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Abstract

This study reports the results of a systematic numerical investigation, using the upper-convected Maxwell (UCM) model, of viscoelastic flow
through ‘smooth’ planar contractions of various contraction ratios with particular emphasis placed on the ‘divergent flow’ regime. It is shown
that both inertia and/or shear-thinning are not required for divergent flow to be predicted in contrast to the existing results in the literature where
inertia has always been present when the phenomenon has been observed. Guided by the numerical results a simple explanation is presented for
the occurrence of divergent flow and the conditions under which it arises. In addition, above a critical Deborah number, the flow becomes unsteady
and we use an analysis based on the scaling laws of McKinley et al. [G.H. McKinley, P. Pakdel, A. Oztekin, Rheological and geometric scaling
of purely elastic flow instabilities, J. Non-Newtonian Fluid Mech. 67 (1996) 19-47] for purely elastic instabilities to show that the square of this

critical Deborah number varies linearly with contraction ratio in excellent agreement with the numerical results obtained in this study.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Of the many thought-provoking and striking phenomena that
are observed when a viscoelastic liquid flows through a contrac-
tion geometry, perhaps the least studied is that of the “divergent
flow” regime. This regime, first shown in the papers of Cable
and Boger [2-4], is characterised by a strong curvature of the
streamlines away from the centreline towards the duct walls
some distance upstream of the contraction: almost as if some
“invisible obstacle” has been placed in the liquid’s path. As a
consequence, the divergent flow regime results in an undershoot
of the centreline velocity and is usually associated with off-
centre velocity maxima. The effect is nicely illustrated in the
flow visualisation book of Boger and Walters ([5] c.f. page 51),
using a picture taken from the thesis of Cable [6] of flow in a
4:1 axisymmetric contraction, where the following explanation
is given:

“The conflict between inertia which tends to decrease the size
of the vortex and elasticity which encourages vortex growth
results in a symmetrical divergence of the streamlines”.
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The experiments reported in Cable and Boger were con-
ducted before the work reported in Boger’s seminal paper [7]
where he first described the constant-viscosity elastic liquid
which now bears his name and can be obtained by adding small
amounts of high molecular weight polymer to a solvent with
high viscosity. As a consequence of the difficulties in interpret-
ing the results of Cable and Boger unambiguously, which are
for shear-thinning solutions, Boger and Binnington [8] revisited
the 4:1 axisymmetric contraction using the ‘M1’ Boger fluid.
Here again divergent flow was observed at high flowrates show-
ing that shear thinning is not necessary for the phenomenon
to be observed. In the divergent flow regime the importance
of inertia, although not negligible, was much less than in the
earlier shear-thinning results of Cable and Boger (Re = 0.89 com-
pared to order 100 in the earlier work). Despite this reduction in
importance, Boger and Binnington [8] still attributed the appear-
ance of divergent flow to inertia “winning” the interplay with
elasticity.

Evans and Walters [9,10] performed a rather extensive set of
visualisations for both Boger fluids and shear-thinning polyacry-
lamide solutions in planar contraction flows. They investigated
the effect of both contraction ratio and rounding of the re-entrant
corner and observed divergent flow behaviour only for relatively
low concentrations of polyacrylamide where both shear-thinning
and inertia played a significant role (c.f. Fig. 6 in [9]).
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More recently Rodd et al. [11] investigated the flow of dilute
aqueous polyethylene oxide (PEO) solutions through microfab-
ricated planar (3D) abrupt contraction/expansions. Although the
solutions used in the experiments were dilute, with relaxation
times of the order of milliseconds, the small length scales and
the high strain rates in the entrance region lead to significant
extensional effects and at high Deborah numbers strongly diver-
gent flow was observed. Again inertia was not negligible, and
the authors stated that diverging flow is a hallmark of fluid elas-
ticity, and that inertia and deformation rate-dependent material
functions tend to enhance its intensity.

On the numerical side, Hulsen [12] used the shear-thinning
Phan-Thien—Tanner (PTT) model [13] to investigate diver-
gent flow in an abrupt axisymmetric contraction (i.e. identical
to the geometry of [4] and [8]). In this case divergent flow
was observed only when both inertial and elastic stresses
were present (i.e. in general agreement with the experimen-
tal findings above). Hulsen also found that the occurrence, or
otherwise, of divergent flow was sensitive to the extensional
properties of the PTT model parameters and that, in particu-
lar, vortex enhancement had to be present for the effect to be
seen.

Purnode and Crochet [14] used the FENE-P model [15] to
simulate the flow through planar contractions, using the visu-
alisations of Evans and Walters as a basis for comparison.
The simulations were able to qualitatively capture most of the
experimentally observed features including the divergent flow
of a comparable concentration of PAA compared to Evans
and Walters (0.25% c.f. 0.2%). Once again inertia was neces-
sary for the divergent flow regime to be seen: when Purnode
and Crochet kept the Weissenberg number fixed and neglected
inertia (i.e. set Re=0) a salient corner vortex enhancement
mechanism was observed and the divergent region apparently
disappeared.

In this study we investigate the divergent flow regime in
detail and report the results of a systematic numerical inves-
tigation, using the upper-convected Maxwell (UCM) model,
of viscoelastic flow through ‘smooth’ planar contractions of
various contraction ratios. We show that both inertia and/or
shear-thinning are not required for divergent flow to be observed.
Guided by our numerical results we derive a simple explanation
for the occurrence of inertialess divergent flow and the condi-
tions under which it arises. In addition, above a critical Deborah
number, the flow becomes unsteady and we use the scaling laws
of McKinley et al. [1] for purely elastic instabilities to show that
the square of this critical Deborah number (i.e. Degm) varies
linearly with contraction ratio in agreement with our numerical
results.

2. Governing equations and numerical method

In this work we are concerned with the creeping (i.e. Re — 0),
isothermal flow of an incompressible viscoelastic fluid through
a smooth two-dimensional contraction. The equations to solve
are those of conservation of mass

V-u=0 (1)

and of momentum
—-Vp+V.-1=0 2)

and a suitable choice for the viscoelastic stress tensor 7. For
reasons of rheological simplicity the well known UCM model
[16] is chosen:

ot

A
T+ [at

+V- u'r] =AMt - Vu+ Vu' - 1)+ n(Vu + Vu').
3

This viscoelastic model exhibits both a constant shear vis-
cosity 1 and first normal-stress coefficient (and hence relaxation
time) allowing us to probe the effects of elasticity without the
complications of shear thinning of either the shear viscosity or
relaxation time.

A fully implicit finite-volume numerical method is used to
solve Egs. (1)-(3). The original numerical method, and sub-
sequent developments, has been described in great detail in
Oliveira et al. [17], Oliveira [18] and Alves et al. [19] and
so is not unnecessarily repeated here. In the current study we
essentially use the same methodology described in [19] except
that here we use the QUICK scheme of Leonard [20] in pref-
erence to the CUBISTA scheme of Alves et al. [21] for the
discretization of the convective terms in Eq. (3). The main dis-
advantage of the QUICK scheme, in comparison to its bounded
versions (e.g. CUBISTA or SMART [22]) is its unbounded
behaviour in highly convective flows, which can lead to strong
oscillations and convergence problems when stepwise profiles
are advected. Nevertheless, as a consequence of the smooth
geometry used in this work, which contains no geometric sin-
gularities, the QUICK scheme is well behaved and can be
used without convergence problems, thus avoiding the unnec-
essary numerical complications of the use of high-resolution
schemes.

3. Geometry and computational meshes

Motivated by a desire to reach high Deborah numbers, and
taking inspiration from a three-dimensional geometry used
in the recent experimental study of Poole et al. [23] where
large off-centre maxima were observed, we chose to use a
‘smooth’ contraction in preference to the abrupt geometries usu-
ally employed in contraction flow studies. A schematic of the
geometry is shown in Fig. 1. Basically we have two planar chan-
nels, the larger (inlet) one having a half-height H; and the other
(entrant) channel H> connected by two arcs (one convex, the
other concave) of constant radius of curvature, R=H| — Hj.
Defining the contraction ratio as CR (=H|/H;) we can also
express this radius of curvature as R=(CR — 1)H>. The coordi-
nate system is set around the symmetry plane at the “entrance”
to the smaller channel. Although non-standard such geometries
have many advantages over abrupt contractions especially for
numerical studies such as this. The geometry is smooth and
free of geometrical singularities and sharp corners where it is
known that, even for a Newtonian fluid, the stresses and pressure
become unbounded [24-26]. A constant wall radius of curvature
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Fig. 1. Schematic of smooth contraction geometry.

is prescribed which, as we shall show, is extremely useful for
predicting the onset of purely-elastic instabilities. In addition the
geometry encourages the flow to remain attached to the walls and
inhibits flow separation. Although the strain rate in such geome-
tries is not constant, the absence of any recirculation makes an
approximate estimation of the strain rate along the centreline
possible.

As we are interested here in truly creeping flow (i.e. Re =0) of
a UCM fluid, the only non-dimensional parameters of relevance
are those of the Deborah number which here we define based on
downstream quantities, De = AU»/H», and the contraction ratio
CR =H//H>. We note that in a real flow although the Reynolds
number may be small, it will never be zero, as we assume in the
present simulations in order to demonstrate that inertia is not
necessary to induce divergent flow in contractions.

To study the effect of contraction ratio we investigated eight
different geometries of varying contraction ratio (CR=1.01, 1.1,
1.5,2,4,8, 12 and 16). The meshes used are structured and non-
orthogonal, and were created in such a way that the cells are
approximately aligned with the streamlines in the Newtonian
case. Although under steady conditions we expect the flow to
remain symmetric about the centreline (i.e. y =0), we decided to
model the full domain in order to be able to capture any possible
asymmetries that may develop due to the onset of a purely elastic
instability.

For each contraction ratio a set of two different meshes
was generated, which we denote by mesh M1-CR and M2-CR,
where CR represents the contraction ratio under considera-
tion. With mesh refinement (i.e. M1 to M2) the number of
cells in each direction is doubled and the expansion/contraction
factors are square-rooted in order to consistently halve the
size of the cells in each direction. All the calculations pre-
sented here were carried out in the most refined meshes (i.e.
M2-CR). The number of cells and the minimum cell sizes
of the meshes varied depending on the contraction ratio. For
meshes M2-CR the total number of cells varied from 40,352
(CR=4) up to 63,360 (CR=1.01). The streamwise minimum
cell sizes varied from Axpin/H> =0.00020 (CR=1.01) up to
Axmin/H> =0.028 (CR =8) while the minimum cell size in the
transverse direction ranged from Aypin/H> =0.0003 (CR=1.01)
up to Aymin/H2 =0.01 (CR > 1.5). The differences observed in

the results between meshes M1-CR and M2-CR are practically
negligible: differences in the centreline velocities were below
2% for CR=16 and CR =2, for example.

4. Results and discussion

Firstly we focus our attention on the appearance or otherwise
of the divergent regime, before in Section 4.2 discussing the
mechanism for the occurrence of a purely elastic instability at
high Deborah numbers.

4.1. Divergent flow regime

Streamline patterns for the 16:1, 4:1 and 2:1 contractions are
shown in Fig. 2 for both the Newtonian case and a “high” Deb-
orah number. As inspection of Fig. 2(a) readily shows, for the

Fig. 2. Streamline patterns for (a) CR =16: Newtonian (---) and De=25 (—)
superimposed; (b) CR =4: Newtonian (- - -) and De = 12 (—) superimposed; (c)
CR =2: Newtonian (- - -) and De =6 (—) superimposed.
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Fig. 3. Variation of streamwise velocity along centreline for (a) CR=16 and
(b) CR=2. The vertical dashed lines indicate the beginning and the end of the
contraction.

higher contraction ratio, the effect of elasticity on the flow field
is small and divergent flow is not observed. To highlight the
small changes brought about by elasticity we show the Newto-
nian and De =25 streamlines superimposed: the streamlines in
the viscoelastic case are closer to the wall than the Newtonian
but even this effect is small. Profiles of the streamwise velocity
along the centreline, shown in Fig. 3(a), confirm that the veloc-
ity does not exhibit an undershoot characteristic of divergent
flow. A small velocity overshoot, close to the inlet of the smaller
channel, is in evidence in agreement with viscoelastic flows in
abrupt contractions [27]. The variation of the first normal-stress
difference (i.e. N1 =ty — Tyy) along the centreline is shown in
Fig. 4(a) and exhibits an increase with increasing De.

If we now turn our attention to a smaller contraction ratio (e.g.
CR =4) we observe divergent flow behaviour in the streamlines
shown in Fig. 2(b) for the viscoelastic case. Reducing the con-
traction ratio still further, e.g. to CR =2, makes the effect even
more pronounced as shown in Fig. 2(c). For both contraction
ratios the effect is again most readily observed by superposition
of the corresponding Newtonian streamlines with the (approxi-
mately) highest Deborah number that steady solutions could be
obtained in each geometry (De =12 and 6, respectively). These
results demonstrate that inertia is not a necessary condition for
divergent flow to occur and, if one wishes to enhance such
behaviour, it is preferable to investigate small contraction ratios.
The corresponding variation of the centreline velocity for CR =2
is shown in Fig. 3(b) and the characteristic velocity undershoot
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Fig. 4. Variation of first normal-stress difference along centreline for (a) CR =16
and (b) CR=2. The vertical dashed lines indicate the beginning and the end of
the contraction.

upstream of the contraction is now clearly visible. The variation
of dimensionless first normal-stress difference along the cen-
treline, plotted in Fig. 4(b), exhibits a decrease with increasing
De, in marked contrast with the results presented in Fig. 4(a) for
CR=16.

To quantify the intensity of diverging flow, and to provide an
indication as to the onset De, we find it useful to define an under-
shoot parameter, x. This parameter represents the difference
between the upstream fully-developed and the minimum cen-
treline velocities, suitably non-dimensionalised by the minimum
of either the difference between the fully-developed centreline
velocities in the downstream (Us ¢ ) and upstream (U ¢ ) channels
or simply Uy :

Ul,c - Umin 1
min[1; (CR — )]’
)

Our rationale for this normalization (i.e. the denominator of
Eq. (4)) was to highlight the degree of velocity undershoot in
geometries of significantly different contraction ratio. The obvi-
ous velocity scale would be Uj ¢, which limits the « parameter
between O (no undershoot) and 1 (zero velocity at centreline).
However, for small contraction ratios this normalization would
constrain the x parameter to small values. A better alterna-
tive, for small CR, is to normalize the velocity undershoot with

P Ul,c - Umin _
min[Ul,c§ U2,c - Ul,c] Ul,c
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Fig. 5. Normalized velocity undershoot along centreline vs. Deborah number.

Uy — Uy ¢ since in this manner the x parameter better reflects
the intensity of diverging flow as compared with the curvature of
the smooth contraction. Therefore, normalizing by the minimum
of either of these two quantities is a reasonable compromise.
Fig. 5 shows the variation of this undershoot parameter for the
complete range of CRs. This quantitative measure of diverging
flow is in general agreement with the more subjective visual
indication of such behaviour seen in the streamline plots of
Fig. 2.

In a flow of mixed shear and extensional nature, such as that
considered here, it is likely that the onset of divergent flow may
be a consequence of a change in the balance of the stresses
within the flow from a flow that is shear dominated to one
which is extensionally dominated. To attempt to quantify such
a transition it is possible (c.f. [28] for example) to compare the
normal stresses generated by the shear flow at the walls to the
purely extensional normal stresses along the centreline through
a dimensionless normal-stress ratio:

__ N/
(Tax — "—'yy)/nlé

&)

For the UCM model in the shear-flow near the wall we can
simply state that N; = 2Anp>. We can also estimate the max-
imum shear rate at the wall as being y ~ 3U,/H;. Along the
centreline of the planar contraction, because the flow is purely
extensional in nature it is possible to derive analytical expres-
sions for the two non-zero normal stresses directly from the
UCM constitutive equation (i.e. Eq. (3)). In such a flow Eq. (3)
reduces to

ad
At ;” T = 208 + 2ATd (62)
X
0Ty . .
Au e + Tyy = —2né — 2ATyyé (6b)

where ¢ = du/dx is the local strain rate. Assuming that the strain
rate within the contraction is approximately constant (allowing
us to express the velocity u at any location within the contrac-
tion as u = U1 + é(x + L), where L is the length over which
the velocity increases linearly) and integrating we obtain (for
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Fig. 6. Variation of Trouton ratio along the centreline within contraction with
reduced strain rate for various contraction ratios.
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At x=0 (i.e. at the end of the contraction) the stresses attain
their maximum (absolute) value and we can thus express the
maximum Trouton ratio along the centreline as:

oo Ta Ty
n né
_ 4 2 CR—(1-248)/3¢
(1 =2x8)(1 +2X8) 1 —2x¢
_ 2 CR7(1+2)L£';‘)/)L$“ (8)
14 2A¢

Substitution of Eq. (8), together with our estimates for N1 and the
shear rate at the wall, into Eq. (5) gives the following relationship
for the normal-stress ratio:

_ 6De
T Tr

where Tr is calculated from Eq. (8) and is illustrated in Fig. 6 as
a function of A& and CR.

Finally to relate such behaviour to the ‘divergent flow’ phe-
nomena we need to define a characteristic reduced strain rate
(since Tr depends on CR and Aé):

R C))

e Qe Ue AU —Ur _ 3Uoh (CR—1>
H, 2 H 2 H CR?
_ 3De(CR-1) 10
2 CR®*

In this expression we are assuming that the approximate linear
velocity profiles occur over a length L=Hj. In fact the con-
traction extends over a total length of \/g(H 1 — H») (see Fig. 1)



M.A. Alves, R.J. Poole / J. Non-Newtonian Fluid Mech. 144 (2007) 140-148 145

0.9
0.8
0.7
06
0.5

—&—CR=1.01
—=&—CR=11

(u‘ {jl.c)/({'flc‘ ‘U.I,c)

0.4 —A&——CR=15
——CR=2

0.3 —4—CR=4
—o—CR=8

0.2 —8—CR=12
- - - slope=1

0.1

0 |evetd—""_____ L s

y ¥ ) i 1
2 -1 0 1 2
X H|

Fig. 7. Comparison of estimated strain rate (Eq. (10)) against centerline velocity
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but, as can be observed in Fig. 7, especially for lower contraction
ratios, the estimate ¢ ~ (U, — Uj,)/H is indeed very good.
For higher CR geometries this estimation deteriorates somewhat
but is still, at worst, within about a factor of two of the exact
value.

In Fig. 8(a) we plot the variation of the normal-stress ratio
with De for each of the contraction ratios for which we have
data together with an indication of the (approximate) De corre-
sponding to the onset of divergent flow for each contraction ratio
(estimated from Fig. 5 and assuming arbitrarily that the onset of
diverging flow occurs when k > 1073). It is clear that divergent
flow does not occur at the same value of R for each contraction
ratio. However, if we now plot the gradient of the normal-
stress ratio, o =d[log(R)]/d[log(De)], against De (Fig. 8(b))
we can conclude that the onset of diverging flow occurs for
each contraction ratio when « is approximately constant and
slightly higher than one, indicating that diverging streamlines
appear when the normal-stress ratio increases more rapidly than
De.

The choice of k = 1073 to quantify the onset of divergent flow
is somewhat arbitrary, but using other « values would lead to a
similar conclusion. To demonstrate this, in Fig. 9 we illustrate
the strong correlation between « and «, showing unequivocally
that the diverging flow intensity is directly related with the rate
of increase of R with De (i.e. with «). For the UCM model
the increase of « is due to a decrease of 7r with an increase
in Aé (or De, c.f. Eq. (9)). Thus, if instead of investigating
the normal-stress ratio we simply turn our attention to the first
normal-stress differences along the centreline (or to the Trouton
ratio derived in Eq. (8)), the arguments given above become a lit-
tle clearer. In Fig. 6 the maximum Trouton ratio is plotted against
a general reduced strain rate and in Fig. 10 against the Debo-
rah number based on our characteristic reduced strain rate (i.e.
De = 2CR%1&/[3(CR — 1)]). One of the well known “failures”
of the UCM model is that the steady-state extensional viscosity
becomes unbounded when Aé — 1/2 [27]. However, in a con-
traction flow this limiting behaviour would only be observed if
the contraction ratio was infinite. As can be seen in Figs. 6 and 10,
for all finite contraction ratios, the Trouton ratio goes through
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symbols indicate the onset of divergent flow (k = 1073).

a maximum and then decreases. Also included in Fig. 10 are
symbols highlighting the Deborah numbers corresponding to
the approximate onset of diverging flow behaviour (i.e. from
Fig. 5). We hypothesize that it is the occurrence of such max-
ima in the Trouton ratio that leads to the onset of divergent flow
(since o becomes higher than 1). If the fluid wishes to minimise
the energy losses as it flows through the contraction then, when
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it is in a regime close to the maxima value of 77, it is actually
beneficial for the strain rate along the centreline to increase as
this will result in a decrease in 7r.

As a consequence of utilising a ‘smooth’ geometry to investi-
gate the phenomena of diverging flow, an obvious question that
arises about our results are their universality and, in particular,
their relation to flow in abrupt contractions. As our explana-
tion for the phenomena is essentially based on the maximum
Trouton ratio (i.e. Eq. (8)) which, in fact, makes no assump-
tion about the ‘shape’ of the contraction (just that the strain rate
within the contraction is approximately constant) the conclu-
sions drawn above are equally as valid for viscoelastic flow in
abrupt (or sudden) contractions. To illustrate this statement we
have performed additional simulations for inertialess flow of a
UCM fluid in a 2:1 abrupt planar contraction. Again, divergent
flow was observed for the higher Deborah values (for example,
at De =2 the normalized velocity undershoot in the centreline
was k =0.035).

4.2. Onset and scaling of a purely elastic instability

As we have already briefly discussed, above a critical Deb-
orah number steady numerical solutions could no longer be
obtained and it was found that the flow became time-dependent.
This critical Deborah number, Dei;, was observed to be strongly
dependent on the value of the contraction ratio. Such purely
elastic instabilities (i.e. in which inertia plays no role) have
been observed experimentally in various different geometries:
Taylor—Couette flow [29], contraction flow [30], lid-driven cav-
ity flows [31] amongst many others. It is now well accepted that
the destabilizing mechanism which leads to such instabilities is
a combination of large normal stresses (which lead to tension
along the fluid streamlines) and streamline curvature. McKinley
et al. [1] proposed that the curvature of the flow and the tensile
stress along the streamlines could be combined to form a dimen-
sionless criterion that must be exceeded for the onset of purely

elastic instabilities. They expressed this criterion for the onset
of elastic instability in the general form:

1/2
[W”?] > Mo (1)
N ony
where X is the relaxation time of the fluid, U the local streamwise
fluid velocity, )N the local radius of curvature of the streamline,
711 the local tensile stress in the flow direction, 1 the shear
viscosity of the fluid and y is the local shear rate. Far from the
centreline the flow is shear dominated, thus it is legitimate to set

T = 2hy? (12)
and substitution of this relationship into Eq. (11) gives

]2t
N V2

The first term on the left hand side of Eq. (13) can be thought of
as alocal Deborah number based on the streamline curvature (i.e.
AU/M) and the right hand term on the left hand side as a local
Weissenberg number (i.e. Ay). To estimate these local values
we need first to consider where the ‘critical regions’ in the flow
will occur (i.e. where the instability will initiate). Guided by our
numerical results and by a simple scaling argument (i.e. where
the flow will have locally higher values of +/ DeWe) we propose
that this critical region is near to the smaller channel inlet (i.e.
x=20). In this critical region we estimate that the characteristic
radius of curvature of the streamlines is approximately

R (CR-DH
y/Hy y/Hy

This expression correctly predicts the radius of curvature at
the wall (i.e. y=Hy; R=(CR—1)H,) and along the cen-
treline where the curvature of the streamline must be zero
due to symmetry (y=0; R — oo). Comparison of this sim-
ple form of the characteristic radius with streamlines actually
predicted from our numerical results close to the critical De,
not shown here for conciseness, shows excellent agreement
in the ‘critical’ region close to the inlet of the smaller chan-
nel. If we also make the (approximate) assumption that the
velocity profile near x =0 is parabolic (i.e. corresponds to instan-
taneously fully-developed channel flow), then at the critical axial

position (x=0)
y 2
1— <H2> ] . (15)

The local deformation rate in this critical region is

13)

R(y) ~

(14)

3
Uy ~ U
» S U2

U
P(y) ~ 3;21% (16)

and substitution of Egs. (14)—(16) into the stability criterion (i.e.

Eq. (13)) leads to:
1— Yy 2 Yy 2 < Mcrit.
H> H - 3

1 AU\ 2
CR—-1\ H
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Fig. 11. Variation of critical De for onset of elastic instability vs. contraction
ratio.

We can now easily estimate that the transverse location where
the instability sets in is y/H, = 1/ V2 by simply finding the y
position where the left hand side of Eq. (17) is a maximum.
Thus, at the critical location (x = 0; y = Hy/ ﬁ) we arrive at
the following equation for the onset of purely elastic instabilities
in our geometry:

1 AU> \ 2 2
— (=2 > = M. (18)
CR—1\ Hy ) | = 3

Realising that we have defined our (global) Deborah number
as De =AU,/H; and rearranging we arrive finally at
Dely = gM%,(CR — 1). (19)

The values of Degrit determined numerically are plotted

together with a linear fit versus CR — 1 in Fig. 11 showing excel-
lent agreement with this linear scaling. Although such a linear
scaling with contraction ratio may, at first, seem surprising as
it implies that as the contraction ratio tends to one (i.e. to a
planar channel) the critical Deborah number tends to zero, it
is purely a consequence of our geometry where, as the con-
traction ratio decreases, the local curvature of the streamlines
becomes increasingly sharp. In addition it is perhaps unlikely
that our definition of the characteristic radius of curvature for the
streamlines will remain applicable close to the limit of CR — 1.
Nevertheless, our numerical results shown in Fig. 11 are in gen-
eral agreement with the linear scaling even at low contraction
ratios where the critical De is seen to be less than 1 for a con-
traction ratio of 1.01 (i.e. only a 1% perturbation from a planar
channel).

5. Conclusions

This work reports the results of a systematic numerical
investigation, using the UCM model, of creeping flow through
“smooth” planar contractions. It was shown that strongly diver-
gent flow can occur in such cases in contrast to the existing results
in the literature where the phenomena is usually attributed to

the interplay between inertial and elastic stresses. It was demon-
strated that such behaviour is more likely to be observed in small
contraction ratios and using a straightforward theoretical analy-
sis we have shown that it can be approximately predicted from
the material functions of the fluid.

Above a critical Deborah number, which was found to vary
with contraction ratio, a purely elastic instability sets in, and the
flow becomes time-dependent. Using a simple analysis, based
on the scaling arguments of McKinley et al. [1], it was shown
that Degrit varies linearly with contraction ratio in excellent
agreement with the numerical results.

The use of “smooth” contraction geometries, although non-
standard, proved to offer many advantages over the typical
abrupt contractions and, aside from the absence of vortex
enhancement, seems to offer an excellent complimentary geom-
etry in which to study viscoelastic effects in contraction flows.
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