive that fully developed flow in the
absence of the slot (i.e., planar channels alone). Thus a
unitary Couette correction represents an additional pres-
sure loss equivalent to extending the channel length by one
channel width. The variation of C with De is shown in

Fig. 3(b) together with the same data for additional calcu-
lations in which we have modeled only a quarter of the
cross-slot geometry, i.e., imposed symmetry upon the flow.
Above the critical Deborah number the additional dimen-
sionless pressure drop is dramatically reduced: thus in
bifurcating to a steady asymmetric state the viscoelastic
fluid consumes significantly less energy as it flows through
the cross slot than it would if it did so symmetrically (at the
same De). In bifurcating to the asymmetric state the local
Weissenberg number on the stagnation point also decreases
[shown as the inset of Fig. 3(b)], and it is likely that this
reduction in extensional stresses is linked to the reduction
in the pressure drop.

One issue that complicates the comparison between
experimental studies and numerical creeping-flow simula-
tions is that, in the former case, inertia will always be
present no matter how small. To investigate this finite-
inertia effect on the observed asymmetry, we conducted
further simulations using the complete momentum equa-
tion (i.e., not eliminating the convective term) at Re �
0:01. These results are included in Fig. 3(a), and it is clear
that the differences between the truly creeping-flow and the
low-Re simulations are negligible. To probe the effects of
significant levels of inertia, we performed additional simu-
lations for Re � 1, 2, and 5. As highlighted in Fig. 3(a),
these results reveal that the effect of inertia is a stabilizing
one in terms of both delaying the onset of the steady
bifurcation to higher Deborah numbers and also reducing
the magnitude of the asymmetry.

A physical explanation for the observed steady bifurca-
tion can be formulated from the numerical results, and, in
particular, by comparing the Newtonian and De � 0:3
solutions with the viscoelastic predictions of higher De
(e.g., De � 0:5) under imposed symmetry conditions. In
the latter case the flow remains symmetric only because of
the imposed boundary conditions (BCs), but the velocity
field is already distorted in such a way that if these artificial
symmetrical BCs were removed, and the full physical
domain used in the simulation, the fluid would respond
and evolve to the stable bifurcated state. Inspection of our
results reveal that much higher compressive normal
stresses are developed by the viscoelastic fluid when the
two incoming streams join, which leads to a ‘‘turning’’
velocity profile (into the outlet arm) that is significantly
less full, eventually producing a concave, instead of con-
vex, shape, together with an inflection point. Such profile
shapes are prone to centrifugal instabilities, as is well
known in inner-cylinder-rotating Taylor-Couette flows
where Taylor vortices are formed: a fluid element subjected
to a perturbation towards a smaller radius of curvature finds
itself in a region of faster moving fluid, and the local
centripetal pressure gradient tends to push the element
even farther towards the center of rotation. Such a mecha-
nism in the case of the cross-slot geometry eventually leads
to a steady bifurcated state. Figure 4 shows profiles of the
local velocity magnitude along the line y=x � �1 (shown
as a dotted line in Fig. 1) for three cases: De � 0
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FIG. 3. (a) Growth of asymmetry parameter above critical De
for various Re. (b) Variation of Couette correction for full
(closed symbols) and symmetry-imposed (open symbols) cases
(Re � 0). (b) Inset: Variation of Wi with De (Re � 0).
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(Newtonian case); De � 0:3 (viscoelastic flow immedi-
ately prior to bifurcation); and De � 0:5 with imposed
symmetry (flow already bifurcated in the complete geome-
try). The concavity direction of the viscoelastic profile
points in the opposite direction to the radius of curvature,
thus promoting a centrifugal instability analogous to the
velocity distribution in a Taylor-Couette cell with a rotat-
ing inner cylinder and the ensuing destabilization mecha-
nism. That the change from convex (stable) to concave
(unstable) shape of the velocity profile results from in-
creased compressive stresses is well illustrated by the
centerline velocity profile also included in Fig. 4. For the
viscoelastic cases the axial velocity starts decreasing ear-
lier and at a faster rate compared to the Newtonian case
under the same conditions, on account of the opposing
normal forces generated by the frontal collision of the
two streams. This feature tends to reduce momentum on
the central section of the horizontal channels and, as a
consequence of continuity, fluid is pushed towards the
outer zones closer to the corners.

In addition to identifying the physical mechanism for the
bifurcation to asymmetric flow, our simulations also pro-
vide us with a possible triggering mechanism for the
appearance of perturbations that eventually lead to the
instability. The inset of Fig. 4 shows an instantaneous
plot of streamlines when the flow evolves from a stable
situation corresponding to a lower De towards an unstable
one at higher elasticity albeit in this case in a geometry
with rounded corners (specifically it corresponds to a
transient flow from rest to De � 2). Sinusoidal oscillations
are clearly visible along the horizontal y � 0 line close to
the joining stagnation point, along which high compressive
stresses are generated, while along the vertical line x � 0,
where the extensional birefringence strand is formed, the
vertical streamline remains perfectly straight. Similar
simulations without rounded corners tend to mask this
effect due to the closer proximity of the sidewalls, which

reduce the sharpness of the perturbations and stabilize the
flow in the inlet arms. We conclude that perturbations
triggering the flow bifurcation result from the joining,
compressive flow, along the incoming channels, rather
than from the elongational flow emanating vertically along
the two outlet channels.

In this Letter we have demonstrated for the first time that
a flow asymmetry due solely to elasticity can be numeri-
cally predicted in a perfectly symmetric geometry. Our
view is that the asymmetry is a consequence of the com-
pressive nature of the flow upstream of the stagnation point
rather than the large elongational stresses that also arise in
the flow downstream of the stagnation point.
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FIG. 4 (color online). Velocity profiles along horizontal cen-
terline and along y=x � �1 line (i.e., cross-slot diagonal) for
Re � 0 and De � 0, 0.3, and 0.5 (symmetry-imposed) at Re �
0. Inset: A snapshot of the streamlines for a transient simulation
for a rounded corner case (De � 2).
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