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Abstract

In this work we present an investigation of viscoelastic flow in a planar sudden expansion with expansion ratio D/d = 4. We apply the modified
FENE–CR constitutive model based on the non-linear finite extensibility dumbbells (FENE) model. The governing equations were solved using a
finite volume method with the high-resolution CUBISTA scheme utilised for the discretisation of the convective terms in the stress and momentum
equations. Our interest here is to investigate two-dimensional steady-state solutions where, above a critical Reynolds number, stable asymmetric flow
states are known to occur. We report a systematic parametric investigation, clarifying the roles of Reynolds number (0.01 < Re < 100), Weissenberg
number (0 < We < 100) and the solvent viscosity ratio (0.3 <β < 1). For most simulations the extensibility parameter of the FENE model was kept
constant, at a value L2 = 100, but some exploration of its effect in the range 100–500 shows a rather minor influence. The results given comprise
flow patterns, streamlines and vortex sizes and intensities, and pressure and velocity distributions along the centreline (i.e. y = 0). For the Newtonian
case, in agreement with previous studies, a bifurcation to asymmetric flow was observed for Reynolds numbers greater than about 36. In contrast
viscoelasticity was found to stabilise the flow; setting β = 0.5 and We = 2 as typical values, resulted in symmetric flow up to a Reynolds number of

about 46. We analyse these two cases in particular detail.
© 2006 Elsevier B.V. All rights reserved.
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. Introduction

Numerical simulation of viscoelastic flows has been used
ncreasingly for the analysis and understanding of fluid
ehaviour in a variety of processes of both industrial and sci-
ntific interest. From a fundamental point of view, viscoelastic
uid flow through ducts with abrupt change of cross-section,
ither expansions or contractions, are important as they highlight
any of the unusual phenomena brought about by elasticity.
hese phenomena include complex recirculation patterns, not

ound with Newtonian fluids, vortex enhancement or suppres-
ion, the possibility of unsteady flow due to elastic instabilities,
omplex stress behaviour near geometrical singular points, etc.

n addition, expansion and contraction geometries are relevant in
ngineering applications, particularly in the process industries,
or example the channel feeding an extrusion die is unavoidably
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ndowed with such localised perturbations in cross-section in
rder to achieve the desired extruded shape. A survey of the
pecialised literature shows that contraction flows of viscoelas-
ic liquids have received a great deal of attention during the past
0–15 years, but studies (both numerical and experimental) of
xpansion flows are rather scarce. Given the rich fluid dynamic
ehaviour that has been observed in viscoelastic fluid flow in
ontractions, referred to above, this is perhaps not surprising
see the many examples in the book of Boger and Walters [1]
or example).

Of the few papers that have investigated viscoelastic fluid
ow through expansions they are, in the main, concerned with
reeping flow conditions (i.e. vanishing Re). The numerical
orks of Darwish et al. [4] and Missirlis et al. [5] both use a finite
olume technique to simulate viscoelastic fluid flow through a
wo-dimensional 1:4 plane sudden expansion using the UCM

odel for Re = 0.1. Missirlis et al. [5] show that vortex activ-

ty is suppressed with increasing Deborah number (defined by
he ratio between the characteristic time of the deformation pro-
ess being observed and the characteristic time of the material)
nd that, as the Deborah number is increased beyond a critical
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alue of 3.0, the recirculation zone is completely eliminated. The
elated works of Townsend and Walters [6] and Baloch et al. [7]
re also worthy of mention. Both works used the linear form of
he PTT model in an attempt to simulate the flow visualisations
shown originally in Townsend and Walters [6]) for the flow
f two polymer solutions (polyacrylamide and xanthan gum)
hrough both quasi two- and three-dimensional expansions. The
isualisations clearly show the reduction in recirculation for the
iscoelastic fluids, and the simulations are in good qualitative
greement with these visualisations.

For Newtonian fluids, as is well-known (first documented in
bbott and Kline [8]), above a critical Reynolds number the flow
eld downstream of the expansion exhibits a stable asymmet-
ic flow state. The critical Reynolds number at which the flow
ecomes asymmetric is dependent on the expansion ratio (i.e.
he ratio of the downstream to upstream channel heights) and, for
hree-dimensional flows, the aspect ratio (i.e. the ratio of chan-
el width to inlet channel or step height). Indeed the asymmetry
s completely absent for expansion ratios less than 1.5. This
symmetry has been observed in both experimental (Cherdron
t al. [9], Durst et al. [10] for example) and numerical (Drikakis
2], Battaglia et al. [3]) investigations. Drikakis conducted an
xtensive study on the effect of expansion ratio and was able to
emonstrate that the critical Reynolds number for asymmetric
ow to occur decreases with increasing Reynolds number. For

he 1:4 expansion he obtained a critical Re of 35.3. For the same
xpansion ratio Battaglia et al. obtained a slightly higher value
f 35.8. In the current study, as we discuss in detail in Section
.1, we obtained a critical Reynolds number Recr = 36, in very
lose agreement with these studies.

Oliveira [11] was the first author to investigate viscoelastic
uid flow at high enough Reynolds numbers for asymmetric
ow to be observed. Using the modified FENE–CR model the
ehaviour of viscoelastic fluids in a 1:3 planar sudden expan-
ion was studied. At low Reynolds number, Oliveira was able to
onfirm the results of previous studies: namely the effect of elas-

icity is to reduce both the degree and magnitude of recirculating
uid downstream of the expansion compared with the Newto-
ian case. At high Reynolds numbers, although the asymmetry
till occurred, the effect of elasticity was seen to be a stabil-
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Fig. 1. Sudden expansion flow geometry including schemat
Fluid Mech. 141 (2007) 1–17

sing one, i.e. the bifurcation to asymmetry flow occurred at
igher Reynolds numbers for the viscoelastic cases. The critical
eynolds number was seen to be dependent on the Weissenberg
umber and the β and L2 parameters of the FENE–CR model.

In the current study we present a systematic numerical inves-
igation of the flow of a FENE–MCR liquid in a planar sudden
xpansion of expansion ratio 4. The basic elements of laminar
ow, with moderate inertia, Re O(50) say, through a planar sud-
en expansion are illustrated in Fig. 1. The flow progresses from
eing fully developed at a plane some distance L1 upstream from
he expansion to being fully developed in the downstream chan-
el at a distance L2 from the expansion plane. The exact shape of
he recirculation regions may be concave or convex with respect
o the expansion corner, depending if the flow is dominated
y viscous or inertial forces, respectively. The purpose of the
resent work is to provide quantitative data of benchmark qual-
ty for the flow through a 1:4 planar expansion of viscoelastic
iquids obeying the constant viscosity FENE–MCR constitutive

odel.
The main objectives of the present study are: (i) to exam-

ne the possible effects of each non-dimensional parameter (i.e.
e, We and β) of the FENE–MCR model upon the flow and
ompare with the results of Oliveira [11] for a planar sudden
xpansion of lower expansion ratio of 1:3; (ii) to investigate the
ritical Reynolds number of the symmetry-breaking bifurcation
nd flow asymmetries occurring in plane sudden expansions for
ewtonian and viscoelastic fluids; (iii) to analyse the effect of

lasticity on the flow field; (iv) to show the variation of profiles
f the velocity, stress and pressure along the centreline for the
ewtonian and viscoelastic cases.

. Conservation and constitutive equations

In the present work we consider the two-dimensional isother-
al flow of an incompressible liquid flowing from a straight

hannel of height d to a larger channel of height D = 4d, cor-

esponding to an expansion ratio D/d = 4. In consequence, the
rocess generates a complex flow exhibiting regions of strong
hearing near the walls and uniaxial planar extension along
he centreline. The upstream channel where the cross-section

ic of expected flow patterns for moderate Re (O(50)).
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verage velocity is U, has a length of L1 = 20d and the down-
tream channel a length L2 = 50d, as show in Fig. 1. These
engths are required for the establishment of a clear region of
ully developed flow upstream of the expansion, and complete
ow redevelopment downstream of it.

This problem is governed by the usual equations of continuity
nd motion, which can be written as [12]:

· u = 0 (1)

Du

Dt
= −∇p+ ∇ · τtot (2)

here u is the local velocity vector, ρ the fluid density (assumed
onstant), p the pressure, τtot the total extra stress tensor, and
( )/Dt = ∂( )/∂t + u·�( ) is the substantial derivative, or deriva-

ive following the motion. For a homogeneous polymeric solu-
ion the extra stress can be decomposed by the sum of a Newto-
ian solvent and a polymeric solute contribution (τtot = τs + τ).

The Newtonian solvent component is expressed in Eq. (3),
here the solvent viscosity ηs is constant, �uT the transpose of

he velocity gradient, and D is the rate-of-strain tensor.

s = ηs(∇u + ∇uT) ≡ 2ηsD (3)

When the fluid is viscoelastic (i.e. it presents simultaneously
iscous and elastic properties), the problem is considerably more
omplicated compared to the Newtonian case.

In the current study we use a modified form of the finite
xtensibility non-linear dumbbells (FENE [13]) model, valid for
olymeric materials, the so-called FENE–CR model, proposed
y Chilcott and Rallison [14]. The FENE–CR model predicts
onstant shear viscosity, η0 = ηp + ηs, shear-thinning of the first
ormal-stress difference coefficient and bounded elongational
iscosity (proportional to L2) and is given by:

+ λ

f (τ)
∇
τ = 2ηpD (4)

ith the stretch function f(τ) expressed by:

(τ) = L2 + (λ/ηp)tr(τ)

L2 − 3
(5)

In the previous equations, tr is the trace operator, λ a constant
elaxation time, ηp the polymer viscosity (constant) and L2 is the
xtensibility parameter that measures the size of the polymer
olecule in relation to its equilibrium size. The symbol ‘�’ in
q. (4) is used to denote Oldroyd’s upper convected derivate:

= Dτ

Dt
− τ · ∇u − ∇uT · τ (6)

nd the superscript ‘T’ in Eq. (6) denotes the transpose of a ten-
or. In the current study an additional simplification is embodied
n Eq. (4), compared with the original FENE–CR equation of
hilcott and Rallison [14], in that the term D(1/f)/Dt is con-

idered to be negligible. This model is denoted FENE–MCR,

or modified Chilcott–Rallison model. The FENE–CR and
ENE–MCR models are identical in simple steady-state flows
nd the only difference between the two models occurs in com-
lex transient flows, where the effect of the neglected term

c
e
a
d
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u·�(1/f)) can be important only in strong convective flows.
he FENE–MCR model has been used in previous works by
oates et al. [15] in a numerical study of axisymmetric contrac-

ion flow and more recently by the related study of Oliveira [11].
n other works Oliveira has shown that results from those two
odels are virtually undistinguishable in complex flows at low
eynolds numbers and since we wanted to compare the present

imulations with those of [11] we decided to use the MCR model.
owever, some calculations were undertaken with the unmodi-
ed CR model (Eq. (4), with the f(τ) function inside the Oldroyd
erivative) which lead essentially to the same results, with only
ery minor quantitative deviations with increasing Re.

The relevant non-dimensional parameters to be varied in this
ork are:

L2, the extensibility parameter of the FENE–CR model (base
value fixed at L2 = 100);
β = ηs/η0, the solvent viscosity ratio, where the global shear
viscosity is η0 = ηs + ηp (constant);
Re = ρUd/η0, the Reynolds number;
We = λU/d, the Weissenberg number.

. Numerical method

As mentioned previously, the numerical method applied in
his work is the finite volume method (FVM). The governing
quations (Eqs. (1), (2), (4) and (5)) are discretised in space by
ntegration over the set of control volumes forming the computa-
ional mesh, and in time over a small time step,�t. This process
esults in systems of linearised algebraic equations for the equa-
ions of mass and momentum conservation jointly with the
onstitutive equation. In these equations all variables are eval-
ated and stored in the central position of the control volumes
cells) and the computational mesh applied for the present simu-
ations is orthogonal. As a consequence, special procedures are
equired to ensure the pressure/velocity coupling and the veloc-
ty/stress coupling (following the Oliveira et al. method [16]).

For the calculation of the convective terms in both the consti-
utive Eq. (4) and the momentum Eq. (2) we use a high-resolution
cheme called CUBISTA [17], with third-order accuracy in
pace for smooth flow, and having simultaneously both high
umerical precision and good characteristics of iterative conver-
ence. The CUBISTA scheme is implemented explicitly, except
or the part corresponding to upwind fluxes which are incorpo-
ated implicitly through the coefficients.

The constitutive and the momentum conservation equations
n discretised form are solved using a modified algorithm based
n the SIMPLE algorithm developed by Patankar and Spald-
ng [18] that allows, through an iterative process of pressure
orrection, to guarantee the coupling of velocity and pressure,
erifying the continuity equation. The presence of the consti-
utive equation for the viscoelastic fluid requires some minor
lterations to the original SIMPLE method, which are mainly

oncerned with the calculation of pressure from the continuity
quation. Two new steps are introduced in the initial part of the
lgorithm to account for the stress equation; this procedure is
ocumented in detail elsewhere [16].



4 tonian

r
i
a
a
c
i
p
n
m
c
b

4

t
o
w
t
s
m
g

s
t
x
c
T
o

(
p

m
a
c
u
t

u
c
r
a

(
t
i
p
o

p
t
L
o
e
u

T
M

B
B
B
B
N
D

G.N. Rocha et al. / J. Non-New

Boundary conditions are required around the flow domain
epresented in Fig. 1. At the inlet of the channel, x/d = −20, we
mpose fully developed profiles for all non-zero variables (u, τxx

nd τxy). The relevant equations are given in Oliveira [11] and
re not repeated here for conciseness. At x/d = +50, in the outlet
hannel, we impose the well-known boundary condition of van-
shing axial variation for all quantities, i.e. ∂/∂x = 0, except the
ressure which was linearly extrapolated from the inside chan-
el. We confirmed that this outlet condition did not affect the
ain flow characteristics near the expansion, once L2 is suffi-

iently long. Finally at the solid walls we impose the no-slip
oundary condition.

. Computational meshes and accuracy

In this section we provide some details about the compu-
ational meshes used in this work and, based on the results
btained for each mesh, we quantify the numerical accuracy. As
e are primarily interested in bifurcations to asymmetric flow,

he whole flow domain was simulated, i.e. we did not assume
ymmetry about the centreline (i.e. y = 0). The computational
esh is comprised of four blocks, presented in Fig. 2, and their

eometric characteristics are provided in Table 1.
Three computational meshes have been employed in this

tudy and their main characteristics are given in Table 1. The
able includes the number of cells for each block, Nx along the

-direction, Ny along the y-direction and the total number of
ells or control volumes (NC) inside the computational domain.
he number of degrees-of-freedom (DOF), for each mesh, is
btained through the multiplication of NC for the six variables

R
o
s
c

Fig. 2. Schematic representation of blo

able 1
ain characteristics of computational mesh

Mesh 1 Mesh 2

Nx × Ny fx Nx × Ny

lock I 40 × 20 0.9121 80 × 40
lock II 100 × 20 1.0370 200 × 40
lock III 100 × 30 1.0370 200 × 60
lock IV 100 × 30 1.0370 200 × 60
C 8800
OF 52800

�xmin =�ymin = 0.05 �xm
Fluid Mech. 141 (2007) 1–17

two velocity components, pressure and three stress tensor com-
onents) which compose the two-dimensional geometry.

The minimum cell size (�xmin =�ymin, these values are nor-
alised with d) near to the expansion is given in Table 1, as

re the expansion or compression factor (fx =�xi/�xi−1) for the
ell size along the streamwise x-direction (i.e. the mesh is non-
niform). Along the y-direction we applied a uniform mesh and
he expansion or compression factor (fy) is equal to 1, see Fig. 3.

All the results to be presented in this study were calculated
sing the medium mesh (Mesh 2), and the fine (Mesh 3) and
oarse (Mesh 1) meshes were obtained by doubling or halving,
espectively, the number of cells along the x- and y-direction, so
s to enable quantification of numerical accuracy.

A schematic representation of the computational mesh
medium mesh—Mesh 2) used in the computational calcula-
ions of the main variables is presented in Fig. 3. This figure
llustrates the local refinement of the mesh near the expansion
lane (x = 0), where the highest stress gradients are expected to
ccur due to the abrupt increase in channel height.

The results obtained for the three computational meshes are
resented in terms of vortex size and intensity in Table 2, for
he Newtonian and a representative viscoelastic fluid (Re = 20,
2 = 100, β = 0.5 and We = 2). With each refinement the number
f cells in each direction is doubled and the geometric factor (fx,
xpansion or compression of cells) is the square root of the value
sed in the previous mesh. This procedure is useful for applying

ichardson’s extrapolation [19] technique for the convergence-
rder accuracy in the numerical approximation. By assuming
econd-order accuracy, based on previous works with the same
ode [11,20,21], the extrapolated values denoted by “Richard-

cks in the 1:4 planar expansion.

Mesh 3

fx Nx × Ny fx

0.9554 160 × 80 0.9776
1.0183 400 × 80 1.0091
1.0183 400 × 120 1.0091
1.0183 400 × 120 1.0091

35200 140800
211200 844800

in =�ymin = 0.025 �xmin =�ymin = 0.0125
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Fig. 3. Zoomed view of the medium mesh used in t

on’s extrapolation” are given in Table 2, for the vortices sizes
Xr) and intensities (ψr).

The discretisation errors on Mesh 2 (our base mesh for the
emaining results) are also given in the previous table. It can seen
hat the discretisation errors for the recirculation size are below
.15% for the Newtonian fluid and 1.4% for the viscoelastic
uid, while errors in recirculation intensity are below 0.7% for

he Newtonian fluid and 10.3% for the FENE–MCR simulations.
he errors in ψr are much higher than errors in Xr because the
valuation of ψr requires integration of the resulting velocity
elds and this integration tends to lower the accuracy of the
esults (see Alves et al. [20]).

Thus, in general, the uncertainty in our directly calculated
alues is around 1–2% and the stress fields, in particular, which
re so important for the correct prediction of viscoelastic flows,
ere observed to converge well with mesh refinement. For the
iscoelastic case in Table 2 (i.e. part (b)) a detailed view of
ontour plots of τxx predicted on the three meshes, not shown
ere for conciseness, confirms that the results of the two finer
eshes are almost coincident.
. Results and discussion

In this section we present and discuss our results and, from the
oint of view of their practical utility, they may be classified as

able 2
ffect of mesh refinement for Re = 20

Xr ψr (×10−2)

a) Newtonian case
Mesh 1 3.6281 6.5039
Mesh 2 3.6307 6.5487
Mesh 3 3.6349 6.5827
Richardson’s extrapolation 3.6363 6.5940
Discretisation error (%) 0.15 0.69

b) Viscoelastic case
Mesh 1 2.0684 2.2307
Mesh 2 2.1562 2.6163
Mesh 3 2.1787 2.8421
Richardson’s extrapolation 2.1862 2.9174
Discretisation error (%) 1.37 10.32

e = 2, β = 0.5 and L2 = 100.
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putational calculation (−2 ≤ x ≤ 10; −2 ≤ y ≤ 2).

ither qualitative or quantitative results. The qualitative results to
e given essentially comprise streamline plots, an effective way
f illustrating the effect of inertia, elasticity and solvent viscosity
atio on the degree of recirculation and observing the existence,
r not, of asymmetric flow. In addition the main contribution of
he work is however the quantitative analysis, which comprises
ables and figures for the size and intensity of the corner vor-
ex, stress distributions, velocity profiles and the pressure drop
long the centreline. Our numerical values for the Newtonian
nd viscoelastic fluid flows are also compared with the results
btained by Oliveira [11] for a planar sudden expansion with a
ower expansion ratio of 3. Firstly we document our results for
he Newtonian case with the main purpose of validating the cal-
ulations. An equivalent validation could not be undertaken for
he viscoelastic simulations because we could not find an ade-
uate data set in the literature for comparison. Next we consider
he viscoelastic case, for which we study the effects of elastic-
ty, polymer concentration and inertia. In the current work L2

emains constant, at value of L2 = 100, in accordance with the
ork of Remmelgas et al. [22]. Section 5.2.3 discusses briefly

he influence of extensibility, in the range L2 = 100–500.
All calculations presented in this work were conducted using

Pentium® IV personal computer with 3.0 GHz clock speed and
024 MB random access memory. The computational time was
een to increase almost linearly with the mesh density (number
f cells).

.1. Results for the Newtonian case (validation)

In Fig. 4 we compare our predicted bifurcation results with the
umerical values obtained in the work of Drikakis [2]. Follow-
ng Drikakis we find it useful to define the parameter DX, where
X = (Xr1 − Xr2), to quantify the existence, or not, of asymmet-

ic flow. The parameter DX is zero for a symmetric flow and
on-zero, with opposite signs, for the two possible asymmet-
ic flow states after the critical Reynolds number. The upper
ranch in Fig. 4 corresponds to flow attaching first to the upper
all and, conversely, the lower branch corresponds to the flow
ttaching to the lower wall. Drikakis analysed Newtonian flow
n several expansion ratios, imposing fully-developed conditions
t inlet and defining the Reynolds number using the maximum
nlet velocity (U0 = 1.5U) and height of the inlet channel (d).



6 G.N. Rocha et al. / J. Non-Newtonian

F
a

W
a
a
s

s
n
b

T
P

R

1

r
t

w
[
l
a
R
t
P
T
c
c
fl
t
N
e
t
v

a
N
1
a
w
e
s
t

ig. 4. Comparison of the bifurcation parameter DX between our simulations
nd the results of Drikakis [2] results for the Newtonian fluid.

e have reprocessed his results so the definitions used in Fig. 4
re consistent with ours. Our results are, in the main, in good
greement with the results of Drikakis except for a discernable
ystematic difference for Re > 45.

Our predicted results for a Newtonian fluid are also pre-

ented in Table 3. The corner vortex size is measured by its
on-dimensional length, Xr = xr/d, and the intensity is calculated
y the amount of recirculating flow normalised by the inlet flow

able 3
redicted vortex data for the Newtonian fluid

e Xr1 Xr2 Xr3 Xr4 ψrl (×l0−2) ψr2 (×10−2)

0.01 0.747 0.747 – – 0.059 0.059
0.1 0.755 0.755 – – 0.062 0.062
1 0.837 0.837 – – 0.103 0.103
2 0.937 0.937 – – 0.173 0.173
5 1.291 1.291 – – 0.672 0.672

10 1.994 1.994 – – 2.480 2.480
20 3.631 3.631 – – 6.549 6.549
30 5.374 5.374 – – 8.812 8.812
35 6.262 6.262 – – 9.483 9.483
36 6.449 6.428 – – 9.597 9.589
37 7.645 5.389 – – 10.15 9.345
39 8.595 4.812 – – 10.86 9.282
40 8.929 4.681 – – 11.20 9.290
45 10.18 4.423 – – 13.28 9.396
50 11.13 4.386 – – 15.28 9.512
55 11.90 4.417 – – 16.81 9.607
60 12.56 4.474 – – 17.99 9.672
63 12.91 4.515 – – 18.57 9.700
64 13.02 4.529 13.48 14.05 18.74 9.711
65 13.13 4.544 13.00 14.87 18.91 9.720
70 13.61 4.619 12.51 16.87 19.64 9.745
80 14.41 4.774 12.48 19.81 20.76 9.761
90 15.07 4.926 12.72 22.27 21.76 9.746
00 15.69 5.075 13.06 24.56 22.87 9.703
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ate so that, along the cross-stream direction, ψr varies from 0
o 1.

Comparison of our Xr and ψr values at Re = 0.01 (We = 0)
ith “benchmark” creeping flow calculations of Alves et al.

23] shows agreement of better than 0.5%. Additionally, excel-
ent agreement is obtained with the correlations of Scott et
l. [24] in their range of validity (say 20 ≤ Re ≤ 37). For low
eynolds number, a comparison can also be performed against

he results for the 4:1:4 constriction geometry of Cartalos and
iau [25], Szabo et al. [26] and Rothstein and McKinley [27].
hese authors have studied experimentally [25,27] and numeri-
ally [26] the viscoelastic flow of Boger fluids in axisymmetric
ontraction/expansions, with particular emphasis placed on the
ow upstream of the first contraction. For low Deborah numbers

he results are almost independent of whether the flow is non-
ewtonian or not, and whether it occurs in a contraction or an

xpansion; in that situation [27] measured a vortex length and
he coordinates of the vortex central position which compares
ery well with our predictions at De = 1.

The effect of Reynolds number on the pressure distribution
long the “lower” and “upper” wall is shown in Fig. 5 for the
ewtonian fluid at Reynolds numbers equal to 36, 45, 70 and
00. (Note in this work the larger recirculation is always shown
s occurring on the lower wall and the smaller on the upper
all, but in the simulations it was equally likely to occur on

ither wall and is only plotted as such for consistency.) Under
ymmetric separation conditions, e.g. Re = 36 in Fig. 5 (a condi-
ion just subcritical), the pressure distribution on the lower and
pper wall are the same (the continuous and dashed lines are
ndistinguishable). Downstream of the sudden expansion the
ressure initially increases (pressure recovery after the increase
n channel cross-section), reaches a maximum value, and then
radually decreases toward the outlet of the channel. Predictions
f Drikakis [2] are also shown in the figure and good agreement
s observed; our predicted slope for the pressure decay is 0.33329
n the range x/d = 20 and 40, comparing extremely well with the
heoretical value of f = 12/Re = 0.33333. When the flow is asym-

etric the pressure has different values on the lower and upper
alls before eventually reaching the same values and the con-

tant slope for fully developed conditions. At some Reynolds
umber (e.g. Re > 70, see Fig. 15(a) for the streamline patterns
n these cases) a pressure drop occurs downstream of the recir-
ulation region on the lower wall and downstream of the smaller
ecirculation on the upper wall, but this behaviour does not occur
t the farthest recirculation zone for Re > 64 (see Fig. 15(a) for
e = 70) on the upper wall. In this case the recirculation creates a
isplacement of the flow, seen from the streamlines in Fig. 15(a),
nd consequently a pressure drop on the opposite wall. However,
his does not occur downstream of the large recirculation on the
pper wall because the flow on the lower wall is already attached
nd, therefore, cannot create a flow displacement with an atten-
ant pressure drop. Similar conclusions were drawn in the work
f Drikakis [2] against whose numerical results we have com-

ared our predictions.

In Fig. 6 we present a detailed comparison of the axial velocity
istributions for several Re, corresponding to an asymmetric
ow situation, at four axial locations situated at x/d = 10, 15, 20
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Fig. 5. Pressure distribution at various Rey

nd 25. These locations are illustrated schematically in Fig. 7
hich is a streamline plot for Re = 100 (Newtonian fluid) where
third recirculation region is seen to occur on the upper wall.

It can be seen from the streamline plot, shown in Fig. 7,
hat at these high Reynolds number an additional recirculation
one has developed downstream of the expansion plane. The
ow separates from the upper wall, impinges on the lower wall,
nd then reattaches to the upper wall as commented above in
elation to the pressure distribution. However, Fig. 6 confirms
hat by x/d = 25 the flow field has become symmetric once again
nd is close to the analytical fully developed parabolic profile
or all Reynolds numbers.

.2. Results for the viscoelastic case
As already pointed out at the end of Section 2, using the
ENE–MCR constitutive equation to model a non-Newtonian
iscoelastic fluid the number of independent parameters that

v
0
r

numbers for the Newtonian simulations.

an be varied increases from a single parameter in the New-
onian case up to four (Re, We, β and L2) and an exhaustive
tudy of all possibilities goes well beyond the present attempt.
o investigate their effects, we have decided to fix all parame-

ers except one at some typical values and vary separately the
emaining parameter. Such “separated” effects are discussed in
his section.

.2.1. Effect of elasticity, We number
To investigate the effect of elasticity we use the Weissenberg

umber, which provides a relative measure of the magnitude
f the elastic to viscous stresses, defined here as We = λU/d. In
his case, we only modify the constant relaxation time λ, which
epresents a time constant of the material.
Some computational results are provided in Table 4 for the
ortices sizes and intensities with increasing We number between
and 100 (Re = 40, β = 0.9 and L2 = 100). We note that for this

elatively high value of β (typical of Boger fluids, cf. Rothstein



8 G.N. Rocha et al. / J. Non-Newtonian Fluid Mech. 141 (2007) 1–17

ofiles

a
i
W
l

s
R
s
i
i
i

F
x

c
t
f

(
s
o

Fig. 6. Comparison of predicted axial velocity pr

nd McKinley [27] who worked with a polystyrene solution hav-
ng β = 0.921) the computations could be pursued up to large

eissenberg numbers, but limiting We values were found at
ower β (see Section 5.2.2).

In Fig. 8 we present qualitatively the values of Table 4 for the
ize of the recirculation region as a function of We number, at
eynolds numbers of Re = 40 and 60 (β = 0.9, L2 = 100). We can
ee that the effect of increasing the We number from We = 0–100,
s for the larger of the two corner vortices (Xr1) to be reduced
n size, while the shorter vortex (Xr2) tends to increase in size
n the lower range of We for Re = 40, or remains approximately

ig. 7. Schematic illustrating locations of axial-velocity distribution profiles for
/d = 10, 15, 20 and 25 (streamlines for Re = 100).

r
p
n
t
a
p
e
W

b
a

for Re = 60, 65, 80 and 100 (Newtonian results).

onstant. However, although the effect of elasticity is to diminish
he degree of asymmetry of the flow, the asymmetry is present
or the whole range of We number (0 < We < 100) studied.

In Fig. 9 we plot the streamlines for We numbers between 0
Newtonian fluid) and 10, for symmetric flow cases, at a con-
tant Reynolds number of Re = 20 (β = 0.5, L2 = 100). The effect
f elasticity is to reduce the vortex size and the intensity of the
ecirculating flow in each case. Downstream of the expansion
lane a “bulging” of the streamlines can be observed. This phe-
omenon can be explained if we consider that fluid is converging
owards the centreline upstream of the expansion, followed by
stronger divergence (due to elastic recovery of the stretched

olymer molecules) towards the larger channel walls after the
xpansion plane (see Fig. 9 at the highest Weissenberg number,

e = 10).
As a consequence of this convergent–divergent streamline

ehaviour, an overshoot of the streamwise velocity component
long the centreline occurs upstream of the expansion and then
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n undershoot occurs downstream. This behaviour is shown,
or the particular case of Re = 20 and We = 0 and 10 (β = 0.5,
2 = 100), in Fig. 10 where it is clear that the fluid acceleration
long the centreline is concentrated in a small region just at the
ntrance to the expansion (x ≈ 0), while the region of diverging
treamlines is distributed over a longer distance downstream of
he expansion plane. The effect becomes more pronounced with
ncreasing We, but is also dependent on the Reynolds number, as
hown in Fig. 11 for We = 2 and We = 4. From this figure, which
hows the variation of these velocity over and undershoots along
he centreline with Re, it is clear that the overshoot of veloc-

ty near the expansion plane increases with increasing elasticity
umber (E = λη0/ρd2 = (1 −β)We/Re) and that the undershoot in
he diverging streamlines zone reaches a maximum at a given E
≈0.08–0.10). A nice and definite explanation for this “diverging

T
t
i
d

Fig. 9. Streamlines at various We numbe
etric vortices (L2 = 100, β = 0.9): (a) Re = 40 and (b) Re = 60.

ow behaviour” was recently put forth by Alves and Poole [28]
or the contraction flow case, but the same mechanism should be
t work for the sudden expansion case under consideration here.
heir analysis demonstrated that inertia (through the Reynolds
umbers) is not necessary for diverging flow to be observed:
herefore the phenomenon should not be directly controlled by
he elasticity number.

A peculiar feature in the vortex size variation with We seen in
ig. 8 for the lower Re value (Re = 40) is worth discussing here
ecause it is an elastic effect that was, in fact, already present
n the work of Oliveira [11] (see his Fig. 8) but went unnoticed.

here is a slight, but distinct, dip in the size of the smallest vor-

ex (Xr2) at We = 45 (Re = 40 ⇒ E ≈ 0.1), with an ensuing slight
ncrease of Xr1. In order to clarify the origin of such a small, but
iscernable ‘kink’ in the variation of Xr, we plot the streamlines

rs (Re = 20, L2 = 100, and β = 0.5).
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Table 4
Predicted vortex data for the viscoelastic fluid/Effect of elasticity through We,
for Re = 40, β = 0.9 and L2 = 100

We Xr1 Xr2 ψr1 (×10−2) ψr2 (×10−2)

0 8.93 4.68 11.20 9.29
1 8.44 4.96 10.50 9.05
2 8.10 5.09 10.28 8.98
3 7.99 5.02 10.30 8.92
4 7.96 4.92 10.38 8.85
5 7.95 4.84 10.45 8.78

10 7.90 4.62 10.60 8.52
15 7.85 4.54 10.59 8.40
20 7.83 4.49 10.55 8.36
30 7.82 4.43 10.49 8.50
40 7.83 4.36 10.44 8.78
50 7.91 4.20 10.16 9.66
60 7.92 4.27 10.11 9.80
70 7.92 4.28 10.10 9.91
80 7.93 4.28 10.10 9.92

1

f
(
a
v
s
W
i
a
s

5

t
t

F
R
L

90 7.93 4.28 10.10 9.92
00 7.93 4.28 10.10 9.92

or the Re of interest in Fig. 12. It appears that for We ≥ 45
E ≥ 0.11) the shape of the smaller vortex near the wall changes
bruptly from an elongated shape, typical of the Newtonian
ortex (cf. We = 0), to a more strongly convex shape, with the
eparation streamline now intersecting the wall at a right angle.
e hypothesise that this elastic retraction of the smaller vortex

s related to the “diverging streamlines” phenomenon discussed
bove. For Re = 60 (We = 2, β = 0.9, E = (1 – 0.9) × 2/60 = 0.003)
uch a perturbation in vortex size is absent, as seen in Fig. 8(b).
.2.2. Effect of concentration, β
The β parameter measures the ratio of solvent viscosity to

otal shear viscosity. For the present study we varied β from 1.0
o 0.3, at fixed Re = 40, We = 2 and L2 = 100.

ig. 10. Variation of streamwise velocity component along the centerline for
e = 20 at We = 0 (Newtonian fluid) and We = 10 (viscoelastic fluid, β = 0.5 and
2 = 100).

F
b
(
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t

T
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β

β

1
0
0
0
0
0
0
0

ig. 11. Variation of the velocity overshoot and undershoot with Reynolds num-
er for two Weissenberg numbers (L2 = 100): (a) We = 2 (β = 0.5 and 0.8) and
b) We = 4 (β = 0.5).

The numerical results of the present parametric study, in terms

f vortex size and intensity, are given in Table 5 and qualitatively
llustrated in Fig. 13.

Analysing Fig. 13 we can see that for a decreasing β ratio
he flow is stabilized until a stable symmetrical state exists

able 5
redicted vortex data for the viscoelastic fluid/Effect of concentration parameter
, for We = 2, Re = 40 and L2 = 100

Xr1 Xr2 ψr1 (×10−2) ψr2 (×10−2)

.0 8.929 4.681 11.20 9.290

.9 8.101 5.086 10.28 8.983

.8 6.644 6.129 9.189 8.967

.7 5.993 6.059 8.601 8.639

.6 5.659 5.693 8.158 8.178

.5 5.319 5.336 7.662 7.671

.4 4.979 4.989 7.035 7.041

.3 4.651 4.659 6.321 6.325
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Fig. 12. Vortex shapes at increasing Weissenberg number (β = 0.9 and

or values of β≤ 0.8, at Re = 40, while the flow is asymmet-
ic for β > 0.8. It is clear that the Newtonian flow (β = 1.0)
as the largest asymmetry and this asymmetry is somewhat

educed with a small introduction of elasticity in the fluid,
hrough the β parameter, and it is completely attenuated when
he concentration is further increased. Following the practice of
efining the Weissenberg number based on a Maxwell model

t
i
s
e

00) and constant Reynolds number (Re = 40). Note change at We = 45.

elaxation time (that is, λ0 =ψ1/2η0, where ψ1 is the first
ormal-stress coefficient), the influence of β can be seen as
n elastic effect provided we use We′ = We(1 −β) to define

he Weissenberg number. For β = 1 we have We′ = 0 and no
nfluence of viscoelasticity is expected; for β < 1, with progres-
ively lower values, We′ increases implying higher levels of
lasticity.
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Fig. 13. Effect of solvent concentration (β = ηs/η0) upon size (filled symbols)
and intensity (hollow symbols) of vortices (Re = 40, We = 2, and L2 = 100).

Table 6
Predicted vortex data for the viscoelastic fluid/Effect of extensibility parameter
L2, for Re = 40, β = 0.9 and We = 2

L2 Xr1 Xr2 ψr1 (×10−2) ψr2 (×10−2)

100 8.101 5.086 10.28 8.983
200 7.945 5.287 9.858 8.731
3
4
5

Table 7
Predicted vortex data for the viscoelastic fluid (We = 2, β = 0.5 and L2 = 100)

Re Xr1 Xr2 Xr3 Xr4 ψr1 (×10−2) ψr2 (×10−2)

0.01 0.605 0.619 – – 0.024 0.026
0.1 0.607 0.621 – – 0.024 0.027
5 0.749 0.747 – – 0.062 0.062
10 0.957 0.955 – – 0.188 0.187
20 2.156 2.158 – – 2.616 2.615
30 3.703 3.708 – – 5.863 5.868
40 5.316 5.331 – – 7.677 7.686
42 5.646 5.666 – – 7.942 7.954
44 5.970 6.006 – – 8.179 8.200
45 6.128 6.166 – – 8.286 8.310
46 6.345 6.296 – – 8.426 8.399
47 7.363 5.490 – – 9.179 8.340
48 7.891 5.161 – – 9.705 7.942
50 8.627 4.849 – – 10.65 7.884
60 10.84 4.564 – – 14.57 8.022
70 12.27 4.651 – – 17.01 8.198
73 12.62 4.691 – – 17.54 8.239
73.5 12.67 4.698 13.39 13.53 17.62 8.245
74 12.73 4.705 12.94 14.18 17.69 8.250
75 12.83 4.719 12.64 14.80 17.85 8.264
80 13.32 4.794 12.22 16.77 18.53 8.313
85 13.75 4.871 12.15 18.30 19.09 8.352
9
1

b
r

F
L
s

00 7.899 5.383 9.605 8.525
00 8.038 5.210 9.558 8.256
00 8.208 4.973 9.537 7.975

o
a
n
t

ig. 14. Comparison of the predicted variation of vortex characteristics with the Re
2 = 100), and the viscoelastic results of Oliveira [11] for the 1:3 expansion: (a) vortex
ymbol.
0 14.14 4.948 12.21 19.65 19.57 8.384
00 14.83 5.100 12.47 22.15 20.55 8.418

At the particular values of Weissenberg number and extensi-
ility parameter of Table 5, it was observed that any further
eduction of β would result in either a lack of convergence

f our iterative scheme or plain divergence. This limit on the
llowable parameter range can be due to a deficiency of the
umerical method or, alternatively, to the fact that physically
he flow becomes unsteady or three-dimensional.

ynolds number for the Newtonian and viscoelastic fluids (We = 2, β = 0.5 and
size and (b) vortex intensity. New FENE–CR results are shown by a triangular
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.2.3. Influence of extensibility, L2
As mentioned previously, L2 = 100 is a typical value for
ilute polymer solutions, already allowing for considerable
olecular extension before the fully stretched state is attained.

t is interesting however, at least from the point of view of

m
t
β

t

Fig. 15. Streamlines at various Reynolds numbers: (a) Newtonian fl
Fluid Mech. 141 (2007) 1–17 13

ompleteness, to assess the importance of this level for the L2
odel parameter on the prediction of vortex sizes. For that, we
ook the base case of Section 5.2.2 with Re = 40, We = 2 and
= 0.9, a situation for which there is already bifurcation with

wo asymmetric vortices, and varied L2 from 100 to 500. The

uid and (b) viscoelastic fluid (We = 2, β = 0.5 and L2 = 100).
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ig. 16. Bifurcation diagrams for Newtonian and viscoelastic (We = 2, β = 0.5
nd L2 = 100) flows in a 1:4 planar expansion.

orresponding vortex size and intensity barely varied as seen
rom Table 6, with a systematic small decrease of the intensity
f both vortices, as expected from an increase in extensional
lasticity. In conclusion, the influence of L2 on the flow, when
2 is larger than 100, appears to be minimal.

.2.4. Effect of inertia, Re number
In this section we present the results concerned with the vari-
tion of Reynolds number, for typical values L2 = 100, We = 2
nd a moderate concentration β = 0.5. A Reynolds number mea-
ures the ratio between the viscous and inertial forces. At high
e values the flow is dominated by inertial forces and for low Re

f
a

a

Fig. 17. Non-dimensional contour lines for the first normal-stress differenc
Fluid Mech. 141 (2007) 1–17

alues the flow is dominated by viscous forces and the inertial
orces are less significant.

Our numerical data are provided in Table 7 and the values are
lotted in Fig. 14(a), which shows the variation of the lengths
f the upper and lower vortices downstream of the expansion
lane with Reynolds number and in Fig. 14(b), which shows the
orresponding recirculation intensities. At very low Re, some
ather small differences are seen in Table 7 between the val-
es of the two, nominally identical, vortex sizes but they are
ithin the numerical uncertainty (≈0.2–2.0%) of our results.
or a Reynolds number up to a critical value (Recr = 46) the flow
emains steady and symmetric, while for higher Re number the
ow is still steady but asymmetric with a larger and a smaller
ecirculation. For Re above 73.5 a further recirculation region
ppears on either wall. In Fig. 15 we plot the streamlines for var-
ous Reynolds numbers to highlight these effects. Additionally,
n Fig. 14 we include the results of [11] for a similar viscoelastic
uid model in a 1:3 expansion to illustrate the effects brought
bout by a reduction in expansion ratio: essentially a delayed
ritical bifurcation point and smaller and less intense vortices.

Another issue is whether the modification introduced in the
ENE–CR model (MCR against CR, cf. Section 2) produces
ignificant differences. The triangular symbols in Fig. 14 corre-
pond to test calculations performed with the actual CR model
nd it may be concluded that minimal differences are seen for
ow to moderate Re, up to and around the bifurcation point,
nd the discrepancies remain small at higher Re. Previous sim-
lations with inertialess flows showed the two models to yield
ssentially the same results. Thus, the conclusions drawn here

or the FENE–MCR model can, in general, be extended to the
ctual CR version of the FENE model.

In Fig. 16 we show the “bifurcation” plot (i.e. the vari-
tion of the DX parameter with Re) for the viscoelastic

es (N1) with increasing We numbers (Re = 20, β = 0.5 and L2 = 100).
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Fig. 18. Non-dimensional contour lines for the shear stress (

iquid, and compare to the equivalent data for the Newtonian
uid.

From our results we can conclude that the transition from a
ymmetric to an asymmetric state is delayed to higher Re val-
es by elasticity, specifically from Recr = 36 (Newtonian case) to
ecr = 46 (viscoelastic case) for this parameter set (see Fig. 14).
he effect of elasticity is therefore a stabilizing factor for the

ccurrence of bifurcation, under steady flow conditions. The
ortex sizes and intensities are smaller for the viscoelastic liq-
id when compared with the Newtonian fluid. This effect is
bserved for the whole range of Re, from 0 to 100, and can be

2

c
a

Fig. 19. (a and b) Normal-stress profile τxx and τyy, along the centreline
ith increasing We numbers (Re = 20, β = 0.5 and L2 = 100).

een in Fig. 15(a and b) which shows the streamline plots for
he Newtonian and viscoelastic fluid, respectively. In this figure
t is also possible to appreciate the phenomenon of ‘diverging’
ow commented upon above.

In Figs. 17 and 18 we present the non-dimensional contour
ines for the first normal-stress differences (N1 = τxx − τyy) and
hear stress (τxy), with increasing Weissenberg number (We = 0,

, 5 and 10) for Re = 20 (β = 0.5 and L2 = 100).

Globally these figures illustrate the higher level of stress con-
entration for the viscoelastic fluid, both in respect of the normal
nd shear components. The stress profiles are still symmetric,

(y = 0), for the viscoelastic fluid (Re = 20, β = 0.5 and L2 = 100).
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Fig. 20. Pressure distribution along the centreline for the Newtonian and v

emonstrating that for the low Re numbers cases shown the bifur-
ation phenomenon is not sensed by the stress field. Another
etail is the displacement of the maximum stress downstream
f the expansion (see Fig. 17 for We = 2). The convective terms
resent in the stress equations tend to sweep the stresses along
he flow direction even if the Reynolds number is kept constant
s is the situation for the cases shown. Lastly, we can see the
radual stress concentration near to the expansion corner as the
egree of elasticity increases.

In Fig. 19 we plot the variation of the normal stresses τxx and
yy along the centreline (i.e. y = 0), at several Weissenberg num-
ers (We = 0, 1, 2 and 5) for the viscoelastic fluid (Re = 20,β = 0.5
nd L2 = 100). The normal stresses are non-dimensionalised by a
onvective scale,ρ * U2 and for the viscoelastic cases the stresses
hown correspond to the polymeric contribution only. We can
ee a gradual increase of the maximum transverse normal-stress
τyy > 0), and the location of this maximum value moves fur-
her downstream with increasing elasticity. This behaviour is

consequence of a history (or memory) effect in the consti-
utive equation. The τyy contribution is dominant in the first
ormal-stress term (i.e. N1 = τxx − τyy) calculation and the val-
es obtained from the stress components in Fig. 19 correspond
o the elliptic region of maximum negative first normal-stress
ifferences seen in the contours of Fig. 17, thus explaining the
endency for the lateral bulging of a fluid element seen previ-
usly (Figs. 9 and 15).

In Fig. 20 we investigate the influence of viscoelasticity and
nertia on the pressure distribution along the centreline of the
hannel (y = 0) for the Newtonian and viscoelastic cases. A mem-
ry effect in the fluid can again be observed downstream of the
xpansion plane as a continuation of the pressure decrease for
he viscoelastic liquid. Indeed, for this type of fluid we can see a

ower minimum pressure, occurring slightly further downstream
f the expansion compared with the Newtonian fluid, for which
ressure recovery starts immediately at the expansion plane.
dditionally the pressure recovery, after the expansion zone,

f
e
w
n

astic fluids (We = 20, β = 0.5 and L2 = 100), at: (a) Re = 20 and (b) Re = 50.

s lower for the viscoelastic fluid, i.e. there is an enhanced pres-
ure drop for the viscoelastic cases compared to the Newtonian
ase. This is an interesting result because for the corresponding
ontraction flow geometry, the predictions of several similar con-
titutive models have consistently exhibited a reduced pressure
rop for viscoelastic fluids (see Alves et al. [23] for example).

. Conclusions

Numerical simulations were conducted for flow in a two-
imensional channel with a 1:4 sudden symmetric expansion. A
ymmetry-breaking bifurcation was found for both Newtonian
nd viscoelastic fluids, at different Reynolds numbers in each
ase, and represents the transition from a symmetric to an asym-
etric flow. The critical Reynolds numbers at the bifurcation
ere Recr = 36 and 46 for the Newtonian and viscoelastic fluids

L2 = 100, We = 2 andβ = 0.5), respectively. It was shown that the
ritical Reynolds number decreased with increasing expansion
atio, compared with the work of Oliveira [11] for a 1:3 sudden
xpansion. At higher Reynolds numbers, Re higher than 64 or
3.5 for the Newtonian and viscoelastic liquid, respectively, a
econd bifurcation point is observed and a further recirculation
egions on the “upper” wall. This effect was not observed for
ows in the 1:3 expansion for Re < 100. Comparing the New-

onian and viscoelastic fluid simulations the effect of elasticity
measured by the Weissenberg number) tends to delay the onset
f the bifurcation, and the vortex length and intensity are always
ower for the viscoelastic fluid when compared with the Newto-
ian case.

Similar conclusions can be drawn when the actual CR model
s used instead of its modified version, which is mostly employed
n this investigation. A comparison between these two versions

or the constant viscosity FENE fluid shows almost no differ-
nces at low Re, up to and above the critical bifurcation point,
ith no systematic deviation for the CR at higher Reynolds
umbers.
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It was seen that the inertial forces, through the Re number,
ncrease the length and intensity of the vortex for both Newtonian
nd viscoelastic fluids. In particular for the viscoelastic fluids the
ffect of Re was inhibited in a lower range (say Re = 0 − 10), in
hich the vortex size and intensity are unaffected by inertia, fol-

owed by the inertial range that parallels the Newtonian tendency
or vortex enhancement. Finally, the polymer concentration was
een to have a very strong effect and for β > 0.8, at Re = 40 for
xample, the flow was asymmetric but for lower values of β the
symmetry was completely removed.
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