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Development-Length
Requirements for Fully
Developed Laminar Pipe Flow of
Inelastic Non-Newtonian Liquids
In the current study, we report the results of a detailed and systematic numerical inves-
tigation of developing pipe flow of inelastic non-Newtonian fluids obeying the power-law
model. We are able to demonstrate that a judicious choice of the Reynolds number allows
the development length at high Reynolds number to collapse onto a single curve (i.e.,
independent of the power-law index n). Moreover, at low Reynolds numbers, we show
that the development length is, in contrast to existing results in the literature, a function
of power-law index. Using a simple modification to the recently proposed correlation for
Newtonian fluid flows (Durst, F. et al., 2005, “The Development Lengths of Laminar Pipe
and Channel Flows,” J. Fluids Eng., 127, pp. 1154–1160) to account for this low Re
behavior, we propose a unified correlation for XD /D, which is valid in the range 0.4
�n�1.5 and 0�Re�1000. �DOI: 10.1115/1.2776969�
Introduction
The importance of knowing the length of pipe required for

aminar Newtonian pipe flow to fully develop, i.e., for the velocity
rofile to become nonvarying in the axial direction, has long been
ecognized. Not only is this “development length” of great prac-
ical use, in the design of pipe flow systems, for example, but it is
lso important for scientists and engineers studying such flows
nd their transition to turbulence �1�.

This importance is reflected in the number of studies which
ave attempted to provide a definitive relationship between the
ondimensional entrance length �XD /D� and the Reynolds number
n a functional form XD /D=C1Re. Numerous papers have used
ither analytical �2–4�, numerical �5–7�, or experimental �8,9�
eans to determine XD= f�Re�. This extensive literature is suc-

inctly described in the recent paper of Durst et al. �10� who also
oint out that virtually all of these studies incorrectly provide the
ariation of XD as being of the form XD /D=C1Re. Such a rela-
ionship incorrectly implies that in the creeping-flow limit �i.e.,
e→0�, the flow will instantaneously develop. In fact, at low
eynolds number, diffusion plays an important role and the cor-

ect functional form of the relationship between the development
ength and Re should be

XD/D = C0 + C1Re �1�
o address the inconsistencies and confusion in the literature,
urst et al. �10� conducted a detailed numerical study and pro-
osed the following nonlinear correlation:

XD/D = ��0.619�1.6 + �0.0567Re�1.6�1/1.6 �2�

hich is valid in the range 0�Re�� �provided, of course, that
he flow remains laminar. As is well known, with great care, tran-
ition in pipe flow can be delayed to very high Reynolds numbers
1��. Thus, the situation for Newtonian fluids is finally well un-
erstood and an accurate correlation is now available. For non-
ewtonian fluid flows, in contrast to the situation for Newtonian
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fluid flows, the literature is considerably scarcer although by no
means less contradictory. In Table 1, we summarize most of the
previous investigations using the “power-law” model in this area.
Much as Durst et al. �10� observed for Newtonian fluid flows,
nearly all of these previous studies predict a relationship of the
form

XD/D = C�Re� �3�

where C= f�n� and n is the power-law index. Such correlations
clearly neglect the role played by diffusion, which becomes in-
creasingly important with decreasing Reynolds number. Based on
our own numerical results, described in detail in this paper, a
correlation of the form of Eq. �3� is probably only valid for Rey-
nolds numbers greater than about 20. Moreover, there are consid-
erable differences for even this “high Reynolds number” estima-
tion in the Newtonian limit �i.e., n=1�. Only three studies are
within ±10% of the robust value of 0.0567Re determined recently
in the numerical study of Ref. �10�: Collins and Schowalter �3�,
0.061Re; Mehrota and Patience �14�, 0.056Re; and Ookawara et
al. �15�, �0.0575Re. This latter paper �i.e., Ref. �15�� is the only
study in the literature that proposes both a correlation of the cor-
rect form and is in reasonable �maximum 5.8% error� agreement
with the correlation of Durst et al. �10� in the Newtonian limit.
However, the correlation proposed by Ookawara et al. �15� pre-
dicts that, in the creeping-flow limit, the development length is
independent of the power-law index n and equal in magnitude to
the Newtonian development length. Such a result seems surprising
given the nonlinearity that is retained in the governing equations
through the power-law equation �in contrast to the corresponding
equations for creeping Newtonian flow, which are, of course, lin-
ear�.

In the current study, we conduct a detailed and systematic nu-
merical investigation of developing pipe flow for inelastic non-
Newtonian fluids obeying the power-law model. We show that a
judicious choice of the Reynolds number allows the development
length at high Re to collapse onto a single curve �i.e., independent
of n�. Moreover, at low Re, we show that the development length
is, in contrast to the results of Ookawara et al., a function of
power-law index. Using a simple modification to the correlation
proposed by Durst et al., to account for this low Re behavior, we
propose a unified correlation for XD /D, which is valid in the range

0.4�n�1.5 and 0�Re�1000.
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Numerical Method
To compute the developing flow field within a pipe for inelastic

on-Newtonian liquids, we make use of the fact that the flow is
aminar, incompressible, steady, and axisymmetric �i.e., two di-

ensional�. The governing equations are then those expressing
onservation of mass �Eq. �4�� and momentum �Eq. �5�� in com-
ination with a suitable rheological constitutive equation,

�ui

�xi
= 0 �4�

�� ��uiuj�
�xi

� =
�p

�xi
+

�

�xj
����̇�� �ui

�xj
+

�uj

�xi
	� �5�

or reasons of simplicity, we choose to use a purely viscous gen-
ralized Newtonian fluid �GNF� based on the power-law model,
hich gives the following “viscosity function”:

���̇� = k�̇n−1 �6�

here the shear rate �̇ is related to the second invariant of the rate
f deformation tensor �Dij� by

�̇ = 
2DijDij where Dij =
1

2
� �ui

�xj
+

�uj

�xi
	 �7�

quations �4�–�7� are solved using the commercial package FLU-

NT �Version 6.2�. This well-established code has been used ex-
ensively in the calculation of complex flows �see Refs. �18–22�
or recent examples� and is adequate to model the inelastic lami-
ar flows under consideration here. The differencing schemes
sed are both formally second order in accuracy: central differ-
ncing is used for the diffusive terms and a second-order upwind-
ng scheme for the convective terms. Some limited calculations
ere also carried out using a theoretically third-order quadratic
pstream interpolation for convective kinematics �QUICK� type
cheme for the convective terms to ascertain the effect of discreti-
ation scheme on the accuracy of our results. Coupling of the
ressure and velocity was achieved using the well-known semi-
mplicit method for pressure-linked equations �SIMPLE� imple-

entation of Patankar �23�.
Double precision �14 d.p.� was used for all the calculations so

hat round-off errors are negligible. The iterations were stopped
henever the scaled residuals �see Ref. �24�� for the solutions for

he two components of velocity and the continuity equation ap-
roached an asymptotic value; in general, the scaled residuals
ere observed to reach a level between 10−12 and 10−15.
A schematic representation of the computational domain is

Table 1 Summary of previous investigations of developmen

uthor Method
Parameter

range
Re

definition

ollins and Schowalter �3� A 0�n�1 ReCS

ashelkar �11� A 0�n�1 ReCS
oto and Shah �12� N n=0.5, 0.75

and 1.5
ReCS

atros and Nowak �13� A No limit
provided

ReMR

ehrota and Patience �14� N 0.6�n�1.5 ReMR

okawara et al. �15� N No limit
provided

Consult
ref

upta �16� A 0.3�n�2.0 ReMR

hebbi �17� A 0�n�1.5 ReCS

Extracted by the current authors from graphical data
iven in Fig. 1. At inlet �x=0�, we apply a uniform velocity UB
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and we define the development length XD as the axial distance
required for the centerline velocity to reach 99% of its fully de-
veloped value. We use the well-known no-slip boundary condition
at the wall and impose zero axial gradients at the outlet. The
length of the domain is dependent on the Reynolds number of the
flow in question �L= f�Re��; in general, the domain was at least
five times as long as the calculated development length. Calcula-
tions with extended domain lengths confirmed that this criterion
was sufficient to allow XD to be independent of this length.

A preliminary series of calculations was carried out for a New-
tonian fluid, at a moderate Reynolds number �Re=10�, with 10
�20, 20�40, 40�80, 80�160, and 160�320 quadrilateral cells
of constant dimension, �x=2�r, to determine a suitable mesh
density and to investigate the accuracy of our simulations. In ad-
dition to the variation in XD, to allow us to estimate this accuracy,
we define a relative error

E =
uc − UC,FD

UC,FD
�8�

where uc is the calculated centerline velocity at the outlet plane
and UC,FD is the corresponding fully developed analytical value.
The analytical solution for the fully developed pipe flow of a
power-law fluid is well known �see Ref. �25�, for example� and is
given by

ngth requirements for non-Newtonian power-law pipe flows

e range XD= f�Re�
Newtonian
prediction

o range
rovided

XD /D=C�Re� where C= f�n� XD /D=0.061�Re�

igh Re” XD /D=C�Re� where C= f�n� XD /D=0.049�Re�
o range
rovided

XD /D= �0.15−0.085n�Rea XD /D=0.065�Re�

o range
rovided XD /D=Re�0.0865�2�n+1�

3n+1 �−2� XD /D=0.0865�Re�

�200 XD /D=0.056�Re�

�50 XD /D=
��0.655�2+ �0.0575�2�Re�2�

o range
rovided

XD /D=C�Re� where C= f�n� XD /D=0.04�Re�

o range
rovided

XD /D=C�Re� where C= f�n� XD /D=0.09�Re�

Fig. 1 Schematic of computational domain and boundary
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u

UB
=

�1 + 3n�R−�1+n�/n

�1 + n�
�R�1+n�/n − r�1+n�/n� �9�

hus, the centerline velocity is simply UC,FD= ��1+3n� / �1
n��UB and the velocity profile becomes increasingly flat with

ncreasing degree of shear thinning index �i.e., decreasing n�.
The results of our grid-dependency study are tabulated in Table

. Firstly, we note that the variation of XD between meshes is at
ost about 2%. Secondly, fitting these points to an equation of the

orm a��r�p+b allows us to estimate the order of accuracy �p� of
ur simulations and the mesh-independent �extrapolated� XD
alue, b �26�. Using this order to estimate the “Richardson” ex-
rapolation value for this quantity �i.e., the value extrapolated to
ero mesh size�, shown in Table 2, we still find that the error in
ur simulations, defined as er= �XD,extrap−XMX� /XD,extrap, espe-
ially for meshes M4 and M5, is exceedingly small ��0.05% �.
lso shown in Table 2 are the corresponding results obtained
sing a QUICK type of discretization scheme for the convective
uxes. With increasing mesh refinement, differences between the

wo schemes become increasingly slight and reassuringly the ex-
rapolated values for both schemes agree to better than 0.005%.
ased on these levels of error, and the amount of computing time

equired for a specific mesh density, we conducted all remaining
alculations using a mesh density corresponding to mesh M4
hich, for the case studied above, gives “errors” �both based on
ur E parameter and in comparison with the zero grid-size ex-
rapolation er� less than 0.05%. Using this mesh density �which at
he highest Re studied, and therefore the longest domain lengths,
ed to grids with 640,000 cells� resulted in very accurate simula-
ions for the whole range of Reynolds numbers and power-law
ndices studied. Our E parameter, for example, which essentially
easures the difference between the fully developed calculation

nd the corresponding analytical solution, although exhibiting a
light dependency on n, was always less than 0.03%.

Validation of Newtonian Results
In Fig. 2, we plot the variation of the development length with

eynolds number for our Newtonian simulations. Also shown is
he nonlinear correlation proposed by Durst et al. �10�, i.e., Eq.
2�. As can be seen, there is good agreement between the current
imulations and the correlation. The maximum percentage differ-
nce between our data and the correlation proposed by Durst et al.
10� is about 4.5%. Such a level of discrepancy is slightly greater
han the error between the original data of Durst et al. �10� and

Table 2 Mesh characteristics and developm
either a second-order upwind or QUICK-type

Mesh �r /R �x /R NC

M1 0.1 0.2 200
M2 0.05 0.1 800
M3 0.025 0.05 3200
M4 0.0125 0.025 12800
M5 0.00625 0.0125 51200

Richardson
extrapolation

M1 0.1 0.2 200
M2 0.05 0.1 800
M3 0.025 0.05 3200
M4 0.0125 0.025 12800
M5 0.00625 0.0125 51200

Richardson
extrapolation
heir correlation �3%�.
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4 Power-Law Model Results

4.1 Definition of Re. As discussed in detail by Chhabra and
Richardson �27�, as a consequence of their variable viscosity, one
of the intrinsic difficulties with analyzing flows of non-Newtonian
liquids is in the correct definition of a Reynolds number �i.e., the
ratio of inertia to viscous forces within the flow�. Perhaps, the
most straightforward Reynolds number is that based on a charac-
teristic shear rate �̇=UB /D, which here we call the Collins–
Schowalter Reynolds number

ReCS =
�UB

2−nDn

K
�10�

Such a Reynolds number also arises naturally from a simple di-
mensional analysis of the problem. Although the simplicity of Eq.
�10� is appealing, it is well known that it is not always the most
appropriate definition. For example, in turbulent pipe flows �28�
or in pipe flows with abrupt changes in cross-sectional area �29�,
the viscosity at the wall is usually more useful,

Re =
�UBD

	wall
�11�

This Reynolds number has the advantage that it is physically
based on some quantity within the flow but has the disadvantage
that it requires a detailed knowledge of the flow field and cannot
be easily estimated in a complex flow. In a developing flow field,
such as the current case, it also has the disadvantage that it will
vary with axial location until the flow is fully developed. Never-
theless, if we consider the fully developed region in our flow, it is
relatively straightforward to show that �̇wall= �2�1+3n� /n�
��UB /D� and therefore that

Rewall =
�UB

2−nDn

K
� n

2 + 6n
	n−1

�12�

Alternatively, one may take a different approach and select a gen-
eralization of the Reynolds number such that the data under in-
vestigation collapse in some manner. Metzner and Reed �30� used
such an approach to correlate the pressure drop data required to
drive the fully developed non-Newtonian flow in a pipe. They
defined a Reynolds number

ReMR =
�UB

2−nDn

K
8� n

6n + 2
	n

�13�

so that f =16/ReMR in laminar flow. An identical definition of this

lengths for a Newtonian fluid Re=10 using
retization scheme

uc

Second order upwind
er

�%�E �%� XD

1.980 0.9821 0.8897 1.81
1.995 0.2472 0.8789 0.52
1.999 0.06256 0.8747 0.15
2.000 0.01678 0.8734 0.04
2.000 0.00534 0.8730 0.02

0.8729

QUICK
1.980 1.026 0.8946 1.71
1.995 0.2611 0.8768 0.53
1.999 0.06704 0.8749 0.16
2.000 0.01778 0.8735 0.05
2.000 0.00534 0.8730 0.02

0.8728
ent
disc
Reynolds number was also derived by Bird �31� using an elegant
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imensional analysis approach. Finally, it is worth noting that all

ig. 2 Variation of development length for Newtonian and
ower-law fluids versus „a… Reynolds number based on Collins
nd Schowalter †3‡, „b… Re based on wall viscosity in fully-
eveloped flow, and „c… Re based on definition of Metzner and
eed †30‡
f these definitions are inter-related; thus,

284 / Vol. 129, OCTOBER 2007
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ReMR = 8� n

6n + 2
	n

ReCS �14�

Rewall = � n

6n + 2
	n−1

ReCS �15�

4.2 Discussion of Power-Law Simulations. The develop-
ment length variation for the power-law model is shown for the
three different definitions of the Reynolds number, ReCS, Rewall,
and ReMR, in Figs. 2�a�–2�c�. Depending on the Re definition
used, different conclusions can be drawn regarding the effect of
power-law index on XD. Using a Reynolds number based on a
“characteristic” shear rate, ReCS, a monotonic progressive increase
in development length is observed for decreasing power-law in-
dex, i.e., XD increases with increasing shear thinning �n�1� and
decreases with shear thickening �n�1�. Below a certain Reynolds
number, ReCS
1, the flow is essentially governed by diffusion
and, for a given value of n, the development length is approxi-
mately constant. At higher Re, the slope �i.e.,
d�log�XD /D�� /d�log�ReCS��� also appears to be approximately
constant. Plotting the data using a Re based on the wall viscosity
in the fully developed region, Rewall �Fig. 2�b��, reveals a different
overall trend; although at low Re, the trend is the same, at a
critical Reynolds number �Rewall
15�, there is a crossover past
which the effect of power-law index on development length is
reversed compared to the trend observed with ReCS.

If we plot the data using the generalized Reynolds number of
Metzner and Reed �30�, we see that, at higher Reynolds number at
least, the development lengths “collapse” onto the Newtonian
curve. At high Reynolds numbers, our results are thus in practical
agreement with the most recent numerical simulations in the lit-
erature �Mehrota and Patience �14� and Ookawara et al. �15��. At
lower Re, where the development length is determined by diffu-
sion, the constant development length is a function of power-law
index. Such dependency is previously unreported in the literature,
although most previous studies neglected this low-Re region.

We plot the variation of this constant creeping-flow develop-
ment length with power-law index in Fig. 3. Further simulations
were conducted in this low-Re regime �at ReCS=0.001� to map out
this variation in detail. Also included in Fig. 3 is a quadratic fit to
these data over the range of power-law index for which we have
conducted detailed simulations �i.e., 0.4�n�1.5�. With increas-
ing shear thinning, i.e., progressively decreasing n, iterative con-
vergence became increasingly time consuming and below n=0.2

Fig. 3 Variation of creeping-flow „ReCS=0.001… development
length with power-law index
we could no longer obtain convergence. A maximum development
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ength occurs for n
0.35; for fluids more shear thinning than this,
he fully developed velocity profile becomes increasingly flat until
he limiting behavior of n=0 the velocity profile is itself uniform
nd “instantaneously” fully developed. A possible explanation for
he complex variation of the development length with power-law
ndex is that there are two “competing” effects. In this creeping-
ow regime, the development length is essentially diffusion domi-
ated and so with decreasing n, it is plausible that the diffusion
ime will increase and so you might expect the development
ength to increase. However, with increased shear thinning, the
ully developed velocity profile becomes increasingly uniform and
o less rearrangement of the uniform inlet velocity profile needs to
ccur before it attains its fully developed shape. Using a simple
caling argument, it is possible to show that a characteristic dif-
usion time must be inversely proportional to the “effective” vis-
osity �at least in the range 0�n�2�,

tdiff 

C*

	eff
�16�

here 	eff= �1/8�K��6n+2� /n�n �i.e., from the Metzner-Reed
eynolds number� and C* is an order-one constant, which has the
nits sn−1 kg/m. If we also define a characteristic velocity scale,

Fig. 4 Creeping-flow „ReCS=0.001… axial velocity developmen
n=0.4, and „d… n=1.5
o account for the fact that the fully developed velocity profile

ournal of Fluids Engineering
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becomes increasingly flat with decreasing n, as the difference be-
tween the centerline fully developed value and the bulk velocity
�i.e., UC,FD−UB�, the development length should be of the form

Ldiff 
 U*tdiff 
 �UC,FD − UB�
C*

	eff
�17�

The variation of this length scale with power-law index is in-
cluded in Fig. 3. Although such a simple scaling argument based
on bulk variables is unable to completely capture the full com-
plexity of the development-length variation, it does correctly pre-
dict the power-law index at which the development length attains
a maximum and it also predicts the form of the variation above
and below this n value.

To further understand this complex low-Re behavior, in Fig. 4
we show the axial velocity distribution at various axial locations
together with the fully developed analytical solution and the cor-
responding, virtually indistinguishable, fully developed numerical
solution. As has been observed previously for the Newtonian case
�Durst et al. �2005��, close to the uniform velocity inlet, a signifi-
cant off-centerline velocity overshoot is apparent for all fluids,
although this peak is enhanced for the shear-thickening fluid �n

t various axial locations for „a… Newtonian fluid, „b… n=0.6, „c…
t a
=1.5� and increasingly diminished with decreasing power-law in-
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ex. As a consequence of the flattening of the velocity profiles,
hich accompanies shear thinning, it is difficult to differentiate

his effect from any development-length effects. Therefore, in Fig.
�a�, we plot the centerline velocity variation, and in Fig. 5�b�, we
lot the same velocity data but scaled such that it varies between
and 1: 0 corresponds to the bulk uniform inlet velocity and 1 to

he fully developed centerline value. Rescaling the data, as in Fig.
�b�, highlights some interesting effects. Close to inlet, x /D
0.3, the centerline velocities collapse onto a single curve for all

alues of n. Downstream of x /D�0.5, the rate of change of the
enterline axial velocity decreases with decreasing n, at least in
he range 0.4�n�0.8, in agreement with the observed increase in
D for increasing amounts of shear thinning �cf. Fig. 2�. For the
hear-thickening fluid, n=1.5, the centerline velocity initially
vershoots its fully developed value. Thus, although using our
efinition of XD, the shear-thickening fluids appear to develop
uicker; in fact, if we were to refine our definition of XD, perhaps
o the more robust “length at which the centerline velocity attains

monotonically varying value within 1% of its fully developed
alue,” this trend would be altered.

Finally, if we use the polynomial fit to the variation of creeping-
ow development length with power-law index �shown in Fig. 3�,
e can make a simple modification to the correlation of Durst et

l. to account for shear-thinning and mildly shear-thickening ef-

ig. 5 Variation of centerline velocity for creeping-flow cases
ReCS=0.001…: „a… normalized by bulk velocity and „b… scaled to
emove influence of flattened velocity profile
ects,

286 / Vol. 129, OCTOBER 2007
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XD/D = ��0.246n2 − 0.675n + 1.03�1.6 + �0.0567ReMR�1.6�1/1.6

�18�
This equation is only valid for power-law indices in the range
0.4�n�1.5. The correlation is shown in Fig. 6 together with the
numerical data for the various levels of power-law index. In gen-
eral, the agreement of Eq. �18� to the data is better than 5% except
at the highest Reynolds numbers where, especially for n=0.4 and
1.5, the agreement deteriorates somewhat �maximum 15% differ-
ence�.

5 Conclusions
We have reported the results of a detailed and systematic nu-

merical investigation of developing pipe flow of inelastic non-
Newtonian fluids obeying the power-law model. Use of the Rey-
nolds number developed by Metzner and Reed �30� allows the
development length at high Reynolds number to collapse onto a
single curve �i.e., independent of the power-law index n�. More-
over, at low Reynolds numbers, the development length is, in
marked contrast to existing results in the literature, a function of
power-law index. Using a simple modification to the recently pro-
posed correlation for Newtonian fluid flows �10� to account for
this low-Re behavior, we have proposed a unified correlation for
XD /D, which is valid in the range 0.4�n�1.5 and 0�Re
�1000.
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